pyerualjetwork 4.1.8b3__py3-none-any.whl → 4.1.8b5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/plan.py +12 -5
- pyerualjetwork/plan_cuda.py +10 -3
- pyerualjetwork/planeat.py +1 -1
- pyerualjetwork/planeat_cuda.py +1 -1
- {pyerualjetwork-4.1.8b3.dist-info → pyerualjetwork-4.1.8b5.dist-info}/METADATA +1 -1
- {pyerualjetwork-4.1.8b3.dist-info → pyerualjetwork-4.1.8b5.dist-info}/RECORD +9 -9
- {pyerualjetwork-4.1.8b3.dist-info → pyerualjetwork-4.1.8b5.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.1.8b3.dist-info → pyerualjetwork-4.1.8b5.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -48,7 +48,7 @@ for package_name in package_names:
|
|
48
48
|
|
49
49
|
print(f"PyerualJetwork is ready to use with {err} errors")
|
50
50
|
|
51
|
-
__version__ = "4.1.
|
51
|
+
__version__ = "4.1.8b5"
|
52
52
|
__update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
53
53
|
|
54
54
|
def print_version(__version__):
|
pyerualjetwork/plan.py
CHANGED
@@ -338,16 +338,21 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
|
|
338
338
|
|
339
339
|
for i in range(len(activation_potentiation)):
|
340
340
|
print(f"\rPre-Run {i}/{len(activation_potentiation)}",end='')
|
341
|
-
|
341
|
+
|
342
|
+
if i == 0 and start_this_act is not None:
|
343
|
+
act_pop[0] = activation_potentiation[i]
|
344
|
+
|
345
|
+
else:
|
346
|
+
act_pop.append(activation_potentiation[i])
|
347
|
+
|
342
348
|
x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
|
343
349
|
W = fit(x_train, y_train, activation_potentiation=act_pop[-1], train_bar=False, auto_normalization=auto_normalization, dtype=dtype)
|
344
350
|
model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=act_pop[-1], dtype=dtype)
|
345
351
|
|
346
|
-
if i == 0 and
|
347
|
-
act_pop[0] = activation_potentiation[i]
|
352
|
+
if i == 0 and start_this_W is not None:
|
348
353
|
weight_pop[0] = W
|
354
|
+
|
349
355
|
else:
|
350
|
-
act_pop.append(activation_potentiation[i])
|
351
356
|
weight_pop.append(W)
|
352
357
|
|
353
358
|
if strategy == 'accuracy': target_pop.append(model[get_acc()])
|
@@ -403,7 +408,7 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
|
|
403
408
|
|
404
409
|
if ((strategy == 'accuracy' and acc >= best_acc) or
|
405
410
|
(strategy == 'f1' and f1_score >= best_f1) or
|
406
|
-
(strategy == 'precision' and precision_score >= best_precision) or
|
411
|
+
(strategy == 'precision' and precision_score >= best_precision) or
|
407
412
|
(strategy == 'recall' and recall_score >= best_recall)):
|
408
413
|
|
409
414
|
best_acc = acc
|
@@ -411,6 +416,8 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
|
|
411
416
|
final_activations = act_pop[j]
|
412
417
|
best_model = model
|
413
418
|
|
419
|
+
final_activations = [final_activations[0]] if len(set(final_activations)) == 1 else final_activations # removing if all same
|
420
|
+
|
414
421
|
if batch_size == 1:
|
415
422
|
postfix_dict[f"{data} Accuracy"] = best_acc
|
416
423
|
else:
|
pyerualjetwork/plan_cuda.py
CHANGED
@@ -351,15 +351,20 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
|
|
351
351
|
for i in range(len(activation_potentiation)):
|
352
352
|
print(f"\rPre-Run {i}/{len(activation_potentiation)}",end='')
|
353
353
|
|
354
|
+
if i == 0 and start_this_act is not None:
|
355
|
+
act_pop[0] = activation_potentiation[i]
|
356
|
+
|
357
|
+
else:
|
358
|
+
act_pop.append(activation_potentiation[i])
|
359
|
+
|
354
360
|
x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
|
355
361
|
W = fit(x_train, y_train, activation_potentiation=act_pop[-1], train_bar=False, auto_normalization=auto_normalization, dtype=dtype, memory=memory)
|
356
362
|
model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=act_pop[-1], dtype=dtype, memory=memory)
|
357
363
|
|
358
|
-
if i == 0 and
|
359
|
-
act_pop[0] = activation_potentiation[i]
|
364
|
+
if i == 0 and start_this_W is not None:
|
360
365
|
weight_pop[0] = W
|
366
|
+
|
361
367
|
else:
|
362
|
-
act_pop.append(activation_potentiation[i])
|
363
368
|
weight_pop.append(W)
|
364
369
|
|
365
370
|
if strategy == 'accuracy': target_pop.append(model[get_acc()])
|
@@ -422,6 +427,8 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
|
|
422
427
|
final_activations = act_pop[j]
|
423
428
|
best_model = model
|
424
429
|
|
430
|
+
final_activations = [final_activations[0]] if len(set(final_activations)) == 1 else final_activations # removing if all same
|
431
|
+
|
425
432
|
if batch_size == 1:
|
426
433
|
postfix_dict[f"{data} Accuracy"] = best_acc
|
427
434
|
else:
|
pyerualjetwork/planeat.py
CHANGED
@@ -185,7 +185,7 @@ Notes:
|
|
185
185
|
|
186
186
|
Example:
|
187
187
|
```python
|
188
|
-
weights, activation_potentiations =
|
188
|
+
weights, activation_potentiations = planeat.evolve(weights, activation_potentiations, 1, fitness, show_info=True, strategy='cross_over', policy='normal_selective')
|
189
189
|
```
|
190
190
|
|
191
191
|
- The function returns the updated weights and activations after processing based on the chosen strategy, policy, and mutation parameters.
