pyerualjetwork 4.3.7.dev1__py3-none-any.whl → 4.3.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/activation_functions.py +2 -2
- pyerualjetwork/activation_functions_cuda.py +63 -114
- pyerualjetwork/data_operations_cuda.py +1 -1
- pyerualjetwork/model_operations.py +14 -14
- pyerualjetwork/model_operations_cuda.py +16 -17
- pyerualjetwork/parallel.py +118 -0
- pyerualjetwork/plan.py +61 -256
- pyerualjetwork/plan_cuda.py +60 -267
- pyerualjetwork/planeat.py +12 -44
- pyerualjetwork/planeat_cuda.py +9 -45
- pyerualjetwork/visualizations.py +29 -26
- pyerualjetwork/visualizations_cuda.py +20 -22
- {pyerualjetwork-4.3.7.dev1.dist-info → pyerualjetwork-4.3.8.dist-info}/METADATA +2 -19
- pyerualjetwork-4.3.8.dist-info/RECORD +25 -0
- pyerualjetwork-4.3.8.dist-info/top_level.txt +1 -0
- pyerualjetwork-4.3.7.dev1.dist-info/RECORD +0 -44
- pyerualjetwork-4.3.7.dev1.dist-info/top_level.txt +0 -2
- pyerualjetwork_afterburner/__init__.py +0 -11
- pyerualjetwork_afterburner/activation_functions.py +0 -290
- pyerualjetwork_afterburner/activation_functions_cuda.py +0 -289
- pyerualjetwork_afterburner/data_operations.py +0 -406
- pyerualjetwork_afterburner/data_operations_cuda.py +0 -461
- pyerualjetwork_afterburner/help.py +0 -17
- pyerualjetwork_afterburner/loss_functions.py +0 -21
- pyerualjetwork_afterburner/loss_functions_cuda.py +0 -21
- pyerualjetwork_afterburner/memory_operations.py +0 -298
- pyerualjetwork_afterburner/metrics.py +0 -190
- pyerualjetwork_afterburner/metrics_cuda.py +0 -163
- pyerualjetwork_afterburner/model_operations.py +0 -408
- pyerualjetwork_afterburner/model_operations_cuda.py +0 -420
- pyerualjetwork_afterburner/plan.py +0 -425
- pyerualjetwork_afterburner/plan_cuda.py +0 -436
- pyerualjetwork_afterburner/planeat.py +0 -793
- pyerualjetwork_afterburner/planeat_cuda.py +0 -797
- pyerualjetwork_afterburner/ui.py +0 -22
- pyerualjetwork_afterburner/visualizations.py +0 -823
- pyerualjetwork_afterburner/visualizations_cuda.py +0 -825
- {pyerualjetwork-4.3.7.dev1.dist-info → pyerualjetwork-4.3.8.dist-info}/WHEEL +0 -0
pyerualjetwork/planeat_cuda.py
CHANGED
@@ -19,7 +19,6 @@ import math
|
|
19
19
|
|
20
20
|
|
21
21
|
### LIBRARY IMPORTS ###
|
22
|
-
from .plan_cuda import feed_forward
|
23
22
|
from .data_operations_cuda import normalization
|
24
23
|
from .ui import loading_bars, initialize_loading_bar
|
25
24
|
from .activation_functions_cuda import apply_activation, all_activations
|
@@ -399,7 +398,7 @@ def evolver(weights,
|
|
399
398
|
return weights, activation_potentiations
|
400
399
|
|
401
400
|
|
402
|
-
def evaluate(x_population, weights, activation_potentiations
|
401
|
+
def evaluate(x_population, weights, activation_potentiations):
|
403
402
|
"""
|
404
403
|
Evaluates the performance of a population of genomes, applying different activation functions
|
405
404
|
and weights depending on whether reinforcement learning mode is enabled or not.
|
@@ -414,64 +413,29 @@ def evaluate(x_population, weights, activation_potentiations, rl_mode=False, dty
|
|
414
413
|
activation_potentiations (list or str): A list where each entry represents an activation function
|
415
414
|
or a potentiation strategy applied to each genome. If only one
|
416
415
|
activation function is used, this can be a single string.
