pyerualjetwork 4.3.7.dev1__py3-none-any.whl → 4.3.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (39) hide show
  1. pyerualjetwork/__init__.py +1 -1
  2. pyerualjetwork/activation_functions.py +2 -2
  3. pyerualjetwork/activation_functions_cuda.py +63 -114
  4. pyerualjetwork/data_operations_cuda.py +1 -1
  5. pyerualjetwork/model_operations.py +14 -14
  6. pyerualjetwork/model_operations_cuda.py +16 -17
  7. pyerualjetwork/parallel.py +118 -0
  8. pyerualjetwork/plan.py +61 -256
  9. pyerualjetwork/plan_cuda.py +60 -267
  10. pyerualjetwork/planeat.py +12 -44
  11. pyerualjetwork/planeat_cuda.py +9 -45
  12. pyerualjetwork/visualizations.py +29 -26
  13. pyerualjetwork/visualizations_cuda.py +20 -22
  14. {pyerualjetwork-4.3.7.dev1.dist-info → pyerualjetwork-4.3.8.dist-info}/METADATA +2 -19
  15. pyerualjetwork-4.3.8.dist-info/RECORD +25 -0
  16. pyerualjetwork-4.3.8.dist-info/top_level.txt +1 -0
  17. pyerualjetwork-4.3.7.dev1.dist-info/RECORD +0 -44
  18. pyerualjetwork-4.3.7.dev1.dist-info/top_level.txt +0 -2
  19. pyerualjetwork_afterburner/__init__.py +0 -11
  20. pyerualjetwork_afterburner/activation_functions.py +0 -290
  21. pyerualjetwork_afterburner/activation_functions_cuda.py +0 -289
  22. pyerualjetwork_afterburner/data_operations.py +0 -406
  23. pyerualjetwork_afterburner/data_operations_cuda.py +0 -461
  24. pyerualjetwork_afterburner/help.py +0 -17
  25. pyerualjetwork_afterburner/loss_functions.py +0 -21
  26. pyerualjetwork_afterburner/loss_functions_cuda.py +0 -21
  27. pyerualjetwork_afterburner/memory_operations.py +0 -298
  28. pyerualjetwork_afterburner/metrics.py +0 -190
  29. pyerualjetwork_afterburner/metrics_cuda.py +0 -163
  30. pyerualjetwork_afterburner/model_operations.py +0 -408
  31. pyerualjetwork_afterburner/model_operations_cuda.py +0 -420
  32. pyerualjetwork_afterburner/plan.py +0 -425
  33. pyerualjetwork_afterburner/plan_cuda.py +0 -436
  34. pyerualjetwork_afterburner/planeat.py +0 -793
  35. pyerualjetwork_afterburner/planeat_cuda.py +0 -797
  36. pyerualjetwork_afterburner/ui.py +0 -22
  37. pyerualjetwork_afterburner/visualizations.py +0 -823
  38. pyerualjetwork_afterburner/visualizations_cuda.py +0 -825
  39. {pyerualjetwork-4.3.7.dev1.dist-info → pyerualjetwork-4.3.8.dist-info}/WHEEL +0 -0
@@ -19,7 +19,6 @@ import math
19
19
 
20
20
 
21
21
  ### LIBRARY IMPORTS ###
22
- from .plan_cuda import feed_forward
23
22
  from .data_operations_cuda import normalization
24
23
  from .ui import loading_bars, initialize_loading_bar
25
24
  from .activation_functions_cuda import apply_activation, all_activations
@@ -399,7 +398,7 @@ def evolver(weights,
399
398
  return weights, activation_potentiations
400
399
 
401
400
 
402
- def evaluate(x_population, weights, activation_potentiations, rl_mode=False, dtype=cp.float32):
401
+ def evaluate(x_population, weights, activation_potentiations):
403
402
  """
404
403
  Evaluates the performance of a population of genomes, applying different activation functions
405
404
  and weights depending on whether reinforcement learning mode is enabled or not.
@@ -414,64 +413,29 @@ def evaluate(x_population, weights, activation_potentiations, rl_mode=False, dty
414
413
  activation_potentiations (list or str): A list where each entry represents an activation function
415
414
  or a potentiation strategy applied to each genome. If only one
416
415
  activation function is used, this can be a single string.
417
-
418
- rl_mode (bool, optional): If True, reinforcement learning mode is activated, this accepts x_population is a single genome. (Also weights and activation_potentations a single genomes part.)
419
- Default is False.
420
-
421
-
422
- dtype (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
423
-
424
416
  Returns:
425
417
  list: A list of outputs corresponding to each genome in the population after applying the respective
426
418
  activation function and weights.
427
419
 