|
pyerualjetwork/planeat_cuda.py
CHANGED
@@ -186,7 +186,7 @@ Notes:
|
|
186
186
|
|
187
187
|
Example:
|
188
188
|
```python
|
189
|
-
weights, activation_potentiations =
|
189
|
+
weights, activation_potentiations = planeat.evolve(weights, activation_potentiations, 1, fitness, show_info=True, strategy='cross_over', policy='normal_selective')
|
190
190
|
```
|
191
191
|
|
192
192
|
- The function returns the updated weights and activations after processing based on the chosen strategy, policy, and mutation parameters.
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.1.
|
3
|
+
Version: 4.1.8b5
|
4
4
|
Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,4 +1,4 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=TjNWEkaJUK3BCnAwlidyDnpk-xNRJG1jekVTq5IB5vk,2177
|
2
2
|
pyerualjetwork/activation_functions.py,sha256=WWOdMd5pI6ZKe-ieKCIsKAYPQODHuXYxx7tzhA5xjes,11767
|
3
3
|
pyerualjetwork/activation_functions_cuda.py,sha256=KmXJ5Cdig46XAMYakXFPEOlxSxtFJjD21-i3nGtxPjE,11807
|
4
4
|
pyerualjetwork/data_operations.py,sha256=ZM24BuPsIAtI0a_Exr4HgCjmlb285wEeO8juFY9sJr0,14680
|
@@ -11,14 +11,14 @@ pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,607
|
|
11
11
|
pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
12
12
|
pyerualjetwork/model_operations.py,sha256=hnhR8dtoICNJWIwGgJ65-LN3GYN_DYH4LMe6YpZVbnI,12967
|
13
13
|
pyerualjetwork/model_operations_cuda.py,sha256=XnKKq54ZLaqCm-NaJ6d8IToACKcKg2Ttq6moowVRRWo,13365
|
14
|
-
pyerualjetwork/plan.py,sha256=
|
15
|
-
pyerualjetwork/plan_cuda.py,sha256=
|
16
|
-
pyerualjetwork/planeat.py,sha256=
|
17
|
-
pyerualjetwork/planeat_cuda.py,sha256=
|
14
|
+
pyerualjetwork/plan.py,sha256=K24krCR7oN2fH0JLM9i_wtd4NRqLV608tX1bcQKbjRQ,35553
|
15
|
+
pyerualjetwork/plan_cuda.py,sha256=3rZvnuv6zF0Wns8xwT0jH1ySOKYXzSUMvg2FI8beLys,36181
|
16
|
+
pyerualjetwork/planeat.py,sha256=VtWtWndbKoFNYTWd1EsyKBV4Vp5U6cc7uWDgQ4WjHqo,40248
|
17
|
+
pyerualjetwork/planeat_cuda.py,sha256=6cizuh06kgq8x8dPqVutbgpgrpM76cF_XWRtUVQ9U1k,40265
|
18
18
|
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
19
19
|
pyerualjetwork/visualizations.py,sha256=QaYSIyVkJZ8NqpBKArQKkI1y37nCQo_KIM98IMssnRc,28766
|
20
20
|
pyerualjetwork/visualizations_cuda.py,sha256=9qw46Y4bo67l0nVVF1FSNS8ksyzbIAJdaPDFOhN5J8Y,29188
|
21
|
-
pyerualjetwork-4.1.
|
22
|
-
pyerualjetwork-4.1.
|
23
|
-
pyerualjetwork-4.1.
|
24
|
-
pyerualjetwork-4.1.
|
21
|
+
pyerualjetwork-4.1.8b5.dist-info/METADATA,sha256=NamWj41_Jt1lC-dRwfJPK5J3goq2OtDfo9YDdNM8nSg,7795
|
22
|
+
pyerualjetwork-4.1.8b5.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
23
|
+
pyerualjetwork-4.1.8b5.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
24
|
+
pyerualjetwork-4.1.8b5.dist-info/RECORD,,
|
File without changes
|
File without changes
|