|
417
|
-
|
418
|
-
rl_mode (bool, optional): If True, reinforcement learning mode is activated, this accepts x_population is a single genome. (Also weights and activation_potentations a single genomes part.)
|
419
|
-
Default is False.
|
420
|
-
|
421
|
-
|
422
|
-
dtype (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
|
423
|
-
|
424
416
|
Returns:
|
425
417
|
list: A list of outputs corresponding to each genome in the population after applying the respective
|
426
418
|
activation function and weights.
|
427
419
|
|
428
|
-
Notes:
|
429
|
-
- If `rl_mode` is True:
|
430
|
-
- Accepts x_population is a single genom
|
431
|
-
- The inputs are flattened, and the activation function is applied across the single genom.
|
432
|
-
|
433
|
-
- If `rl_mode` is False:
|
434
|
-
- Accepts x_population is a list of genomes
|
435
|
-
- Each genome is processed individually, and the results are stored in the `outputs` list.
|
436
|
-
|
437
|
-
- `feed_forward()` function is the core function that processes the input with the given weights and activation function.
|
438
|
-
|
439
420
|
Example:
|
440
421
|
```python
|
441
|
-
outputs = evaluate(x_population, weights, activation_potentiations
|
422
|
+
outputs = evaluate(x_population, weights, activation_potentiations)
|
442
423
|
```
|
443
424
|
|
444
425
|
- The function returns a list of outputs after processing the population, where each element corresponds to
|
445
426
|
the output for each genome in `x_population`.
|
446
427
|
"""
|
447
|
-
|
448
|
-
### IF RL_MODE IS TRUE, A SINGLE GENOME IS ASSUMED AS INPUT, A FEEDFORWARD PREDICTION IS MADE, AND THE OUTPUT(NPARRAY) IS RETURNED:
|
449
|
-
|
450
|
-
### IF RL_MODE IS FALSE, PREDICTIONS ARE MADE FOR ALL GENOMES IN THE GROUP USING THEIR CORRESPONDING INDEXED INPUTS AND DATA.
|
451
428
|
### THE OUTPUTS ARE RETURNED AS A PYTHON LIST, WHERE EACH GENOME'S OUTPUT MATCHES ITS INDEX:
|
452
429
|
|
453
|
-
if
|
454
|
-
|
455
|
-
Input = Input.ravel()
|
456
|
-
|
457
|
-
if isinstance(activation_potentiations, str):
|
458
|
-
activation_potentiations = [activation_potentiations]
|
459
|
-
|
460
|
-
outputs = feed_forward(Input=Input, is_training=False, activation_potentiation=activation_potentiations, w=weights)
|
461
|
-
|
430
|
+
if isinstance(activation_potentiations, str):
|
431
|
+
activation_potentiations = [activation_potentiations]
|
462
432
|
else:
|
463
|
-
|
464
|
-
for i, genome in enumerate(x_population):
|
433
|
+
activation_potentiations = [item if isinstance(item, list) else [item] for item in activation_potentiations]
|
465
434
|
|
466
|
-
|
467
|
-
|
435
|
+
x_population = apply_activation(x_population, activation_potentiations)
|
436
|
+
result = x_population @ weights.T
|
468
437
|
|
469
|
-
|
470
|
-
activation_potentiations[i] = [activation_potentiations[i]]
|
471
|
-
|
472
|
-
outputs[i] = feed_forward(Input=Input, is_training=False, activation_potentiation=activation_potentiations[i], w=weights[i])
|
473
|
-
|
474
|
-
return outputs
|
438
|
+
return result
|
475
439
|
|
476
440
|
|
477
441
|
def cross_over(first_parent_W,
|
@@ -757,7 +721,7 @@ def mutation(weight,
|
|
757
721
|
max_threshold = len(activations)
|
758
722
|
|
759
723
|
new_threshold = threshold
|
760
|
-
|
724
|
+
|
761
725
|
except_this = ['spiral', 'circular']
|
762
726
|
all_acts = [item for item in all_activations() if item not in except_this] # SPIRAL AND CIRCULAR ACTIVATION DISCARDED