428
- Notes:
429
- - If `rl_mode` is True:
430
- - Accepts x_population is a single genom
431
- - The inputs are flattened, and the activation function is applied across the single genom.
432
-
433
- - If `rl_mode` is False:
434
- - Accepts x_population is a list of genomes
435
- - Each genome is processed individually, and the results are stored in the `outputs` list.
436
-
437
- - `feed_forward()` function is the core function that processes the input with the given weights and activation function.
438
-
439
420
  Example:
440
421
  ```python
441
- outputs = evaluate(x_population, weights, activation_potentiations, rl_mode=False)
422
+ outputs = evaluate(x_population, weights, activation_potentiations)
442
423
  ```
443
424
 
444
425
  - The function returns a list of outputs after processing the population, where each element corresponds to
445
426
  the output for each genome in `x_population`.
446
427
  """
447
-
448
- ### IF RL_MODE IS TRUE, A SINGLE GENOME IS ASSUMED AS INPUT, A FEEDFORWARD PREDICTION IS MADE, AND THE OUTPUT(NPARRAY) IS RETURNED:
449
-
450
- ### IF RL_MODE IS FALSE, PREDICTIONS ARE MADE FOR ALL GENOMES IN THE GROUP USING THEIR CORRESPONDING INDEXED INPUTS AND DATA.
451
428
  ### THE OUTPUTS ARE RETURNED AS A PYTHON LIST, WHERE EACH GENOME'S OUTPUT MATCHES ITS INDEX:
452
429
 
453
- if rl_mode == True:
454
- Input = cp.array(x_population, dtype=dtype, copy=False)
455
- Input = Input.ravel()
456
-
457
- if isinstance(activation_potentiations, str):
458
- activation_potentiations = [activation_potentiations]
459
-
460
- outputs = feed_forward(Input=Input, is_training=False, activation_potentiation=activation_potentiations, w=weights)
461
-
430
+ if isinstance(activation_potentiations, str):
431
+ activation_potentiations = [activation_potentiations]
462
432
  else:
463
- outputs = [0] * len(x_population)
464
- for i, genome in enumerate(x_population):
433
+ activation_potentiations = [item if isinstance(item, list) else [item] for item in activation_potentiations]
465
434
 
466
- Input = cp.array(genome)
467
- Input = Input.ravel()
435
+ x_population = apply_activation(x_population, activation_potentiations)
436
+ result = x_population @ weights.T
468
437
 
469
- if isinstance(activation_potentiations[i], str):
470
- activation_potentiations[i] = [activation_potentiations[i]]
471
-
472
- outputs[i] = feed_forward(Input=Input, is_training=False, activation_potentiation=activation_potentiations[i], w=weights[i])
473
-
474
- return outputs
438
+ return result
475
439
 
476
440
 
477
441
  def cross_over(first_parent_W,
@@ -757,7 +721,7 @@ def mutation(weight,
757
721
  max_threshold = len(activations)
758
722
 
759
723
  new_threshold = threshold
760
-
724
+
761
725
  except_this = ['spiral', 'circular']
762
726
  all_acts = [item for item in all_activations() if item not in except_this] # SPIRAL AND CIRCULAR ACTIVATION DISCARDED
763
727
 
@@ -2,7 +2,6 @@ import networkx as nx
2
2
  import matplotlib.pyplot as plt
3
3
  import numpy as np
4
4
  from scipy.spatial import ConvexHull
5
- import seaborn as sns
6
5
  from matplotlib.animation import ArtistAnimation
7
6
 
8
7
  def draw_neural_web(W, ax, G, return_objs=False):
@@ -323,7 +322,8 @@ def draw_activations(x_train, activation):
323
322
  except:
324
323
  print('\rWARNING: error in drawing some activation.', end='')
325
324
  return x_train
326
-
325
+
326
+ """ DISABLED
327
327
  def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation):
328
328
 
