pyerualjetwork 4.3.7.dev1__py3-none-any.whl → 4.3.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (39) hide show
  1. pyerualjetwork/__init__.py +1 -1
  2. pyerualjetwork/activation_functions.py +2 -2
  3. pyerualjetwork/activation_functions_cuda.py +63 -114
  4. pyerualjetwork/data_operations_cuda.py +1 -1
  5. pyerualjetwork/model_operations.py +14 -14
  6. pyerualjetwork/model_operations_cuda.py +16 -17
  7. pyerualjetwork/parallel.py +118 -0
  8. pyerualjetwork/plan.py +61 -256
  9. pyerualjetwork/plan_cuda.py +60 -267
  10. pyerualjetwork/planeat.py +12 -44
  11. pyerualjetwork/planeat_cuda.py +9 -45
  12. pyerualjetwork/visualizations.py +29 -26
  13. pyerualjetwork/visualizations_cuda.py +20 -22
  14. {pyerualjetwork-4.3.7.dev1.dist-info → pyerualjetwork-4.3.8.dist-info}/METADATA +2 -19
  15. pyerualjetwork-4.3.8.dist-info/RECORD +25 -0
  16. pyerualjetwork-4.3.8.dist-info/top_level.txt +1 -0
  17. pyerualjetwork-4.3.7.dev1.dist-info/RECORD +0 -44
  18. pyerualjetwork-4.3.7.dev1.dist-info/top_level.txt +0 -2
  19. pyerualjetwork_afterburner/__init__.py +0 -11
  20. pyerualjetwork_afterburner/activation_functions.py +0 -290
  21. pyerualjetwork_afterburner/activation_functions_cuda.py +0 -289
  22. pyerualjetwork_afterburner/data_operations.py +0 -406
  23. pyerualjetwork_afterburner/data_operations_cuda.py +0 -461
  24. pyerualjetwork_afterburner/help.py +0 -17
  25. pyerualjetwork_afterburner/loss_functions.py +0 -21
  26. pyerualjetwork_afterburner/loss_functions_cuda.py +0 -21
  27. pyerualjetwork_afterburner/memory_operations.py +0 -298
  28. pyerualjetwork_afterburner/metrics.py +0 -190
  29. pyerualjetwork_afterburner/metrics_cuda.py +0 -163
  30. pyerualjetwork_afterburner/model_operations.py +0 -408
  31. pyerualjetwork_afterburner/model_operations_cuda.py +0 -420
  32. pyerualjetwork_afterburner/plan.py +0 -425
  33. pyerualjetwork_afterburner/plan_cuda.py +0 -436
  34. pyerualjetwork_afterburner/planeat.py +0 -793
  35. pyerualjetwork_afterburner/planeat_cuda.py +0 -797
  36. pyerualjetwork_afterburner/ui.py +0 -22
  37. pyerualjetwork_afterburner/visualizations.py +0 -823
  38. pyerualjetwork_afterburner/visualizations_cuda.py +0 -825
  39. {pyerualjetwork-4.3.7.dev1.dist-info → pyerualjetwork-4.3.8.dist-info}/WHEEL +0 -0
pyerualjetwork/plan.py CHANGED
@@ -16,31 +16,21 @@ PYERUALJETWORK document: https://github.com/HCB06/PyerualJetwork/blob/main/Welco
16
16
  """
17
17
 