|
763
727
|
|
pyerualjetwork/visualizations.py
CHANGED
@@ -2,7 +2,6 @@ import networkx as nx
|
|
2
2
|
import matplotlib.pyplot as plt
|
3
3
|
import numpy as np
|
4
4
|
from scipy.spatial import ConvexHull
|
5
|
-
import seaborn as sns
|
6
5
|
from matplotlib.animation import ArtistAnimation
|
7
6
|
|
8
7
|
def draw_neural_web(W, ax, G, return_objs=False):
|
@@ -323,7 +322,8 @@ def draw_activations(x_train, activation):
|
|
323
322
|
except:
|
324
323
|
print('\rWARNING: error in drawing some activation.', end='')
|
325
324
|
return x_train
|
326
|
-
|
325
|
+
|
326
|
+
""" DISABLED
|
327
327
|
def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation):
|
328
328
|
|
329
329
|
from .metrics import metrics, confusion_matrix, roc_curve
|
@@ -451,7 +451,7 @@ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation)
|
|
451
451
|
print(f"Hata oluştu: {e}")
|
452
452
|
|
453
453
|
plt.show()
|
454
|
-
|
454
|
+
"""
|
455
455
|
|
456
456
|
def plot_decision_boundary(x, y, activation_potentiation, W, artist=None, ax=None):
|
457
457
|
|
@@ -614,10 +614,10 @@ def update_neuron_history(LTPW, ax1, row, col, class_count, artist5, fig1, acc=F
|
|
614
614
|
|
615
615
|
fig1.suptitle(suptitle_info, fontsize=16)
|
616
616
|
|
617
|
-
|
617
|
+
""" DISABLED
|
618
618
|
def initialize_visualization_for_fit(val, show_training, neurons_history, x_train, y_train):
|
619
|
-
|
620
|
-
from data_operations import find_closest_factors
|
619
|
+
|
620
|
+
from .data_operations import find_closest_factors
|
621
621
|
visualization_objects = {}
|
622
622
|
|
623
623
|
if show_training or neurons_history:
|
@@ -649,32 +649,33 @@ def initialize_visualization_for_fit(val, show_training, neurons_history, x_trai
|
|
649
649
|
})
|
650
650
|
|
651
651
|
return visualization_objects
|
652
|
-
|
652
|
+
"""
|
653
653
|
|
654
|
-
|
654
|
+
""" DISABLED
|
655
655
|
def update_neural_web_for_fit(W, ax, G, artist):
|
656
|
-
|
657
|
-
The function `update_neural_web_for_fit` updates a neural web visualization for fitting.
|
658
|
-
"""
|
656
|
+
|
659
657
|
art5_1, art5_2, art5_3 = draw_neural_web(W=W, ax=ax, G=G, return_objs=True)
|
660
658
|
art5_list = [art5_1] + [art5_2] + list(art5_3.values())
|
661
659
|
artist.append(art5_list)
|
662
|
-
|
663
|
-
|
660
|
+
"""
|
661
|
+
|
662
|
+
""" DISABLED
|
664
663
|
def update_weight_visualization_for_fit(ax, LTPW, artist2):
|
665
|
-
|
664
|
+
|
666
665
|
art2 = ax.imshow(LTPW, interpolation='sinc', cmap='viridis')
|
667
666
|
artist2.append([art2])
|
667
|
+
"""
|
668
668
|
|
669
|
-
|
669
|
+
""" DISABLED
|
670
670
|
def update_decision_boundary_for_fit(ax, x_val, y_val, activation_potentiation, LTPW, artist1):
|
671
|
-
|
671
|
+
|
672
672
|
art1_1, art1_2 = plot_decision_boundary(x_val, y_val, activation_potentiation, LTPW, artist=artist1, ax=ax)
|
673
673
|
artist1.append([*art1_1.collections, art1_2])
|
674
|
+
"""
|
674
675
|
|
675
|
-
|
676
|
+
""" DISABLED
|
676
677
|
def update_validation_history_for_fit(ax, val_list, artist3):
|
677
|
-
|
678
|
+
|
678
679
|
period = list(range(1, len(val_list) + 1))
|
679
680
|
art3 = ax.plot(
|
680
681
|
period,
|
@@ -691,20 +692,22 @@ def update_validation_history_for_fit(ax, val_list, artist3):
|
|
691
692
|
ax.set_ylabel('Validation Accuracy')
|
692
693
|
ax.set_ylim([0, 1])
|
693
694
|
artist3.append(art3)
|
694
|
-
|
695