329
329
  from .metrics import metrics, confusion_matrix, roc_curve
@@ -451,7 +451,7 @@ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation)
451
451
  print(f"Hata oluştu: {e}")
452
452
 
453
453
  plt.show()
454
-
454
+ """
455
455
 
456
456
  def plot_decision_boundary(x, y, activation_potentiation, W, artist=None, ax=None):
457
457
 
@@ -614,10 +614,10 @@ def update_neuron_history(LTPW, ax1, row, col, class_count, artist5, fig1, acc=F
614
614
 
615
615
  fig1.suptitle(suptitle_info, fontsize=16)
616
616
 
617
-
617
+ """ DISABLED
618
618
  def initialize_visualization_for_fit(val, show_training, neurons_history, x_train, y_train):
619
- """Initializes the visualization setup based on the parameters."""
620
- from data_operations import find_closest_factors
619
+
620
+ from .data_operations import find_closest_factors
621
621
  visualization_objects = {}
622
622
 
623
623
  if show_training or neurons_history:
@@ -649,32 +649,33 @@ def initialize_visualization_for_fit(val, show_training, neurons_history, x_trai
649
649
  })
650
650
 
651
651
  return visualization_objects
652
-
652
+ """
653
653
 
654
-
654
+ """ DISABLED
655
655
  def update_neural_web_for_fit(W, ax, G, artist):
656
- """
657
- The function `update_neural_web_for_fit` updates a neural web visualization for fitting.
658
- """
656
+
659
657
  art5_1, art5_2, art5_3 = draw_neural_web(W=W, ax=ax, G=G, return_objs=True)
660
658
  art5_list = [art5_1] + [art5_2] + list(art5_3.values())
661
659
  artist.append(art5_list)
662
-
663
-
660
+ """
661
+
662
+ """ DISABLED
664
663
  def update_weight_visualization_for_fit(ax, LTPW, artist2):
665
- """Updates the weight visualization plot."""
664
+
666
665
  art2 = ax.imshow(LTPW, interpolation='sinc', cmap='viridis')
667
666
  artist2.append([art2])
667
+ """
668
668
 
669
-
669
+ """ DISABLED
670
670
  def update_decision_boundary_for_fit(ax, x_val, y_val, activation_potentiation, LTPW, artist1):
671
- """Updates the decision boundary visualization."""
671
+
672
672
  art1_1, art1_2 = plot_decision_boundary(x_val, y_val, activation_potentiation, LTPW, artist=artist1, ax=ax)
673
673
  artist1.append([*art1_1.collections, art1_2])
674
+ """
674
675
 
675
-
676
+ """ DISABLED
676
677
  def update_validation_history_for_fit(ax, val_list, artist3):
677
- """Updates the validation accuracy history plot."""
678
+
678
679
  period = list(range(1, len(val_list) + 1))
679
680
  art3 = ax.plot(
680
681
  period,
@@ -691,20 +692,22 @@ def update_validation_history_for_fit(ax, val_list, artist3):
691
692
  ax.set_ylabel('Validation Accuracy')
692
693
  ax.set_ylim([0, 1])
693
694
  artist3.append(art3)
694
-
695
-
695
+ """
696
+
697
+ """ DISABLED
696
698
  def display_visualization_for_fit(fig, artist_list, interval):
697
- """Displays the animation for the given artist list."""
699
+
698
700
  ani = ArtistAnimation(fig, artist_list, interval=interval, blit=True)
699
701
  return ani
700
-
702
+ """
703
+
701
704
  def show():
702
705
  plt.tight_layout()
703
706
  plt.show()
704
707
 
705
708
  def initialize_visualization_for_learner(show_history, neurons_history, neural_web_history, x_train, y_train):
706
- """Initialize all visualization components"""
707
- from data_operations import find_closest_factors
709
+
710
+ from .data_operations import find_closest_factors
708
711
  viz_objects = {}
709
712
 
710
713
  if show_history:
@@ -745,7 +748,7 @@ def initialize_visualization_for_learner(show_history, neurons_history, neural_w
745
748
  return viz_objects
746
749
 
747
750
  def update_history_plots_for_learner(viz_objects, depth_list, loss_list, best_acc_per_depth_list, x_train, final_activations):
748
- """Update history visualization plots"""
751
+
749
752
  if 'history' not in viz_objects:
750
753
  return
751
754
 