18
18
  import numpy as np
19
- import math
20
19
 
21
20
  ### LIBRARY IMPORTS ###
22
21
  from .ui import loading_bars, initialize_loading_bar
23
- from .data_operations import normalization, decode_one_hot, batcher
22
+ from .data_operations import normalization, batcher
24
23
  from .loss_functions import binary_crossentropy, categorical_crossentropy
25
- from .activation_functions import apply_activation, Softmax, all_activations
24
+ from .activation_functions import apply_activation, all_activations
26
25
  from .metrics import metrics
27
26
  from .model_operations import get_acc, get_preds, get_preds_softmax
28
27
  from .memory_operations import optimize_labels
29
28
  from .visualizations import (
30
29
  draw_neural_web,
31
- update_neural_web_for_fit,
32
- plot_evaluate,
33
- update_neuron_history,
34
- initialize_visualization_for_fit,
35
- update_weight_visualization_for_fit,
36
- update_decision_boundary_for_fit,
37
- update_validation_history_for_fit,
38
- display_visualization_for_fit,
39
30
  display_visualizations_for_learner,
40
31
  update_history_plots_for_learner,
41
32
  initialize_visualization_for_learner,
42
- update_neuron_history_for_learner,
43
- show
33
+ update_neuron_history_for_learner
44
34
  )
45
35
 
46
36
  ### GLOBAL VARIABLES ###
@@ -52,18 +42,8 @@ bar_format_learner = loading_bars()[1]
52
42
  def fit(
53
43
  x_train,
54
44
  y_train,
55
- val=False,
56
- val_count=None,
57
45
  activation_potentiation=['linear'],
58
- x_val=None,
59
- y_val=None,
60
- show_training=None,
61
- interval=100,
62
- LTD=0,
63
- decision_boundary_status=True,
64
- train_bar=True,
65
- auto_normalization=True,
66
- neurons_history=False,
46
+ W=None,
67
47
  dtype=np.float32
68
48
  ):
69
49
  """
@@ -71,110 +51,35 @@ def fit(
71
51
 
72
52
  fit Args:
73
53
 
74
- x_train (list[num]): List or numarray of input data.
54
+ x_train (aray-like[num]): List or numarray of input data.
75
55
 
76
- y_train (list[num]): List or numarray of target labels. (one hot encoded)
77
-
78
- val (None or True): validation in training process ? None or True default: None (optional)
79
-
80
- val_count (None or int): After how many examples learned will an accuracy test be performed? default: 10=(%10) it means every approximately 10 step (optional)
56
+ y_train (aray-like[num]): List or numarray of target labels. (one hot encoded)
81
57
 
82
58
  activation_potentiation (list): For deeper PLAN networks, activation function parameters. For more information please run this code: plan.activations_list() default: [None] (optional)
83
59
 
84
- x_val (list[num]): List of validation data. default: x_train (optional)
85
-
86
- y_val (list[num]): (list[num]): List of target labels. (one hot encoded) default: y_train (optional)
87
-
88
- show_training (bool, str): True or None default: None (optional)
89
-
90
- LTD (int): Long Term Depression Hyperparameter for train PLAN neural network default: 0 (optional)
91
-
92
- interval (float, int): frame delay (milisecond) parameter for Training Report (show_training=True) This parameter effects to your Training Report performance. Lower value is more diffucult for Low end PC's (33.33 = 30 FPS, 16.67 = 60 FPS) default: 100 (optional)
93
-
94
- decision_boundary_status (bool): If the visualization of validation and training history is enabled during training, should the decision boundaries also be visualized? True or False. Default is True. (optional)
95
-
96
- train_bar (bool): Training loading bar? True or False. Default is True. (optional)
97
-
98
- auto_normalization(bool): Normalization process during training. May effect training time and model quality. True or False. Default is True. (optional)
99
-
100
- neurons_history (bool, optional): Shows the history of changes that neurons undergo during the CL (Cumulative Learning) stages. True or False. Default is False. (optional)
60
+ W (numpy.ndarray): If you want to re-continue or update model
101
61
 
102
62
  dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
103
63
 
104
64
  Returns:
105
- numpyarray([num]): (Weight matrix).
65
+ numpyarray: (Weight matrix).
106
66
  """
107
67
 
108
- # Pre-checks
109
-
110
- x_train = x_train.astype(dtype, copy=False)
111
-
112
- if train_bar and val:
113
- train_progress = initialize_loading_bar(total=len(x_train), ncols=71, desc='Fitting', bar_format=bar_format_normal)
114
- elif train_bar and val == False:
115
- train_progress = initialize_loading_bar(total=len(x_train), ncols=44, desc='Fitting', bar_format=bar_format_normal)
116
-
68
+ # Pre-check
69
+
117
70
  if len(x_train) != len(y_train):
118
71
  raise ValueError("x_train and y_train must have the same length.")
119
72
 