|
-
|
695
|
+
"""
|
696
|
+
|
697
|
+
""" DISABLED
|
696
698
|
def display_visualization_for_fit(fig, artist_list, interval):
|
697
|
-
|
699
|
+
|
698
700
|
ani = ArtistAnimation(fig, artist_list, interval=interval, blit=True)
|
699
701
|
return ani
|
700
|
-
|
702
|
+
"""
|
703
|
+
|
701
704
|
def show():
|
702
705
|
plt.tight_layout()
|
703
706
|
plt.show()
|
704
707
|
|
705
708
|
def initialize_visualization_for_learner(show_history, neurons_history, neural_web_history, x_train, y_train):
|
706
|
-
|
707
|
-
from data_operations import find_closest_factors
|
709
|
+
|
710
|
+
from .data_operations import find_closest_factors
|
708
711
|
viz_objects = {}
|
709
712
|
|
710
713
|
if show_history:
|
@@ -745,7 +748,7 @@ def initialize_visualization_for_learner(show_history, neurons_history, neural_w
|
|
745
748
|
return viz_objects
|
746
749
|
|
747
750
|
def update_history_plots_for_learner(viz_objects, depth_list, loss_list, best_acc_per_depth_list, x_train, final_activations):
|
748
|
-
|
751
|
+
|
749
752
|
if 'history' not in viz_objects:
|
750
753
|
return
|
751
754
|
|
@@ -772,7 +775,7 @@ def update_history_plots_for_learner(viz_objects, depth_list, loss_list, best_ac
|
|
772
775
|
hist['artist3'].append(art3)
|
773
776
|
|
774
777
|
def display_visualizations_for_learner(viz_objects, best_weights, data, best_acc, test_loss, y_train, interval):
|
775
|
-
|
778
|
+
|
776
779
|
if 'history' in viz_objects:
|
777
780
|
hist = viz_objects['history']
|
778
781
|
for _ in range(30):
|
@@ -2,7 +2,6 @@ import networkx as nx
|
|
2
2
|
import matplotlib.pyplot as plt
|
3
3
|
import cupy as cp
|
4
4
|
from scipy.spatial import ConvexHull
|
5
|
-
import seaborn as sns
|
6
5
|
from matplotlib.animation import ArtistAnimation
|
7
6
|
|
8
7
|
def draw_neural_web(W, ax, G, return_objs=False):
|
@@ -325,7 +324,7 @@ def draw_activations(x_train, activation):
|
|
325
324
|
print('\rWARNING: error in drawing some activation.', end='')
|
326
325
|
return x_train
|
327
326
|
|
328
|
-
|
327
|
+
""" DISABLED
|
329
328
|
def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation):
|
330
329
|
|
331
330
|
from .metrics_cuda import metrics, confusion_matrix, roc_curve
|
@@ -447,7 +446,7 @@ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation)
|
|
447
446
|
axs[1,1].set_title('Decision Boundary')
|
448
447
|
|
449
448
|
plt.show()
|
450
|
-
|
449
|
+
"""
|
451
450
|
|
452
451
|
def plot_decision_boundary(x, y, activation_potentiation, W, artist=None, ax=None):
|
453
452
|
|
@@ -583,9 +582,8 @@ def update_neuron_history(LTPW, ax1, row, col, class_count, artist5, fig1, acc=F
|
|
583
582
|
|
584
583
|
fig1.suptitle(suptitle_info, fontsize=16)
|
585
584
|
|
586
|
-
|
585
|
+
""" DISABLED
|
587
586
|
def initialize_visualization_for_fit(val, show_training, neurons_history, x_train, y_train):
|
588
|
-
"""Initializes the visualization setup based on the parameters."""
|
589
587
|
from .data_operations_cuda import find_closest_factors
|
590
588
|
visualization_objects = {}
|
591
589
|
|
@@ -618,33 +616,34 @@ def initialize_visualization_for_fit(val, show_training, neurons_history, x_trai
|
|
618
616
|
})
|
619
617
|
|
620
618
|
return visualization_objects
|
619
|
+
"""
|
620
|
+
|
621
621
|
|
622
|
-
|
622
|
+
""" DISABLED
|
623
623
|
def update_weight_visualization_for_fit(ax, LTPW, artist2):
|
624
|
-
"""Updates the weight visualization plot."""