@@ -772,7 +775,7 @@ def update_history_plots_for_learner(viz_objects, depth_list, loss_list, best_ac
772
775
  hist['artist3'].append(art3)
773
776
 
774
777
  def display_visualizations_for_learner(viz_objects, best_weights, data, best_acc, test_loss, y_train, interval):
775
- """Display all final visualizations"""
778
+
776
779
  if 'history' in viz_objects:
777
780
  hist = viz_objects['history']
778
781
  for _ in range(30):
@@ -2,7 +2,6 @@ import networkx as nx
2
2
  import matplotlib.pyplot as plt
3
3
  import cupy as cp
4
4
  from scipy.spatial import ConvexHull
5
- import seaborn as sns
6
5
  from matplotlib.animation import ArtistAnimation
7
6
 
8
7
  def draw_neural_web(W, ax, G, return_objs=False):
@@ -325,7 +324,7 @@ def draw_activations(x_train, activation):
325
324
  print('\rWARNING: error in drawing some activation.', end='')
326
325
  return x_train
327
326
 
328
-
327
+ """ DISABLED
329
328
  def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation):
330
329
 
331
330
  from .metrics_cuda import metrics, confusion_matrix, roc_curve
@@ -447,7 +446,7 @@ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation)
447
446
  axs[1,1].set_title('Decision Boundary')
448
447
 
449
448
  plt.show()
450
-
449
+ """
451
450
 
452
451
  def plot_decision_boundary(x, y, activation_potentiation, W, artist=None, ax=None):
453
452
 
@@ -583,9 +582,8 @@ def update_neuron_history(LTPW, ax1, row, col, class_count, artist5, fig1, acc=F
583
582
 
584
583
  fig1.suptitle(suptitle_info, fontsize=16)
585
584
 
586
-
585
+ """ DISABLED
587
586
  def initialize_visualization_for_fit(val, show_training, neurons_history, x_train, y_train):
588
- """Initializes the visualization setup based on the parameters."""
589
587
  from .data_operations_cuda import find_closest_factors
590
588
  visualization_objects = {}
591
589
 
@@ -618,33 +616,34 @@ def initialize_visualization_for_fit(val, show_training, neurons_history, x_trai
618
616
  })
619
617
 
620
618
  return visualization_objects
619
+ """
620
+
621
621
 
622
-
622
+ """ DISABLED
623
623
  def update_weight_visualization_for_fit(ax, LTPW, artist2):
624
- """Updates the weight visualization plot."""
625
624
  art2 = ax.imshow(LTPW.get(), interpolation='sinc', cmap='viridis')
626
625
  artist2.append([art2])
626
+ """
627
627
 
628
628
  def show():
629
629
  plt.tight_layout()
630
630
  plt.show()
631
631
 
632
+ """ DISABLED
632
633
  def update_neural_web_for_fit(W, ax, G, artist):
633
- """
634
- The function `update_neural_web_for_fit` updates a neural web visualization for fitting.
635
- """
636
634
  art5_1, art5_2, art5_3 = draw_neural_web(W=W, ax=ax, G=G, return_objs=True)
637
635
  art5_list = [art5_1] + [art5_2] + list(art5_3.values())
638
636
  artist.append(art5_list)
639
-
637
+ """
638
+
639
+ """ DISABLED
640
640
  def update_decision_boundary_for_fit(ax, x_val, y_val, activation_potentiation, LTPW, artist1):
641
- """Updates the decision boundary visualization."""
642
641
  art1_1, art1_2 = plot_decision_boundary(x_val, y_val, activation_potentiation, LTPW, artist=artist1, ax=ax)
643
642
  artist1.append([*art1_1.collections, art1_2])
643
+ """
644
644
 
645
-
645
+ """ DISABLED
646
646
  def update_validation_history_for_fit(ax, val_list, artist3):
647
- """Updates the validation accuracy history plot."""
648
647
  val_list_cpu = []
649
648
  for i in range(len(val_list)):
650
649
  val_list_cpu.append(val_list[i].get())
@@ -664,13 +663,12 @@ def update_validation_history_for_fit(ax, val_list, artist3):
664
663
  ax.set_ylabel('Validation Accuracy')
665
664
  ax.set_ylim([0, 1])
666
665
  artist3.append(art3)
667
-
668
-
666
+ """
667
+ """ DISABLED
669
668
  def display_visualization_for_fit(fig, artist_list, interval):
670
- """Displays the animation for the given artist list."""
671
669
  ani = ArtistAnimation(fig, artist_list, interval=interval, blit=True)
672
670
  return ani
673
-
671
+ """
674
672
  def update_neuron_history_for_learner(LTPW, ax1, row, col, class_count, artist5, data, fig1, acc=False, loss=False):
675
673
 
