pyerualjetwork 4.1.4__py3-none-any.whl → 4.1.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,17 +1,26 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.1.4
3
+ Version: 4.1.6
4
4
  Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
7
7
  Keywords: model evaluation,classification,potentiation learning artificial neural networks,NEAT,genetic algorithms,reinforcement learning,neural networks
8
8
  Description-Content-Type: text/markdown
9
9
 
10
- # PyerualJetwork [![Socket Badge](https://socket.dev/api/badge/pypi/package/pyerualjetwork/4.0.6?artifact_id=tar-gz)](https://socket.dev/pypi/package/pyerualjetwork/overview/4.0.6/tar-gz) [![CodeFactor](https://www.codefactor.io/repository/github/hcb06/pyerualjetwork/badge)](https://www.codefactor.io/repository/github/hcb06/pyerualjetwork) [![PyPI Downloads](https://static.pepy.tech/badge/anaplan)](https://pepy.tech/projects/anaplan) + [![PyPI Downloads](https://static.pepy.tech/badge/pyerualjetwork)](https://pepy.tech/projects/pyerualjetwork) [![PyPI Downloads](https://static.pepy.tech/badge/pyerualjetwork/month)](https://pepy.tech/projects/pyerualjetwork) [![PyPI Downloads](https://static.pepy.tech/badge/pyerualjetwork/week)](https://pepy.tech/projects/pyerualjetwork) [![PyPI version](https://img.shields.io/pypi/v/pyerualjetwork.svg)](https://pypi.org/project/pyerualjetwork/)
10
+ # PyerualJetwork [![Socket Badge](https://socket.dev/api/badge/pypi/package/pyerualjetwork/4.0.6?artifact_id=tar-gz)](https://socket.dev/pypi/package/pyerualjetwork/overview/4.0.6/tar-gz) [![CodeFactor](https://www.codefactor.io/repository/github/hcb06/pyerualjetwork/badge)](https://www.codefactor.io/repository/github/hcb06/pyerualjetwork) [![PyPI Downloads](https://static.pepy.tech/badge/pyerualjetwork)](https://pepy.tech/projects/pyerualjetwork) + [![PyPI Downloads](https://static.pepy.tech/badge/anaplan)](https://pepy.tech/projects/anaplan)
11
+
12
+
13
+ [![PyPI Downloads](https://static.pepy.tech/badge/pyerualjetwork/month)](https://pepy.tech/projects/pyerualjetwork) [![PyPI Downloads](https://static.pepy.tech/badge/pyerualjetwork/week)](https://pepy.tech/projects/pyerualjetwork) [![PyPI version](https://img.shields.io/pypi/v/pyerualjetwork.svg)](https://pypi.org/project/pyerualjetwork/)
11
14
 
12
15
  Note: anaplan old name of pyerualjetwork
13
16
 
14
- https://libraries.io/pypi/pyerualjetwork
17
+ ![PyerualJetwork](https://github.com/HCB06/PyerualJetwork/blob/main/Media/pyerualjetwork_with_name.png)<br><br><br>
18
+
19
+ Libraries.io Page: https://libraries.io/pypi/pyerualjetwork
20
+
21
+ PyPi Page: https://pypi.org/project/pyerualjetwork/
22
+
23
+ GitHub Page: https://github.com/HCB06/PyerualJetwork
15
24
 
16
25
 
17
26
  pip install pyerualjetwork
@@ -29,7 +38,7 @@ https://libraries.io/pypi/pyerualjetwork
29
38
  Optimized for Visual Studio Code
30
39
 
31
40
  requires=[
32
- 'setuptools==75.6.0'
41
+ 'setuptools==75.6.0',
33
42
  'scipy==1.13.1',
34
43
  'tqdm==4.66.4',
35
44
  'seaborn==0.13.2',
@@ -38,27 +47,31 @@ https://libraries.io/pypi/pyerualjetwork
38
47
  'numpy==1.26.4',
39
48
  'matplotlib==3.9.0',
40
49
  'colorama==0.4.6',
41
- 'cupy-cuda12x'
50
+ 'cupy-cuda12x',
51
+ 'psutil==6.1.1'
42
52
  ]
43
53
 
44
54
  matplotlib, seaborn, networkx (optional).
45
- PyerualJetwork checks and install all dependencies (with optional ones but except cupy) for every runing.
55
+ PyerualJetwork checks and install all dependencies with optional ones for every runing.
46
56
  If your version is higher or lower, PyerualJetwork automaticly delete other versions and installs this versions.
47
57
 