|
625
624
|
art2 = ax.imshow(LTPW.get(), interpolation='sinc', cmap='viridis')
|
626
625
|
artist2.append([art2])
|
626
|
+
"""
|
627
627
|
|
628
628
|
def show():
|
629
629
|
plt.tight_layout()
|
630
630
|
plt.show()
|
631
631
|
|
632
|
+
""" DISABLED
|
632
633
|
def update_neural_web_for_fit(W, ax, G, artist):
|
633
|
-
"""
|
634
|
-
The function `update_neural_web_for_fit` updates a neural web visualization for fitting.
|
635
|
-
"""
|
636
634
|
art5_1, art5_2, art5_3 = draw_neural_web(W=W, ax=ax, G=G, return_objs=True)
|
637
635
|
art5_list = [art5_1] + [art5_2] + list(art5_3.values())
|
638
636
|
artist.append(art5_list)
|
639
|
-
|
637
|
+
"""
|
638
|
+
|
639
|
+
""" DISABLED
|
640
640
|
def update_decision_boundary_for_fit(ax, x_val, y_val, activation_potentiation, LTPW, artist1):
|
641
|
-
"""Updates the decision boundary visualization."""
|
642
641
|
art1_1, art1_2 = plot_decision_boundary(x_val, y_val, activation_potentiation, LTPW, artist=artist1, ax=ax)
|
643
642
|
artist1.append([*art1_1.collections, art1_2])
|
643
|
+
"""
|
644
644
|
|
645
|
-
|
645
|
+
""" DISABLED
|
646
646
|
def update_validation_history_for_fit(ax, val_list, artist3):
|
647
|
-
"""Updates the validation accuracy history plot."""
|
648
647
|
val_list_cpu = []
|
649
648
|
for i in range(len(val_list)):
|
650
649
|
val_list_cpu.append(val_list[i].get())
|
@@ -664,13 +663,12 @@ def update_validation_history_for_fit(ax, val_list, artist3):
|
|
664
663
|
ax.set_ylabel('Validation Accuracy')
|
665
664
|
ax.set_ylim([0, 1])
|
666
665
|
artist3.append(art3)
|
667
|
-
|
668
|
-
|
666
|
+
"""
|
667
|
+
""" DISABLED
|
669
668
|
def display_visualization_for_fit(fig, artist_list, interval):
|
670
|
-
"""Displays the animation for the given artist list."""
|
671
669
|
ani = ArtistAnimation(fig, artist_list, interval=interval, blit=True)
|
672
670
|
return ani
|
673
|
-
|
671
|
+
"""
|
674
672
|
def update_neuron_history_for_learner(LTPW, ax1, row, col, class_count, artist5, data, fig1, acc=False, loss=False):
|
675
673
|
|
676
674
|
for j in range(len(class_count)):
|
@@ -699,7 +697,7 @@ def update_neuron_history_for_learner(LTPW, ax1, row, col, class_count, artist5,
|
|
699
697
|
return artist5
|
700
698
|
|
701
699
|
def initialize_visualization_for_learner(show_history, neurons_history, neural_web_history, x_train, y_train):
|
702
|
-
|
700
|
+
|
703
701
|
from .data_operations_cuda import find_closest_factors
|
704
702
|
viz_objects = {}
|
705
703
|
|
@@ -741,7 +739,7 @@ def initialize_visualization_for_learner(show_history, neurons_history, neural_w
|
|
741
739
|
return viz_objects
|
742
740
|
|
743
741
|
def update_history_plots_for_learner(viz_objects, depth_list, loss_list, best_acc_per_depth_list, x_train, final_activations):
|
744
|
-
|
742
|
+
|
745
743
|
if 'history' not in viz_objects:
|
746
744
|
return
|
747
745
|
|
@@ -770,11 +768,11 @@ def update_history_plots_for_learner(viz_objects, depth_list, loss_list, best_ac
|
|
770
768
|
translated_x_train += draw_activations(x, activation)
|
771
769
|
|
772
770
|
art3 = hist['ax'][2].plot(x.get(), translated_x_train.get(), color='b', markersize=6, linewidth=2)
|
773
|
-
hist['ax'][2].set_title('
|
771
|
+
hist['ax'][2].set_title('Activation Shape Over Gen')
|
774
772
|
hist['artist3'].append(art3)
|
775
773
|
|
776
774
|
def display_visualizations_for_learner(viz_objects, best_weights, data, best_acc, test_loss, y_train, interval):
|
777
|
-
|
775
|
+
|
778
776
|
if 'history' in viz_objects:
|
779
777
|
hist = viz_objects['history']
|
780
778
|
for _ in range(30):
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.3.