676
674
  for j in range(len(class_count)):
@@ -699,7 +697,7 @@ def update_neuron_history_for_learner(LTPW, ax1, row, col, class_count, artist5,
699
697
  return artist5
700
698
 
701
699
  def initialize_visualization_for_learner(show_history, neurons_history, neural_web_history, x_train, y_train):
702
- """Initialize all visualization components"""
700
+
703
701
  from .data_operations_cuda import find_closest_factors
704
702
  viz_objects = {}
705
703
 
@@ -741,7 +739,7 @@ def initialize_visualization_for_learner(show_history, neurons_history, neural_w
741
739
  return viz_objects
742
740
 
743
741
  def update_history_plots_for_learner(viz_objects, depth_list, loss_list, best_acc_per_depth_list, x_train, final_activations):
744
- """Update history visualization plots"""
742
+
745
743
  if 'history' not in viz_objects:
746
744
  return
747
745
 
@@ -770,11 +768,11 @@ def update_history_plots_for_learner(viz_objects, depth_list, loss_list, best_ac
770
768
  translated_x_train += draw_activations(x, activation)
771
769
 
772
770
  art3 = hist['ax'][2].plot(x.get(), translated_x_train.get(), color='b', markersize=6, linewidth=2)
773
- hist['ax'][2].set_title('Potentiation Shape Over Gen')
771
+ hist['ax'][2].set_title('Activation Shape Over Gen')
774
772
  hist['artist3'].append(art3)
775
773
 
776
774
  def display_visualizations_for_learner(viz_objects, best_weights, data, best_acc, test_loss, y_train, interval):
777
- """Display all final visualizations"""
775
+
778
776
  if 'history' in viz_objects:
779
777
  hist = viz_objects['history']
780
778
  for _ in range(30):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.3.7.dev1
3
+ Version: 4.3.8
4
4
  Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -25,8 +25,6 @@ GitHub Page: https://github.com/HCB06/PyerualJetwork
25
25
  YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7HbsBpCx2VTJ4SK9wcPyse-EHw
26
26
 
27
27
  pip install pyerualjetwork
28
-
29
- 'use this if your data small or memory management is a problem :'
30
28
 
31
29
  from pyerualjetwork import plan
32
30
  from pyerualjetwork import planeat
@@ -38,26 +36,11 @@ YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7Hbs
38
36
  from pyerualjetwork import data_operations_cuda
39
37
  from pyerualjetwork import model_operations_cuda
40
38
 
41
- 'use this if your data large or memory management is not a problem : _afterburner package (afterburner package comes with powerful paralellism,
42
- afterburner with cuda modules offers super-fast training but some memory managemant features and visualization features discarded.
43
- Specially designed for LLM training and other massive model training)'
44
-
45
- from pyerualjetwork_afterburner import plan
46
- from pyerualjetwork_afterburner import planeat
47
- from pyerualjetwork_afterburner import data_operations
48
- from pyerualjetwork_afterburner import model_operations
49
-
50
- from pyerualjetwork_afterburner import plan_cuda
51
- from pyerualjetwork_afterburner import planeat_cuda
52
- from pyerualjetwork_afterburner import data_operations_cuda
53
- from pyerualjetwork_afterburner import model_operations_cuda
54
-
55
39
  Optimized for Visual Studio Code
56
40
 
57
41
  requires=[
58
42
  'scipy==1.13.1',
59
43
  'tqdm==4.66.4',
60
- 'seaborn==0.13.2',
61
44
  'pandas==2.2.2',
62
45
  'networkx==3.3',
63
46
  'numpy==1.26.4',
@@ -67,7 +50,7 @@ YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7Hbs
67
50
  'psutil==6.1.1'
68
51
  ]
69
52
 
70
- matplotlib, seaborn, networkx (optional).
53
+ matplotlib, networkx (optional).
71
54
 