48
58
  ##############################
49
59
 
50
60
  ABOUT PYERUALJETWORK:
51
61
 
52
- PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques. Its most important component is the PLAN (Potentiation Learning Artificial Neural Network) https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4862342. (THIS ARTICLE IS FIRST VERSION OF PLAN.) MODERN VERSION OF PLAN: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PLAN/PLAN.pdf
62
+ PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques with optimized GPU acceleration. Its most important component is the PLAN (Potentiation Learning Artificial Neural Network) https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4862342. (THIS ARTICLE IS FIRST VERSION OF PLAN.) MODERN VERSION OF PLAN: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PLAN/PLAN.pdf
53
63
  Both the PLAN algorithm and the PyerualJetwork library were created by Author, and all rights are reserved by Author.
54
64
  PyerualJetwork is free to use for commercial business and individual users. PyerualJetwork is written in fully functional programming with non-oop elements. PyerualJetwork consists of many functions that complement each other, which facilitates the learning process and debugging during use.
55
65
  As of 12/21/2024, the library includes PLAN and PLANEAT module, but other machine learning modules are expected to be added in the future.
66
+
67
+ PyerualJetwork ready for both eager execution(like PyTorch) and static graph(like Tensorflow) concepts because PyerualJetwork using only functions.
68
+ For example:
69
+
70
+ fit function only fits given training data(suitable for dynamic graph) but learner function learns and optimize entire architecture(suitable for static graph). Or more deeper eager executions PyerualJetwork have: feed_forward function, list of activation functions, loss functions. You can create your unique model architecture. Move your data to GPU or CPU or manage how much should in GPU, Its all up to you.
56
71
  <br><br>
57
72
 
58
73
  PyerualJetworket includes Plan Vision, NLPlan, PLANEAT and at the between of both, Deep Plan.<br>
59
74
 
60
- ![PyerualJetwork](https://github.com/HCB06/PyerualJetwork/blob/main/Media/anaplanet_logo_final.png)<br><br><br>
61
-
62
75
  PLAN VISION:<br>
63
76
 
64
77
  ![PLAN VISION](https://github.com/HCB06/PyerualJetwork/blob/main/Media/PlanVision.jpg)
@@ -82,8 +95,20 @@ PLANEAT:<br>
82
95
  You can create artificial intelligence models that perform reinforcement learning tasks and genetic optimization tasks using the planeat module:
83
96
 
84
97
  ![PLANEAT](https://github.com/HCB06/PyerualJetwork/blob/main/Media/PLANEAT_1.gif)<br>
85
-
86
98
  ![PLANEAT](https://github.com/HCB06/PyerualJetwork/blob/main/Media/PLANEAT_2.gif)<br>
99
+ ![PLANEAT](https://github.com/HCB06/PyerualJetwork/blob/main/Media/mario.gif)<br><br>
100
+
101
+ YOU CAN CREATE DYNAMIC ANIMATIONS OF YOUR MODELS
102
+
103
+ ![VISUALIZATIONS](https://github.com/HCB06/PyerualJetwork/blob/main/Media/fit_history.gif)<br>
104
+ ![VISUALIZATIONS](https://github.com/HCB06/PyerualJetwork/blob/main/Media/neuron_history.gif)<br>
105
+ ![VISUALIZATIONS](https://github.com/HCB06/PyerualJetwork/blob/main/Media/neural_web.gif)<br>
106
+
107
+ YOU CAN CREATE AND VISUALIZE YOUR MODEL ARCHITECTURE
108
+
109
+ ![VISUALIZATIONS](https://github.com/HCB06/PyerualJetwork/blob/main/Media/model_arc.png)<br>
110
+ ![VISUALIZATIONS](https://github.com/HCB06/PyerualJetwork/blob/main/Media/eval_metrics.png)<br>
111
+
87
112
 