|
3
|
+
Version: 4.3.8
|
4
4
|
Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -25,8 +25,6 @@ GitHub Page: https://github.com/HCB06/PyerualJetwork
|
|
25
25
|
YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7HbsBpCx2VTJ4SK9wcPyse-EHw
|
26
26
|
|
27
27
|
pip install pyerualjetwork
|
28
|
-
|
29
|
-
'use this if your data small or memory management is a problem :'
|
30
28
|
|
31
29
|
from pyerualjetwork import plan
|
32
30
|
from pyerualjetwork import planeat
|
@@ -38,26 +36,11 @@ YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7Hbs
|
|
38
36
|
from pyerualjetwork import data_operations_cuda
|
39
37
|
from pyerualjetwork import model_operations_cuda
|
40
38
|
|
41
|
-
'use this if your data large or memory management is not a problem : _afterburner package (afterburner package comes with powerful paralellism,
|
42
|
-
afterburner with cuda modules offers super-fast training but some memory managemant features and visualization features discarded.
|
43
|
-
Specially designed for LLM training and other massive model training)'
|
44
|
-
|
45
|
-
from pyerualjetwork_afterburner import plan
|
46
|
-
from pyerualjetwork_afterburner import planeat
|
47
|
-
from pyerualjetwork_afterburner import data_operations
|
48
|
-
from pyerualjetwork_afterburner import model_operations
|
49
|
-
|
50
|
-
from pyerualjetwork_afterburner import plan_cuda
|
51
|
-
from pyerualjetwork_afterburner import planeat_cuda
|
52
|
-
from pyerualjetwork_afterburner import data_operations_cuda
|
53
|
-
from pyerualjetwork_afterburner import model_operations_cuda
|
54
|
-
|
55
39
|
Optimized for Visual Studio Code
|
56
40
|
|
57
41
|
requires=[
|
58
42
|
'scipy==1.13.1',
|
59
43
|
'tqdm==4.66.4',
|
60
|
-
'seaborn==0.13.2',
|
61
44
|
'pandas==2.2.2',
|
62
45
|
'networkx==3.3',
|
63
46
|
'numpy==1.26.4',
|
@@ -67,7 +50,7 @@ YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7Hbs
|
|
67
50
|
'psutil==6.1.1'
|
68
51
|
]
|
69
52
|
|
70
|
-
matplotlib,
|
53
|
+
matplotlib, networkx (optional).