72
55
  ##############################
73
56
 
@@ -0,0 +1,25 @@
1
+ pyerualjetwork/__init__.py,sha256=iG_VtM8UBdCLvQcPh5WGunt_q6HbEGYKGI3K7du3qQE,639
2
+ pyerualjetwork/activation_functions.py,sha256=bKf00lsuuLJNO-4vVp4OqBi4zJ-qZ8L3v-vl52notkY,7721
3
+ pyerualjetwork/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
4
+ pyerualjetwork/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
5
+ pyerualjetwork/data_operations_cuda.py,sha256=ZcjmLXE1-HVwedextYdJZ1rgrns1OfSekzFpr1a9m6o,17625
6
+ pyerualjetwork/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
7
+ pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
8
+ pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
9
+ pyerualjetwork/memory_operations.py,sha256=I7QiZ--xSyRkFF0wcckPwZV7K9emEvyx5aJ3DiRHZFI,13468
10
+ pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
11
+ pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
12
+ pyerualjetwork/model_operations.py,sha256=MCSCNYiiICRVZITobtS3ZIWmH5Q9gjyELuH32sAdgg4,12649
13
+ pyerualjetwork/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI8gmx0QTGGB0mP_LqEb1uuU,13157
14
+ pyerualjetwork/parallel.py,sha256=TqTSqyxnq7lA9IYE-lCxqUO_GVdAYL34n4K67CMSNKI,5946
15
+ pyerualjetwork/plan.py,sha256=U4zdLHU6tqUQF2szKxG4Ef8DpUZ5h414W1bNCQpmL9A,22389
16
+ pyerualjetwork/plan_cuda.py,sha256=b3z4VJARGnHDnrrcBWiIdnGx91Z44jorFQxIk50bPy0,23321
17
+ pyerualjetwork/planeat.py,sha256=Lq5R0aMS4UIdZdbUKsKDv5g0WLwYryomR3IQYb8vAa4,37573
18
+ pyerualjetwork/planeat_cuda.py,sha256=SG7Oq1F2m3lJBbG9cgmu7q_ApmwSn2SvTpcbtEVAoDE,37630
19
+ pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
20
+ pyerualjetwork/visualizations.py,sha256=kNFeEQaoZ1IdU5MyNWG9IKBKunk22y833wLKwASvscU,28346
21
+ pyerualjetwork/visualizations_cuda.py,sha256=9vWX2lms1vjbEKzwrN505RGoG-WLF14M96zHOVM0tPw,28737
22
+ pyerualjetwork-4.3.8.dist-info/METADATA,sha256=Bi46EzJmS119JF1imEaoWC0iBm4a4yyaWAGL-hshB9U,7474
23
+ pyerualjetwork-4.3.8.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
24
+ pyerualjetwork-4.3.8.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
25
+ pyerualjetwork-4.3.8.dist-info/RECORD,,
@@ -0,0 +1 @@
1
+ pyerualjetwork
@@ -1,44 +0,0 @@
1
- pyerualjetwork/__init__.py,sha256=AVEMj3I45lWmAMQ1V_eVyHBmC5xBctmCIOfbyVe_GlE,643
2
- pyerualjetwork/activation_functions.py,sha256=AR91fQV2W2rc-Qb4Yp7b8ucYpGjwyQUewO-M-lyEMs8,7729
3
- pyerualjetwork/activation_functions_cuda.py,sha256=ztIw6rMR4t1289_TPIGYwE6qarl_YbSOGj5Ep3rUMqs,11803
4
- pyerualjetwork/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
5
- pyerualjetwork/data_operations_cuda.py,sha256=UpoJoFhIwTU4xg9dVuLAxLAT4CkRaGsxvtJG9j1xrNo,17629
6
- pyerualjetwork/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
7
- pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
8
- pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
9
- pyerualjetwork/memory_operations.py,sha256=I7QiZ--xSyRkFF0wcckPwZV7K9emEvyx5aJ3DiRHZFI,13468
10
- pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
11
- pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
12
- pyerualjetwork/model_operations.py,sha256=RKqnh7-MByFosxqme4q4jC1lOndX26O-OVXYV6ZxoEE,12965
13
- pyerualjetwork/model_operations_cuda.py,sha256=XnKKq54ZLaqCm-NaJ6d8IToACKcKg2Ttq6moowVRRWo,13365
14