88
113
 
89
114
  HOW DO I IMPORT IT TO MY PROJECT?
@@ -0,0 +1,24 @@
1
+ pyerualjetwork/__init__.py,sha256=47FoEu3nH5W85OrbFZXsfegly9PKg-oHIAk82AvVCKE,2450
2
+ pyerualjetwork/activation_functions.py,sha256=WWOdMd5pI6ZKe-ieKCIsKAYPQODHuXYxx7tzhA5xjes,11767
3
+ pyerualjetwork/activation_functions_cuda.py,sha256=KmXJ5Cdig46XAMYakXFPEOlxSxtFJjD21-i3nGtxPjE,11807
4
+ pyerualjetwork/data_operations.py,sha256=ZM24BuPsIAtI0a_Exr4HgCjmlb285wEeO8juFY9sJr0,14680
5
+ pyerualjetwork/data_operations_cuda.py,sha256=IrLQkyf5FNNy4kfFcYDToueRnMDdXk7W4ufzpgwxA4k,17267
6
+ pyerualjetwork/help.py,sha256=OZghUy7GZTgEX_i3NYtgcpzUgCDOi6r2vVUF1ROkFiI,774
7
+ pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
8
+ pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
9
+ pyerualjetwork/memory_operations.py,sha256=g_DU1g_Xx8BXZ253CV_DvhHI65cXaLNT4iBhlPuPN_w,13487
10
+ pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
11
+ pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
12
+ pyerualjetwork/model_operations.py,sha256=hnhR8dtoICNJWIwGgJ65-LN3GYN_DYH4LMe6YpZVbnI,12967
13
+ pyerualjetwork/model_operations_cuda.py,sha256=XnKKq54ZLaqCm-NaJ6d8IToACKcKg2Ttq6moowVRRWo,13365
14
+ pyerualjetwork/plan.py,sha256=ZadbCULBnfd8yrE21-shzifnILzQPZ9jEy6amQxuuvw,35251
15
+ pyerualjetwork/plan_cuda.py,sha256=y1YoZQCSXGyLduG-IdcSPk2DPMAYG5G2pOfDefRZw0w,36287
16
+ pyerualjetwork/planeat.py,sha256=6uEcCF4bV1_W1aQUTKQjfnDgWp6rP2oluKFo5Y37k7o,39517
17
+ pyerualjetwork/planeat_cuda.py,sha256=GXYt_00rDKkDKJrhjE8hHOtu4U_pQZM1yZ6XrMpQo2c,39574
18
+ pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
19
+ pyerualjetwork/visualizations.py,sha256=9naPYMQKpkMcP_GEaBK90FEZAlImT_f-lgRqVCwvcb8,28660
20
+ pyerualjetwork/visualizations_cuda.py,sha256=blOM-VQnAT_qzM3i_OWjL5C1qnUtYctEvja-a_X4Z0w,29085
21
+ pyerualjetwork-4.1.6.dist-info/METADATA,sha256=xRiAQOkHwFGtNVJDRHGgGS6KbFbWm8B3C2dI-dP8GUM,7793
22
+ pyerualjetwork-4.1.6.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
23
+ pyerualjetwork-4.1.6.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
24
+ pyerualjetwork-4.1.6.dist-info/RECORD,,
@@ -1,23 +0,0 @@
1
- pyerualjetwork/__init__.py,sha256=5meSyUa9UeGibBpOiMqRwmxpHW4RmbScrSfbeCc02zg,2542
2
- pyerualjetwork/activation_functions.py,sha256=WWOdMd5pI6ZKe-ieKCIsKAYPQODHuXYxx7tzhA5xjes,11767
3
- pyerualjetwork/activation_functions_cuda.py,sha256=7U69VfwAIE8STUng2zEwPPQES9NgnkAXsDtVh-EzaZE,11803
4
- pyerualjetwork/data_operations.py,sha256=2julEScuHsL_ueeJ-JE3hiqw3wibZQW_L2bwwdoXTN0,16552
5
- pyerualjetwork/data_operations_cuda.py,sha256=uVGcLwhhePkZt2BnO9KrsIMq29CW5L_9ucyxN8Wnevw,18711
6
- pyerualjetwork/help.py,sha256=OZghUy7GZTgEX_i3NYtgcpzUgCDOi6r2vVUF1ROkFiI,774
7
- pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
8
- pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
9
- pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
10
- pyerualjetwork/metrics_cuda.py,sha256=Hz4PCeE5GcVUllZdsgXXdIw-UNqUVpqNxMIlPBNTSKY,5069
11
- pyerualjetwork/model_operations.py,sha256=eWYiYlXYZzsRgVfF-4CFvjCHaZOGB2378evre8yCzYk,13084
12
- pyerualjetwork/model_operations_cuda.py,sha256=1082RJ-b8PS9g3VV8NIE0E7MepkMSJzC6uJWbcrHcWw,13407
13
- pyerualjetwork/plan.py,sha256=MNXCFZ7zaIsdveKKopJL1DGQh1MGxwrCat0_r0S6hbo,34346
14
- pyerualjetwork/plan_cuda.py,sha256=uMJh-mmkmvDFw5jKOJvlRPRn_w3ybLD2WE6at4Okigs,33976
15
- pyerualjetwork/planeat.py,sha256=6uEcCF4bV1_W1aQUTKQjfnDgWp6rP2oluKFo5Y37k7o,39517
16
- pyerualjetwork/planeat_cuda.py,sha256=GXYt_00rDKkDKJrhjE8hHOtu4U_pQZM1yZ6XrMpQo2c,39574
17
- pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
18
- pyerualjetwork/visualizations.py,sha256=DvbiQGlvlKNAgBJ3O3ukAi6uxSheha9SRFh5YX7ZxIA,26678
19
- pyerualjetwork/visualizations_cuda.py,sha256=hH2FMjbsImAxTLIAUS2pfGSufigV-SbgpVMVrj4lYOE,26733
20
- pyerualjetwork-4.1.4.dist-info/METADATA,sha256=8ItGOfbEs19ScFDU4n1uNj_qjS2bRKnxcyZbIyq9vc8,6357
21
- pyerualjetwork-4.1.4.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
22
- pyerualjetwork-4.1.4.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
23
- pyerualjetwork-4.1.4.dist-info/RECORD,,