120
- if val and (x_val is None and y_val is None):
121
- x_val, y_val = x_train, y_train
122
-
123
- elif val and (x_val is not None and y_val is not None):
124
- x_val = x_val.astype(dtype, copy=False)
125
- y_val = y_val.astype(dtype, copy=False)
126
-
127
- val_list = [] if val else None
128
- val_count = val_count or 10
129
- # Defining weights
130
- STPW = np.ones((len(y_train[0]), len(x_train[0].ravel()))).astype(dtype, copy=False) # STPW = SHORT TIME POTENTIATION WEIGHT
131
- LTPW = np.zeros((len(y_train[0]), len(x_train[0].ravel()))).astype(dtype, copy=False) # LTPW = LONG TIME POTENTIATION WEIGHT
132
- # Initialize visualization
133
- vis_objects = initialize_visualization_for_fit(val, show_training, neurons_history, x_train, y_train)
134
-
135
- # Training process
136
- for index, inp in enumerate(x_train):
137
- inp = np.array(inp, copy=False).ravel()
138
- y_decoded = decode_one_hot(y_train[index])
139
- # Weight updates
140
- STPW = feed_forward(inp, STPW, is_training=True, Class=y_decoded, activation_potentiation=activation_potentiation, LTD=LTD)
141
- LTPW += normalization(STPW, dtype=dtype) if auto_normalization else STPW
142
- if val and index != 0:
143
- if index % math.ceil((val_count / len(x_train)) * 100) == 0:
144
- val_acc = evaluate(x_val, y_val, loading_bar_status=False, activation_potentiation=activation_potentiation, W=LTPW)[get_acc()]
145
- val_list.append(val_acc)
146
-
147
- # Visualization updates
148
- if show_training:
149
- update_weight_visualization_for_fit(vis_objects['ax'][0, 0], LTPW, vis_objects['artist2'])
150
- if decision_boundary_status:
151
- update_decision_boundary_for_fit(vis_objects['ax'][0, 1], x_val, y_val, activation_potentiation, LTPW, vis_objects['artist1'])
152
- update_validation_history_for_fit(vis_objects['ax'][1, 1], val_list, vis_objects['artist3'])
153
- update_neural_web_for_fit(W=LTPW, G=vis_objects['G'], ax=vis_objects['ax'][1, 0], artist=vis_objects['artist4'])
154
- if neurons_history:
155
- update_neuron_history(LTPW, row=vis_objects['row'], col=vis_objects['col'], class_count=len(y_train[0]), fig1=vis_objects['fig1'], ax1=vis_objects['ax1'], artist5=vis_objects['artist5'], acc=val_acc)
156
- if train_bar:
157
- train_progress.update(1)
158
-
159
- STPW = np.ones((len(y_train[0]), len(x_train[0].ravel()))).astype(dtype, copy=False)
160
-
161
- # Finalize visualization
162
- if show_training:
163
- ani1 = display_visualization_for_fit(vis_objects['fig'], vis_objects['artist1'], interval)
164
- ani2 = display_visualization_for_fit(vis_objects['fig'], vis_objects['artist2'], interval)
165
- ani3 = display_visualization_for_fit(vis_objects['fig'], vis_objects['artist3'], interval)
166
- ani4 = display_visualization_for_fit(vis_objects['fig'], vis_objects['artist4'], interval)
167
- show()
73
+ LTPW = np.zeros((len(y_train[0]), len(x_train[0].ravel()))).astype(dtype, copy=False) if W is None else W
168
74
 
169
- if neurons_history:
170
- ani5 = display_visualization_for_fit(vis_objects['fig1'], vis_objects['artist5'], interval)
171
- show()
75
+ x_train = apply_activation(x_train, activation_potentiation)
76
+ LTPW += y_train.T @ x_train
172
77
 
