pyerualjetwork 4.1.8b0__py3-none-any.whl → 4.1.8b2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/plan.py +5 -3
- pyerualjetwork/plan_cuda.py +5 -3
- {pyerualjetwork-4.1.8b0.dist-info → pyerualjetwork-4.1.8b2.dist-info}/METADATA +1 -1
- {pyerualjetwork-4.1.8b0.dist-info → pyerualjetwork-4.1.8b2.dist-info}/RECORD +7 -7
- {pyerualjetwork-4.1.8b0.dist-info → pyerualjetwork-4.1.8b2.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.1.8b0.dist-info → pyerualjetwork-4.1.8b2.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -48,7 +48,7 @@ for package_name in package_names:
|
|
48
48
|
|
49
49
|
print(f"PyerualJetwork is ready to use with {err} errors")
|
50
50
|
|
51
|
-
__version__ = "4.1.
|
51
|
+
__version__ = "4.1.8b2"
|
52
52
|
__update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
53
53
|
|
54
54
|
def print_version(__version__):
|
pyerualjetwork/plan.py
CHANGED
@@ -256,7 +256,7 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
|
|
256
256
|
|
257
257
|
"""
|
258
258
|
|
259
|
-
print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
|
259
|
+
print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular', 'spiral'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
|
260
260
|
|
261
261
|
activation_potentiation = all_activations()
|
262
262
|
|
@@ -313,10 +313,14 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
|
|
313
313
|
|
314
314
|
# Initialize variables
|
315
315
|
act_pop = []
|
316
|
+
weight_pop = []
|
317
|
+
|
316
318
|
if start_this_act is None and start_this_W is None:
|
317
319
|
best_acc = 0
|
318
320
|
else:
|
319
321
|
act_pop.append(start_this_act)
|
322
|
+
weight_pop.append(start_this_W)
|
323
|
+
|
320
324
|
x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
|
321
325
|
|
322
326
|
model = evaluate(x_test_batch, y_test_batch, W=start_this_W, loading_bar_status=False, activation_potentiation=act_pop, dtype=dtype)
|
@@ -332,8 +336,6 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
|
|
332
336
|
best_acc_per_gen_list = []
|
333
337
|
postfix_dict = {}
|
334
338
|
loss_list = []
|
335
|
-
act_pop = []
|
336
|
-
weight_pop = []
|
337
339
|
target_pop = []
|
338
340
|
|
339
341
|
for i in range(len(activation_potentiation)):
|
pyerualjetwork/plan_cuda.py
CHANGED
@@ -274,7 +274,7 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
|
|
274
274
|
|
275
275
|
"""
|
276
276
|
|
277
|
-
print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
|
277
|
+
print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular', 'spiral'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
|
278
278
|
|
279
279
|
activation_potentiation = all_activations()
|
280
280
|
|
@@ -325,10 +325,14 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
|
|
325
325
|
|
326
326
|
# Initialize variables
|
327
327
|
act_pop = []
|
328
|
+
weight_pop = []
|
329
|
+
|
328
330
|
if start_this_act is None and start_this_W is None:
|
329
331
|
best_acc = 0
|
330
332
|
else:
|
331
333
|
act_pop.append(start_this_act)
|
334
|
+
weight_pop.append(start_this_W)
|
335
|
+
|
332
336
|
x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
|
333
337
|
|
334
338
|
model = evaluate(x_test_batch, y_test_batch, W=start_this_W, loading_bar_status=False, activation_potentiation=act_pop, dtype=dtype, memory=memory)
|
@@ -344,8 +348,6 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
|
|
344
348
|
best_acc_per_gen_list = []
|
345
349
|
postfix_dict = {}
|
346
350
|
loss_list = []
|
347
|
-
act_pop = []
|
348
|
-
weight_pop = []
|
349
351
|
target_pop = []
|
350
352
|
|
351
353
|
for i in range(len(activation_potentiation)):
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.1.
|
3
|
+
Version: 4.1.8b2
|
4
4
|
Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,4 +1,4 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=5LHOaZ_gSRHUz3KzOdmNMu5tIEODmkWB3NC9ZUstWpQ,2177
|
2
2
|
pyerualjetwork/activation_functions.py,sha256=WWOdMd5pI6ZKe-ieKCIsKAYPQODHuXYxx7tzhA5xjes,11767
|
3
3
|
pyerualjetwork/activation_functions_cuda.py,sha256=KmXJ5Cdig46XAMYakXFPEOlxSxtFJjD21-i3nGtxPjE,11807
|
4
4
|
pyerualjetwork/data_operations.py,sha256=ZM24BuPsIAtI0a_Exr4HgCjmlb285wEeO8juFY9sJr0,14680
|
@@ -11,14 +11,14 @@ pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,607
|
|
11
11
|
pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
12
12
|
pyerualjetwork/model_operations.py,sha256=hnhR8dtoICNJWIwGgJ65-LN3GYN_DYH4LMe6YpZVbnI,12967
|
13
13
|
pyerualjetwork/model_operations_cuda.py,sha256=XnKKq54ZLaqCm-NaJ6d8IToACKcKg2Ttq6moowVRRWo,13365
|
14
|
-
pyerualjetwork/plan.py,sha256=
|
15
|
-
pyerualjetwork/plan_cuda.py,sha256=
|
14
|
+
pyerualjetwork/plan.py,sha256=SiW7DUZ0G1GDUIWeBmhCnRvoyufsLEMd1zw5rDcTAO4,35408
|
15
|
+
pyerualjetwork/plan_cuda.py,sha256=LVeceJLNSMyTSZ-HPJuuWvVK0ymscQXsPlXtE8P4DBM,36045
|
16
16
|
pyerualjetwork/planeat.py,sha256=pVp8ndi5E_muwOTFmlcav70-5LLV5A2yA0_SgURvT08,40236
|
17
17
|
pyerualjetwork/planeat_cuda.py,sha256=3Vt5_zHUK4Jt_vW6LugQOy3to8gzQfT0_poPxeJTy68,40253
|
18
18
|
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
19
19
|
pyerualjetwork/visualizations.py,sha256=QaYSIyVkJZ8NqpBKArQKkI1y37nCQo_KIM98IMssnRc,28766
|
20
20
|
pyerualjetwork/visualizations_cuda.py,sha256=9qw46Y4bo67l0nVVF1FSNS8ksyzbIAJdaPDFOhN5J8Y,29188
|
21
|
-
pyerualjetwork-4.1.
|
22
|
-
pyerualjetwork-4.1.
|
23
|
-
pyerualjetwork-4.1.
|
24
|
-
pyerualjetwork-4.1.
|
21
|
+
pyerualjetwork-4.1.8b2.dist-info/METADATA,sha256=NJztKo54YCnwEheTj0TX9rCDJAWfDGk66qds30ZNcSE,7795
|
22
|
+
pyerualjetwork-4.1.8b2.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
23
|
+
pyerualjetwork-4.1.8b2.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
24
|
+
pyerualjetwork-4.1.8b2.dist-info/RECORD,,
|
File without changes
|
File without changes
|