pyerualjetwork 4.1.8b0__py3-none-any.whl → 4.1.8b2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -48,7 +48,7 @@ for package_name in package_names:
48
48
 
49
49
  print(f"PyerualJetwork is ready to use with {err} errors")
50
50
 
51
- __version__ = "4.1.8b0"
51
+ __version__ = "4.1.8b2"
52
52
  __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
53
53
 
54
54
  def print_version(__version__):
pyerualjetwork/plan.py CHANGED
@@ -256,7 +256,7 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
256
256
 
257
257
  """
258
258
 
259
- print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
259
+ print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular', 'spiral'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
260
260
 
261
261
  activation_potentiation = all_activations()
262
262
 
@@ -313,10 +313,14 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
313
313
 
314
314
  # Initialize variables
315
315
  act_pop = []
316
+ weight_pop = []
317
+
316
318
  if start_this_act is None and start_this_W is None:
317
319
  best_acc = 0
318
320
  else:
319
321
  act_pop.append(start_this_act)
322
+ weight_pop.append(start_this_W)
323
+
320
324
  x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
321
325
 
322
326
  model = evaluate(x_test_batch, y_test_batch, W=start_this_W, loading_bar_status=False, activation_potentiation=act_pop, dtype=dtype)
@@ -332,8 +336,6 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
332
336
  best_acc_per_gen_list = []
333
337
  postfix_dict = {}
334
338
  loss_list = []
335
- act_pop = []
336
- weight_pop = []
337
339
  target_pop = []
338
340
 
339
341
  for i in range(len(activation_potentiation)):
@@ -274,7 +274,7 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
274
274
 
275
275
  """
276
276
 
277
- print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
277
+ print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular', 'spiral'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
278
278
 
279
279
  activation_potentiation = all_activations()
280
280
 
@@ -325,10 +325,14 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
325
325
 
326
326
  # Initialize variables
327
327
  act_pop = []
328
+ weight_pop = []
329
+
328
330
  if start_this_act is None and start_this_W is None:
329
331
  best_acc = 0
330
332
  else:
331
333
  act_pop.append(start_this_act)
334
+ weight_pop.append(start_this_W)
335
+
332
336
  x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
333
337
 
334
338
  model = evaluate(x_test_batch, y_test_batch, W=start_this_W, loading_bar_status=False, activation_potentiation=act_pop, dtype=dtype, memory=memory)
@@ -344,8 +348,6 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
344
348
  best_acc_per_gen_list = []
345
349
  postfix_dict = {}
346
350
  loss_list = []
347
- act_pop = []
348
- weight_pop = []
349
351
  target_pop = []
350
352
 
351
353
  for i in range(len(activation_potentiation)):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.1.8b0
3
+ Version: 4.1.8b2
4
4
  Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=WB6frZ8e1IWyGHYt3RE7bsg4yn7Ozrudnf6rk60_H3o,2177
1
+ pyerualjetwork/__init__.py,sha256=5LHOaZ_gSRHUz3KzOdmNMu5tIEODmkWB3NC9ZUstWpQ,2177
2
2
  pyerualjetwork/activation_functions.py,sha256=WWOdMd5pI6ZKe-ieKCIsKAYPQODHuXYxx7tzhA5xjes,11767
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=KmXJ5Cdig46XAMYakXFPEOlxSxtFJjD21-i3nGtxPjE,11807
4
4
  pyerualjetwork/data_operations.py,sha256=ZM24BuPsIAtI0a_Exr4HgCjmlb285wEeO8juFY9sJr0,14680
@@ -11,14 +11,14 @@ pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,607
11
11
  pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
12
12
  pyerualjetwork/model_operations.py,sha256=hnhR8dtoICNJWIwGgJ65-LN3GYN_DYH4LMe6YpZVbnI,12967
13
13
  pyerualjetwork/model_operations_cuda.py,sha256=XnKKq54ZLaqCm-NaJ6d8IToACKcKg2Ttq6moowVRRWo,13365
14
- pyerualjetwork/plan.py,sha256=jE3xQUf2h8Vi0GshBktpn4Tyn3IiyJOo2GMZOTPsJQA,35359
15
- pyerualjetwork/plan_cuda.py,sha256=xdD6CFYiyta93L8VWA9NGXcXjzFzvNYr29XSZ-9wZiQ,35996
14
+ pyerualjetwork/plan.py,sha256=SiW7DUZ0G1GDUIWeBmhCnRvoyufsLEMd1zw5rDcTAO4,35408
15
+ pyerualjetwork/plan_cuda.py,sha256=LVeceJLNSMyTSZ-HPJuuWvVK0ymscQXsPlXtE8P4DBM,36045
16
16
  pyerualjetwork/planeat.py,sha256=pVp8ndi5E_muwOTFmlcav70-5LLV5A2yA0_SgURvT08,40236
17
17
  pyerualjetwork/planeat_cuda.py,sha256=3Vt5_zHUK4Jt_vW6LugQOy3to8gzQfT0_poPxeJTy68,40253
18
18
  pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
19
19
  pyerualjetwork/visualizations.py,sha256=QaYSIyVkJZ8NqpBKArQKkI1y37nCQo_KIM98IMssnRc,28766
20
20
  pyerualjetwork/visualizations_cuda.py,sha256=9qw46Y4bo67l0nVVF1FSNS8ksyzbIAJdaPDFOhN5J8Y,29188
21
- pyerualjetwork-4.1.8b0.dist-info/METADATA,sha256=ZW6TS4CJncDtHKSJSuOhiFgyy3vBZVqeExiVXcmcgAU,7795
22
- pyerualjetwork-4.1.8b0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
23
- pyerualjetwork-4.1.8b0.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
24
- pyerualjetwork-4.1.8b0.dist-info/RECORD,,
21
+ pyerualjetwork-4.1.8b2.dist-info/METADATA,sha256=NJztKo54YCnwEheTj0TX9rCDJAWfDGk66qds30ZNcSE,7795
22
+ pyerualjetwork-4.1.8b2.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
23
+ pyerualjetwork-4.1.8b2.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
24
+ pyerualjetwork-4.1.8b2.dist-info/RECORD,,