173
78
  return normalization(LTPW, dtype=dtype)
174
79
 
175
80
 
176
- def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=None, batch_size=1,
177
- neural_web_history=False, show_current_activations=False, auto_normalization=True,
81
+ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=None, batch_size=1, pop_size=None,
82
+ neural_web_history=False, show_current_activations=False,
178
83
  neurons_history=False, early_stop=False, loss='categorical_crossentropy', show_history=False,
179
84
  interval=33.33, target_acc=None, target_loss=None,
180
85
  start_this_act=None, start_this_W=None, dtype=np.float32):
@@ -218,9 +123,9 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
218
123
 
219
124
  batch_size (float, optional): Batch size is used in the prediction process to receive train feedback by dividing the test data into chunks and selecting activations based on randomly chosen partitions. This process reduces computational cost and time while still covering the entire test set due to random selection, so it doesn't significantly impact accuracy. For example, a batch size of 0.08 means each train batch represents 8% of the train set. Default is 1. (%100 of train)
220
125
 
221
- early_stop (bool, optional): If True, implements early stopping during training.(If accuracy not improves in two gen stops learning.) Default is False.
126
+ pop_size (int, optional): Population size of each generation. Default: count of activation functions
222
127
 
223
- auto_normalization (bool, optional): IMPORTANT: auto_nomralization parameter works only if fit_start is True. Do not change this value if fit_start is False, because it doesnt matter.) If auto normalization=False this makes more faster training times and much better accuracy performance for some datasets. Default is True.
128
+ early_stop (bool, optional): If True, implements early stopping during training.(If accuracy not improves in two gen stops learning.) Default is False.
224
129
 
225
130
  show_current_activations (bool, optional): Should it display the activations selected according to the current strategies during learning, or not? (True or False) This can be very useful if you want to cancel the learning process and resume from where you left off later. After canceling, you will need to view the live training activations in order to choose the activations to be given to the 'start_this' parameter. Default is False
226
131
 
@@ -253,14 +158,19 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
253
158
 
254
159
  data = 'Train'
255
160
 
256
- activation_potentiation = all_activations()
161
+ except_this = ['spiral', 'circular']
162
+ activation_potentiation = [item for item in all_activations() if item not in except_this]
257
163
  activation_potentiation_len = len(activation_potentiation)
258
164
 
259
165
  # Pre-checks
260
166
 
167
+ if pop_size is None: pop_size = activation_potentiation_len
168
+
261
169
  x_train = x_train.astype(dtype, copy=False)
262
170
  y_train = optimize_labels(y_train, cuda=False)
263
171
 
172
+ if pop_size < activation_potentiation_len: raise ValueError(f"pop_size must be higher or equal to {activation_potentiation_len}")
173
+
264
174
  if gen is None:
265
175
  gen = activation_potentiation_len
266
176
 
@@ -289,16 +199,16 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
289
199
 
290
200
  progress = initialize_loading_bar(total=activation_potentiation_len, desc="", ncols=ncols, bar_format=bar_format_learner)
291
201
 
292
- if fit_start is False:
293
- weight_pop, act_pop = define_genomes(input_shape=len(x_train[0]), output_shape=len(y_train[0]), population_size=activation_potentiation_len, dtype=dtype)
202
+ if fit_start is False or pop_size > activation_potentiation_len:
203
+ weight_pop, act_pop = define_genomes(input_shape=len(x_train[0]), output_shape=len(y_train[0]), population_size=pop_size, dtype=dtype)
294
204
 
295
205
  if start_this_act is not None and start_this_W is not None:
296
206
  weight_pop[0] = start_this_W
297
207
  act_pop[0] = start_this_act
298
208
 
299
209
  else:
300
- weight_pop = []
301
- act_pop = []
210
+ weight_pop = [0] * pop_size
211
+ act_pop = [0] * pop_size
302
212
 
303
213
  for i in range(gen):
304
214
  postfix_dict["Gen"] = str(i+1) + '/' + str(gen)
@@ -308,16 +218,16 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
308
218
  progress.last_print_n = 0
309
219
  progress.update(0)
310
220
 
