pyerualjetwork 4.1.8b3__py3-none-any.whl → 4.1.8b5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -48,7 +48,7 @@ for package_name in package_names:
48
48
 
49
49
  print(f"PyerualJetwork is ready to use with {err} errors")
50
50
 
51
- __version__ = "4.1.8b3"
51
+ __version__ = "4.1.8b5"
52
52
  __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
53
53
 
54
54
  def print_version(__version__):
pyerualjetwork/plan.py CHANGED
@@ -338,16 +338,21 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
338
338
 
339
339
  for i in range(len(activation_potentiation)):
340
340
  print(f"\rPre-Run {i}/{len(activation_potentiation)}",end='')
341
-
341
+
342
+ if i == 0 and start_this_act is not None:
343
+ act_pop[0] = activation_potentiation[i]
344
+
345
+ else:
346
+ act_pop.append(activation_potentiation[i])
347
+
342
348
  x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
343
349
  W = fit(x_train, y_train, activation_potentiation=act_pop[-1], train_bar=False, auto_normalization=auto_normalization, dtype=dtype)
344
350
  model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=act_pop[-1], dtype=dtype)
345
351
 
346
- if i == 0 and start_this_act is not None:
347
- act_pop[0] = activation_potentiation[i]
352
+ if i == 0 and start_this_W is not None:
348
353
  weight_pop[0] = W
354
+
349
355
  else:
350
- act_pop.append(activation_potentiation[i])
351
356
  weight_pop.append(W)
352
357
 
353
358
  if strategy == 'accuracy': target_pop.append(model[get_acc()])
@@ -403,7 +408,7 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
403
408
 
404
409
  if ((strategy == 'accuracy' and acc >= best_acc) or
405
410
  (strategy == 'f1' and f1_score >= best_f1) or
406
- (strategy == 'precision' and precision_score >= best_precision) or
411
+ (strategy == 'precision' and precision_score >= best_precision) or
407
412
  (strategy == 'recall' and recall_score >= best_recall)):
408
413
 
409
414
  best_acc = acc
@@ -411,6 +416,8 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
411
416
  final_activations = act_pop[j]
412
417
  best_model = model
413
418
 
419
+ final_activations = [final_activations[0]] if len(set(final_activations)) == 1 else final_activations # removing if all same
420
+
414
421
  if batch_size == 1:
415
422
  postfix_dict[f"{data} Accuracy"] = best_acc
416
423
  else:
@@ -351,15 +351,20 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
351
351
  for i in range(len(activation_potentiation)):
352
352
  print(f"\rPre-Run {i}/{len(activation_potentiation)}",end='')
353
353
 
354
+ if i == 0 and start_this_act is not None:
355
+ act_pop[0] = activation_potentiation[i]
356
+
357
+ else:
358
+ act_pop.append(activation_potentiation[i])
359
+
354
360
  x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
355
361
  W = fit(x_train, y_train, activation_potentiation=act_pop[-1], train_bar=False, auto_normalization=auto_normalization, dtype=dtype, memory=memory)
356
362
  model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=act_pop[-1], dtype=dtype, memory=memory)
357
363
 
358
- if i == 0 and start_this_act is not None:
359
- act_pop[0] = activation_potentiation[i]
364
+ if i == 0 and start_this_W is not None:
360
365
  weight_pop[0] = W
366
+
361
367
  else:
362
- act_pop.append(activation_potentiation[i])
363
368
  weight_pop.append(W)
364
369
 
365
370
  if strategy == 'accuracy': target_pop.append(model[get_acc()])
@@ -422,6 +427,8 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
422
427
  final_activations = act_pop[j]
423
428
  best_model = model
424
429
 
430
+ final_activations = [final_activations[0]] if len(set(final_activations)) == 1 else final_activations # removing if all same
431
+
425
432
  if batch_size == 1:
426
433
  postfix_dict[f"{data} Accuracy"] = best_acc
427
434
  else:
pyerualjetwork/planeat.py CHANGED
@@ -185,7 +185,7 @@ Notes:
185
185
 
186
186
  Example:
187
187
  ```python
188
- weights, activation_potentiations = learner(weights, activation_potentiations, 1, fitness, info=True, strategy='cross_over', policy='normal_selective')
188
+ weights, activation_potentiations = planeat.evolve(weights, activation_potentiations, 1, fitness, show_info=True, strategy='cross_over', policy='normal_selective')
189
189
  ```
190
190
 