- pyerualjetwork/plan.py,sha256=ApMQC46_I8qtMqO4lLYLme--SGcMRg-GRo1-gSb3A3I,31894
15
- pyerualjetwork/plan_cuda.py,sha256=ifXiyZs8y3N8b6BbM-T8fMrvzAal-zHqcxFlqwnfwII,33256
16
- pyerualjetwork/planeat.py,sha256=uRX-hDywGOai6hHhbYrmcRodNZOg4WCQeJWZbdMlZs8,39470
17
- pyerualjetwork/planeat_cuda.py,sha256=QNHCQLkR0MNFqyN2iHAtC7cbf8qZiD3p_54YH3lnMFA,39529
18
- pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
19
- pyerualjetwork/visualizations.py,sha256=VL00sX2DZz83F__PyEJH9s1LizuXpOBzWjnoSjMJIJ0,28770
20
- pyerualjetwork/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
21
- pyerualjetwork_afterburner/__init__.py,sha256=2-MH8ePacnBtkhyjK1iy8Swio4xROO7vnq4tDzCuXUU,655
22
- pyerualjetwork_afterburner/activation_functions.py,sha256=bKf00lsuuLJNO-4vVp4OqBi4zJ-qZ8L3v-vl52notkY,7721
23
- pyerualjetwork_afterburner/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
24
- pyerualjetwork_afterburner/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
25
- pyerualjetwork_afterburner/data_operations_cuda.py,sha256=ZcjmLXE1-HVwedextYdJZ1rgrns1OfSekzFpr1a9m6o,17625
26
- pyerualjetwork_afterburner/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
27
- pyerualjetwork_afterburner/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
28
- pyerualjetwork_afterburner/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
29
- pyerualjetwork_afterburner/memory_operations.py,sha256=I7QiZ--xSyRkFF0wcckPwZV7K9emEvyx5aJ3DiRHZFI,13468
30
- pyerualjetwork_afterburner/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
31
- pyerualjetwork_afterburner/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
32
- pyerualjetwork_afterburner/model_operations.py,sha256=MCSCNYiiICRVZITobtS3ZIWmH5Q9gjyELuH32sAdgg4,12649
33
- pyerualjetwork_afterburner/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI8gmx0QTGGB0mP_LqEb1uuU,13157
34
- pyerualjetwork_afterburner/plan.py,sha256=Gxv8ii4brTYMzzFZBP-X6kkwc6w6vtTPiMmqVOAqoq8,21972
35
- pyerualjetwork_afterburner/plan_cuda.py,sha256=bNHjFniZdu7Y_R6sCA6fdmMyfyxSAvkgPtHkybg3O2Q,22904
36
- pyerualjetwork_afterburner/planeat.py,sha256=Lq5R0aMS4UIdZdbUKsKDv5g0WLwYryomR3IQYb8vAa4,37573
37
- pyerualjetwork_afterburner/planeat_cuda.py,sha256=KnU54osvwrMVvdO4fww7BqFBoq0I8c2YcZOVHD8l69g,37494
38
- pyerualjetwork_afterburner/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
39
- pyerualjetwork_afterburner/visualizations.py,sha256=1SKMZaJ80OD2qHUyMxW1IOv8zwmxzMPxclfbeq1Xr4g,28772
40
- pyerualjetwork_afterburner/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
41
- pyerualjetwork-4.3.7.dev1.dist-info/METADATA,sha256=aGfbCh4dI0QGesiAYyHJDBiV70hw52ENOdOhgS39_JI,8384
42
- pyerualjetwork-4.3.7.dev1.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
43
- pyerualjetwork-4.3.7.dev1.dist-info/top_level.txt,sha256=uK64ge08QQoPuXM3aiRVPgiQQtl8Fxm2-HieIut5Lwo,42
44
- pyerualjetwork-4.3.7.dev1.dist-info/RECORD,,
@@ -1,2 +0,0 @@
1
- pyerualjetwork
2
- pyerualjetwork_afterburner
@@ -1,11 +0,0 @@
1
- __version__ = "4.3.7dev1-afterburner"
2
- __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
3
-
4
- def print_version(__version__):
5
- print(f"PyerualJetwork Version {__version__}" + '\n')
6
-
7
- def print_update_notes(__update__):
8
- print(f"Notes:\n{__update__}")
9
-
10
- print_version(__version__)
11
- print_update_notes(__update__)