311
- for j in range(activation_potentiation_len):
221
+ for j in range(pop_size):
312
222
 
313
223
  x_train_batch, y_train_batch = batcher(x_train, y_train, batch_size=batch_size)
314
224
 
315
- if fit_start is True and i == 0:
316
- act_pop.append(activation_potentiation[j])
317
- W = fit(x_train_batch, y_train_batch, activation_potentiation=act_pop[-1], train_bar=False, auto_normalization=auto_normalization, dtype=dtype)
318
- weight_pop.append(W)
225
+ if fit_start is True and i == 0 and j < activation_potentiation_len:
226
+ act_pop[j] = activation_potentiation[j]
227
+ W = fit(x_train_batch, y_train_batch, activation_potentiation=act_pop[-1], dtype=dtype)
228
+ weight_pop[j] = W
319
229
 
320
- model = evaluate(x_train_batch, y_train_batch, W=weight_pop[j], loading_bar_status=False, activation_potentiation=act_pop[j], dtype=dtype)
230
+ model = evaluate(x_train_batch, y_train_batch, W=weight_pop[j], activation_potentiation=act_pop[j])
321
231
  acc = model[get_acc()]
322
232
 
323
233
  if strategy == 'accuracy': target_pop.append(acc)
@@ -351,6 +261,7 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
351
261
  best_acc = acc
352
262
  best_weights = np.copy(weight_pop[j])
353
263
  final_activations = act_pop[j].copy() if isinstance(act_pop[j], list) else act_pop[j]
264
+
354
265
  best_model = model
355
266
 
356
267
  final_activations = [final_activations[0]] if len(set(final_activations)) == 1 else final_activations # removing if all same
@@ -401,7 +312,7 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
401
312
  # Check target accuracy
402
313
  if target_acc is not None and best_acc >= target_acc:
403
314
  progress.close()
404
- train_model = evaluate(x_train, y_train, W=best_weights, loading_bar_status=False,
315
+ train_model = evaluate(x_train, y_train, W=best_weights,
405
316
  activation_potentiation=final_activations, dtype=dtype)
406
317
 
407
318
  if loss == 'categorical_crossentropy':
@@ -412,8 +323,8 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
412
323
  y_pred_batch=train_model[get_preds_softmax()])
413
324
 
414
325
  print('\nActivations: ', final_activations)
415
- print(f'Train Accuracy :', train_model[get_acc()])
416
- print(f'Train Loss : ', train_loss, '\n')
326
+ print(f'Train Accuracy:', train_model[get_acc()])
327
+ print(f'Train Loss: ', train_loss, '\n')
417
328
 
418
329
  # Display final visualizations
419
330
  display_visualizations_for_learner(viz_objects, best_weights, data, best_acc,
@@ -423,7 +334,7 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
423
334
  # Check target loss
424
335
  if target_loss is not None and best_loss <= target_loss:
425
336
  progress.close()
426
- train_model = evaluate(x_train, y_train, W=best_weights, loading_bar_status=False,
337
+ train_model = evaluate(x_train, y_train, W=best_weights,
427
338
  activation_potentiation=final_activations, dtype=dtype)
428
339
 
429
340
  if loss == 'categorical_crossentropy':
@@ -434,8 +345,8 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
434
345
  y_pred_batch=train_model[get_preds_softmax()])
435
346
 
436
347
  print('\nActivations: ', final_activations)
437
- print(f'Train Accuracy :', train_model[get_acc()])
438
- print(f'Train Loss : ', train_loss, '\n')
348
+ print(f'Train Accuracy:', train_model[get_acc()])
349
+ print(f'Train Loss: ', train_loss, '\n')
439
350
 
440
351
  # Display final visualizations
441
352
  display_visualizations_for_learner(viz_objects, best_weights, data, best_acc,
@@ -454,7 +365,7 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
454
365
  if early_stop == True and i > 0:
455
366
  if best_acc_per_gen_list[i] == best_acc_per_gen_list[i-1]:
456
367
  progress.close()
457
- train_model = evaluate(x_train, y_train, W=best_weights, loading_bar_status=False,
368
+ train_model = evaluate(x_train, y_train, W=best_weights,
458
369
  activation_potentiation=final_activations, dtype=dtype)
459
370
 