191
191
  - The function returns the updated weights and activations after processing based on the chosen strategy, policy, and mutation parameters.
@@ -186,7 +186,7 @@ Notes:
186
186
 
187
187
  Example:
188
188
  ```python
189
- weights, activation_potentiations = learner(weights, activation_potentiations, 1, fitness, info=True, strategy='cross_over', policy='normal_selective')
189
+ weights, activation_potentiations = planeat.evolve(weights, activation_potentiations, 1, fitness, show_info=True, strategy='cross_over', policy='normal_selective')
190
190
  ```
191
191
 
192
192
  - The function returns the updated weights and activations after processing based on the chosen strategy, policy, and mutation parameters.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.1.8b3
3
+ Version: 4.1.8b5
4
4
  Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=6F0i-PLMNQfAWeUcHe5ihUv0V1mMY9ib6d76t-Tcx4o,2177
1
+ pyerualjetwork/__init__.py,sha256=TjNWEkaJUK3BCnAwlidyDnpk-xNRJG1jekVTq5IB5vk,2177
2
2
  pyerualjetwork/activation_functions.py,sha256=WWOdMd5pI6ZKe-ieKCIsKAYPQODHuXYxx7tzhA5xjes,11767
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=KmXJ5Cdig46XAMYakXFPEOlxSxtFJjD21-i3nGtxPjE,11807
4
4
  pyerualjetwork/data_operations.py,sha256=ZM24BuPsIAtI0a_Exr4HgCjmlb285wEeO8juFY9sJr0,14680
@@ -11,14 +11,14 @@ pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,607
11
11
  pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
12
12
  pyerualjetwork/model_operations.py,sha256=hnhR8dtoICNJWIwGgJ65-LN3GYN_DYH4LMe6YpZVbnI,12967
13
13
  pyerualjetwork/model_operations_cuda.py,sha256=XnKKq54ZLaqCm-NaJ6d8IToACKcKg2Ttq6moowVRRWo,13365
14
- pyerualjetwork/plan.py,sha256=DnhHTkpYq8YC4CJhrE7mYjMN41a7lK6pXF5uM8uxeNU,35352
15
- pyerualjetwork/plan_cuda.py,sha256=i8XxTxzTiWy6iRVgfN2tzMOrxLnBXZmJ0GdegIOArOY,35967
16
- pyerualjetwork/planeat.py,sha256=pVp8ndi5E_muwOTFmlcav70-5LLV5A2yA0_SgURvT08,40236
17
- pyerualjetwork/planeat_cuda.py,sha256=3Vt5_zHUK4Jt_vW6LugQOy3to8gzQfT0_poPxeJTy68,40253
14
+ pyerualjetwork/plan.py,sha256=K24krCR7oN2fH0JLM9i_wtd4NRqLV608tX1bcQKbjRQ,35553
15
+ pyerualjetwork/plan_cuda.py,sha256=3rZvnuv6zF0Wns8xwT0jH1ySOKYXzSUMvg2FI8beLys,36181
16
+ pyerualjetwork/planeat.py,sha256=VtWtWndbKoFNYTWd1EsyKBV4Vp5U6cc7uWDgQ4WjHqo,40248
17
+ pyerualjetwork/planeat_cuda.py,sha256=6cizuh06kgq8x8dPqVutbgpgrpM76cF_XWRtUVQ9U1k,40265
18
18
  pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
19
19
  pyerualjetwork/visualizations.py,sha256=QaYSIyVkJZ8NqpBKArQKkI1y37nCQo_KIM98IMssnRc,28766
20
20
  pyerualjetwork/visualizations_cuda.py,sha256=9qw46Y4bo67l0nVVF1FSNS8ksyzbIAJdaPDFOhN5J8Y,29188
21
- pyerualjetwork-4.1.8b3.dist-info/METADATA,sha256=3Ic8Lm-bDZW7hIJ_nccIlZibzu3TZ__JMTIjbgW_WhA,7795
22
- pyerualjetwork-4.1.8b3.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
23
- pyerualjetwork-4.1.8b3.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
24
- pyerualjetwork-4.1.8b3.dist-info/RECORD,,
21
+ pyerualjetwork-4.1.8b5.dist-info/METADATA,sha256=NamWj41_Jt1lC-dRwfJPK5J3goq2OtDfo9YDdNM8nSg,7795
22
+ pyerualjetwork-4.1.8b5.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
23
+ pyerualjetwork-4.1.8b5.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
24
+ pyerualjetwork-4.1.8b5.dist-info/RECORD,,