|
71
54
|
|
72
55
|
##############################
|
73
56
|
|
@@ -0,0 +1,25 @@
|
|
1
|
+
pyerualjetwork/__init__.py,sha256=iG_VtM8UBdCLvQcPh5WGunt_q6HbEGYKGI3K7du3qQE,639
|
2
|
+
pyerualjetwork/activation_functions.py,sha256=bKf00lsuuLJNO-4vVp4OqBi4zJ-qZ8L3v-vl52notkY,7721
|
3
|
+
pyerualjetwork/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
|
4
|
+
pyerualjetwork/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
|
5
|
+
pyerualjetwork/data_operations_cuda.py,sha256=ZcjmLXE1-HVwedextYdJZ1rgrns1OfSekzFpr1a9m6o,17625
|
6
|
+
pyerualjetwork/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
|
7
|
+
pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
8
|
+
pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
|
9
|
+
pyerualjetwork/memory_operations.py,sha256=I7QiZ--xSyRkFF0wcckPwZV7K9emEvyx5aJ3DiRHZFI,13468
|
10
|
+
pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
|
11
|
+
pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
12
|
+
pyerualjetwork/model_operations.py,sha256=MCSCNYiiICRVZITobtS3ZIWmH5Q9gjyELuH32sAdgg4,12649
|
13
|
+
pyerualjetwork/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI8gmx0QTGGB0mP_LqEb1uuU,13157
|
14
|
+
pyerualjetwork/parallel.py,sha256=TqTSqyxnq7lA9IYE-lCxqUO_GVdAYL34n4K67CMSNKI,5946
|
15
|
+
pyerualjetwork/plan.py,sha256=U4zdLHU6tqUQF2szKxG4Ef8DpUZ5h414W1bNCQpmL9A,22389
|
16
|
+
pyerualjetwork/plan_cuda.py,sha256=b3z4VJARGnHDnrrcBWiIdnGx91Z44jorFQxIk50bPy0,23321
|
17
|
+
pyerualjetwork/planeat.py,sha256=Lq5R0aMS4UIdZdbUKsKDv5g0WLwYryomR3IQYb8vAa4,37573
|
18
|
+
pyerualjetwork/planeat_cuda.py,sha256=SG7Oq1F2m3lJBbG9cgmu7q_ApmwSn2SvTpcbtEVAoDE,37630
|
19
|
+
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
20
|
+
pyerualjetwork/visualizations.py,sha256=kNFeEQaoZ1IdU5MyNWG9IKBKunk22y833wLKwASvscU,28346
|
21
|
+
pyerualjetwork/visualizations_cuda.py,sha256=9vWX2lms1vjbEKzwrN505RGoG-WLF14M96zHOVM0tPw,28737
|
22
|
+
pyerualjetwork-4.3.8.dist-info/METADATA,sha256=Bi46EzJmS119JF1imEaoWC0iBm4a4yyaWAGL-hshB9U,7474
|
23
|
+
pyerualjetwork-4.3.8.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
24
|
+
pyerualjetwork-4.3.8.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
25
|
+
pyerualjetwork-4.3.8.dist-info/RECORD,,
|
@@ -0,0 +1 @@
|
|
1
|
+
pyerualjetwork
|
@@ -1,44 +0,0 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=AVEMj3I45lWmAMQ1V_eVyHBmC5xBctmCIOfbyVe_GlE,643
|
2
|
-
pyerualjetwork/activation_functions.py,sha256=AR91fQV2W2rc-Qb4Yp7b8ucYpGjwyQUewO-M-lyEMs8,7729
|
3
|
-
pyerualjetwork/activation_functions_cuda.py,sha256=ztIw6rMR4t1289_TPIGYwE6qarl_YbSOGj5Ep3rUMqs,11803
|
4
|
-
pyerualjetwork/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
|
5
|
-
pyerualjetwork/data_operations_cuda.py,sha256=UpoJoFhIwTU4xg9dVuLAxLAT4CkRaGsxvtJG9j1xrNo,17629
|
6
|
-
pyerualjetwork/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
|
7
|
-
pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
8
|
-
pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
|
9
|
-
pyerualjetwork/memory_operations.py,sha256=I7QiZ--xSyRkFF0wcckPwZV7K9emEvyx5aJ3DiRHZFI,13468
|
10
|
-
pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
|
11
|
-
pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
12
|
-
pyerualjetwork/model_operations.py,sha256=RKqnh7-MByFosxqme4q4jC1lOndX26O-OVXYV6ZxoEE,12965
|
13
|
-
pyerualjetwork/model_operations_cuda.py,sha256=XnKKq54ZLaqCm-NaJ6d8IToACKcKg2Ttq6moowVRRWo,13365
|
14