460
371
  if loss == 'categorical_crossentropy':
@@ -465,8 +376,8 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
465
376
  y_pred_batch=train_model[get_preds_softmax()])
466
377
 
467
378
  print('\nActivations: ', final_activations)
468
- print(f'Train Accuracy :', train_model[get_acc()])
469
- print(f'Train Loss : ', train_loss, '\n')
379
+ print(f'Train Accuracy:', train_model[get_acc()])
380
+ print(f'Train Loss: ', train_loss, '\n')
470
381
 
471
382
  # Display final visualizations
472
383
  display_visualizations_for_learner(viz_objects, best_weights, data, best_acc,
@@ -475,7 +386,7 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
475
386
 
476
387
  # Final evaluation
477
388
  progress.close()
478
- train_model = evaluate(x_train, y_train, W=best_weights, loading_bar_status=False,
389
+ train_model = evaluate(x_train, y_train, W=best_weights,
479
390
  activation_potentiation=final_activations, dtype=dtype)
480
391
 
481
392
  if loss == 'categorical_crossentropy':
@@ -484,144 +395,38 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
484
395
  train_loss = binary_crossentropy(y_true_batch=y_train, y_pred_batch=train_model[get_preds_softmax()])
485
396
 
486
397
  print('\nActivations: ', final_activations)
487
- print(f'Train Accuracy :', train_model[get_acc()])
488
- print(f'Train Loss : ', train_loss, '\n')
398
+ print(f'Train Accuracy:', train_model[get_acc()])
399
+ print(f'Train Loss: ', train_loss, '\n')
489
400
 
490
401
  # Display final visualizations
491
402
  display_visualizations_for_learner(viz_objects, best_weights, data, best_acc, train_loss, y_train, interval)
492
403
  return best_weights, best_model[get_preds()], best_acc, final_activations
493
404
 
494
405
 
495
-
496
- def feed_forward(
497
- Input, # list[num]: Input data.
498
- w, # num: Weight matrix of the neural network.
499
- is_training, # bool: Flag indicating if the function is called during training (True or False).
500
- activation_potentiation,
501
- Class='?', # int: Which class is, if training. # (list): Activation potentiation list for deep PLAN. (optional)
502
- LTD=0
503
- ) -> tuple:
504
- """
505
- Applies feature extraction process to the input data using synaptic potentiation.
506
-
507
- Args:
508
- Input (num): Input data.
509
- w (num): Weight matrix of the neural network.
510
- is_training (bool): Flag indicating if the function is called during training (True or False).
511
- Class (int): if is during training then which class(label) ? is isnt then put None.
512
- # activation_potentiation (list): ac list for deep PLAN. default: [None] ('linear') (optional)
513
-
514
- Returns:
515
- tuple: A tuple (vector) containing the neural layer result and the updated weight matrix.
516
- or
517
- num: neural network output
518
- """
519
-
520
- Output = apply_activation(Input, activation_potentiation)
521
-
522
- Input = Output
523
-
524
- if is_training == True:
525
-
526
- for _ in range(LTD):
527
-
528
- depression_vector = np.random.rand(*Input.shape)
529
-
530
- Input -= depression_vector
531
-
532
- w[Class, :] = Input
533
- return w
534
-
535
- else:
536
-
537
- neural_layer = np.dot(w, Input)
538
-
539
- return neural_layer
540
-
541
-
542
406
  def evaluate(
543
- x_test, # NumPy array: Test input data.
544
- y_test, # NumPy array: Test labels.
545
- W, # List of NumPy arrays: Neural network weight matrices.
546
- activation_potentiation=['linear'], # List of activation functions.
547
- loading_bar_status=True, # Optionally show loading bar.
548
- show_metrics=None, # Optionally show metrics.
549
- dtype=np.float32
407
+ x_test,
408
+ y_test,
409
+ W,
410
+ activation_potentiation=['linear']
550
411
  ) -> tuple:
551
412
  """
552
413
  Evaluates the neural network model using the given test data.
553
414
 