|
-
pyerualjetwork/plan.py,sha256=ApMQC46_I8qtMqO4lLYLme--SGcMRg-GRo1-gSb3A3I,31894
|
15
|
-
pyerualjetwork/plan_cuda.py,sha256=ifXiyZs8y3N8b6BbM-T8fMrvzAal-zHqcxFlqwnfwII,33256
|
16
|
-
pyerualjetwork/planeat.py,sha256=uRX-hDywGOai6hHhbYrmcRodNZOg4WCQeJWZbdMlZs8,39470
|
17
|
-
pyerualjetwork/planeat_cuda.py,sha256=QNHCQLkR0MNFqyN2iHAtC7cbf8qZiD3p_54YH3lnMFA,39529
|
18
|
-
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
19
|
-
pyerualjetwork/visualizations.py,sha256=VL00sX2DZz83F__PyEJH9s1LizuXpOBzWjnoSjMJIJ0,28770
|
20
|
-
pyerualjetwork/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
|
21
|
-
pyerualjetwork_afterburner/__init__.py,sha256=2-MH8ePacnBtkhyjK1iy8Swio4xROO7vnq4tDzCuXUU,655
|
22
|
-
pyerualjetwork_afterburner/activation_functions.py,sha256=bKf00lsuuLJNO-4vVp4OqBi4zJ-qZ8L3v-vl52notkY,7721
|
23
|
-
pyerualjetwork_afterburner/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
|
24
|
-
pyerualjetwork_afterburner/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
|
25
|
-
pyerualjetwork_afterburner/data_operations_cuda.py,sha256=ZcjmLXE1-HVwedextYdJZ1rgrns1OfSekzFpr1a9m6o,17625
|
26
|
-
pyerualjetwork_afterburner/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
|
27
|
-
pyerualjetwork_afterburner/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
28
|
-
pyerualjetwork_afterburner/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
|
29
|
-
pyerualjetwork_afterburner/memory_operations.py,sha256=I7QiZ--xSyRkFF0wcckPwZV7K9emEvyx5aJ3DiRHZFI,13468
|
30
|
-
pyerualjetwork_afterburner/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
|
31
|
-
pyerualjetwork_afterburner/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
32
|
-
pyerualjetwork_afterburner/model_operations.py,sha256=MCSCNYiiICRVZITobtS3ZIWmH5Q9gjyELuH32sAdgg4,12649
|
33
|
-
pyerualjetwork_afterburner/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI8gmx0QTGGB0mP_LqEb1uuU,13157
|
34
|
-
pyerualjetwork_afterburner/plan.py,sha256=Gxv8ii4brTYMzzFZBP-X6kkwc6w6vtTPiMmqVOAqoq8,21972
|
35
|
-
pyerualjetwork_afterburner/plan_cuda.py,sha256=bNHjFniZdu7Y_R6sCA6fdmMyfyxSAvkgPtHkybg3O2Q,22904
|
36
|
-
pyerualjetwork_afterburner/planeat.py,sha256=Lq5R0aMS4UIdZdbUKsKDv5g0WLwYryomR3IQYb8vAa4,37573
|
37
|
-
pyerualjetwork_afterburner/planeat_cuda.py,sha256=KnU54osvwrMVvdO4fww7BqFBoq0I8c2YcZOVHD8l69g,37494
|
38
|
-
pyerualjetwork_afterburner/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
39
|
-
pyerualjetwork_afterburner/visualizations.py,sha256=1SKMZaJ80OD2qHUyMxW1IOv8zwmxzMPxclfbeq1Xr4g,28772
|
40
|
-
pyerualjetwork_afterburner/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
|
41
|
-
pyerualjetwork-4.3.7.dev1.dist-info/METADATA,sha256=aGfbCh4dI0QGesiAYyHJDBiV70hw52ENOdOhgS39_JI,8384
|
42
|
-
pyerualjetwork-4.3.7.dev1.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
43
|
-
pyerualjetwork-4.3.7.dev1.dist-info/top_level.txt,sha256=uK64ge08QQoPuXM3aiRVPgiQQtl8Fxm2-HieIut5Lwo,42
|
44
|
-
pyerualjetwork-4.3.7.dev1.dist-info/RECORD,,
|
@@ -1,11 +0,0 @@
|
|
1
|
-
__version__ = "4.3.7dev1-afterburner"
|
2
|
-
__update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
3
|
-
|
4
|
-
def print_version(__version__):
|
5
|
-
print(f"PyerualJetwork Version {__version__}" + '\n')
|
6
|
-
|
7
|
-
def print_update_notes(__update__):
|
8
|
-
print(f"Notes:\n{__update__}")
|
9
|
-
|
10
|
-
print_version(__version__)
|
11
|
-
print_update_notes(__update__)
|