554
415
  Args:
555
- x_test (np.ndarray): Test input data.
556
-
557
- y_test (np.ndarray): Test labels. one-hot encoded.
558
-
559
- W (list[np.ndarray]): List of neural network weight matrices.
560
-
561
- activation_potentiation (list): List of activation functions.
562
-
563
- loading_bar_status (bool): Option to show a loading bar (optional).
564
-
565
- show_metrics (bool): Option to show metrics (optional).
416
+ x_test (np.ndarray): Test data.
566
417
 
567
- dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!]
418
+ y_test (np.ndarray): Test labels (one-hot encoded).
568
419
 
420
+ W (np.ndarray): Neural net weight matrix.
421
+
422
+ activation_potentiation (list): Activation list. Default = ['linear'].
423
+
569
424
  Returns:
570
- tuple: Predicted labels, model accuracy, and other evaluation metrics.
425
+ tuple: Model (list).
571
426
  """
572
- # Pre-checks
573
-
574
- x_test = x_test.astype(dtype, copy=False)
575
-
576
- if len(y_test[0]) < 256:
577
- if y_test.dtype != np.uint8:
578
- y_test = np.array(y_test, copy=False).astype(np.uint8, copy=False)
579
- elif len(y_test[0]) <= 32767:
580
- if y_test.dtype != np.uint16:
581
- y_test = np.array(y_test, copy=False).astype(np.uint16, copy=False)
582
- else:
583
- if y_test.dtype != np.uint32:
584
- y_test = np.array(y_test, copy=False).astype(np.uint32, copy=False)
585
-
586
- predict_probabilitys = np.empty((len(x_test), W.shape[0]), dtype=dtype)
587
- real_classes = np.empty(len(x_test), dtype=y_test.dtype)
588
- predict_classes = np.empty(len(x_test), dtype=y_test.dtype)
589
-
590
- true_predict = 0
591
- acc_list = np.empty(len(x_test), dtype=dtype)
592
-
593
- if loading_bar_status:
594
- loading_bar = initialize_loading_bar(total=len(x_test), ncols=64, desc='Testing', bar_format=bar_format_normal)
595
-
596
- for inpIndex in range(len(x_test)):
597
- Input = x_test[inpIndex].ravel()
598
-
599
- neural_layer = Input
600
-
601
- neural_layer = feed_forward(neural_layer, np.copy(W), is_training=False, Class='?', activation_potentiation=activation_potentiation)
602
-
603
- predict_probabilitys[inpIndex] = Softmax(neural_layer)
604
-
605
- RealOutput = np.argmax(y_test[inpIndex])
606
- real_classes[inpIndex] = RealOutput
607
- PredictedOutput = np.argmax(neural_layer)
608
- predict_classes[inpIndex] = PredictedOutput
609
-
610
- if RealOutput == PredictedOutput:
611
- true_predict += 1
612
-
613
- acc = true_predict / (inpIndex + 1)
614
- acc_list[inpIndex] = acc
615
-
616
- if loading_bar_status:
617
- loading_bar.update(1)
618
- loading_bar.set_postfix({"Test Accuracy": acc})
619
-
620
- if loading_bar_status:
621
- loading_bar.close()
622
427
 
623
- if show_metrics:
624
- # Plot the evaluation metrics
625
- plot_evaluate(x_test, y_test, predict_classes, acc_list, W=np.copy(W), activation_potentiation=activation_potentiation)
428
+ x_test = apply_activation(x_test, activation_potentiation)
429
+ result = x_test @ W.T
430
+ softmax_preds = np.exp(result) / np.sum(np.exp(result), axis=1, keepdims=True); accuracy = (np.argmax(result, axis=1) == np.argmax(y_test, axis=1)).mean()
626
431
 
627
- return W, predict_classes, acc_list[-1], None, None, predict_probabilitys
432
+ return W, None, accuracy, None, None, softmax_preds