pyerualjetwork 4.1.4__py3-none-any.whl → 4.1.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -68,131 +68,117 @@ def draw_neural_web(W, ax, G, return_objs=False):
68
68
  return art1, art2, art3
69
69
 
70
70
 
71
- def draw_model_architecture(model_name, model_path='', style='basic'):
71
+ def draw_model_architecture(model_name, model_path=''):
72
72
  """
73
- Visualizes the architecture of a neural network model.
74
-
75
- Parameters
76
- ----------
77
- model_name : str
78
- The name of the model to be visualized, which will be displayed in the title or label.
79
-
80
- model_path : str
81
- The file path to the model, from which the architecture is loaded. Default is ''
82
-
83
- style : str, optional
84
- The style of the visualization.
85
- Options:
86
- - 'basic': Displays a simplified view of the model architecture.
87
- - 'detailed': Shows a more comprehensive view, including layer details and parameters.
88
- Default is 'basic'.
89
-
90
- Returns
91
- -------
92
- None
93
- Draws and displays the architecture of the specified model.
94
-
95
-
96
- Examples
97
- --------
98
- >>> draw_model_architecture("MyModel", "path/to/model", style='detailed')
73
+ The `draw_model_architecture` function visualizes the architecture of a neural network model with
74
+ multiple inputs based on activation functions.
75
+
76
+ :param model_name: The `model_name` parameter in the `draw_model_architecture` function is used to
77
+ specify the name of the neural network model whose architecture you want to visualize. This function
78
+ visualizes the architecture of a neural network model with multiple inputs based on activation
79
+ functions
80
+ :param model_path: The `model_path` parameter in the `draw_model_architecture` function is used to
81
+ specify the path where the neural network model is saved. If the model is saved in a specific
82
+ directory or file location, you can provide that path as a string when calling the function. If the
83
+ model is saved
84
+ """
85
+ """
86
+ Visualizes the architecture of a neural network model with multiple inputs based on activation functions.
99
87
  """
100
- from .plan import get_scaler, get_act_pot, get_weights
101
- from .model_operations import load_model
88
+
89
+ from .model_operations import load_model, get_scaler, get_act_pot, get_weights
102
90
 
103
91
  model = load_model(model_name=model_name, model_path=model_path)
104
92
 
105
93
  W = model[get_weights()]
106
94
  activation_potentiation = model[get_act_pot()]
107
95
  scaler_params = model[get_scaler()]
108
-
109
- text_1 = f"Input Shape:\n{W.shape[1]}"
110
- text_2 = f"Output Shape:\n{W.shape[0]}"
111
-
112
- if scaler_params is None:
113
- bottom_left_text = 'Standard Scaler=No'
114
- else:
115
- bottom_left_text = 'Standard Scaler=Yes'
116
-
117
- if len(activation_potentiation) != 1 or (len(activation_potentiation) == 1 and activation_potentiation[0] != 'linear'):
118
-
119
- bottom_left_text_1 = f'Aggregation Layers(Aggregates All Conversions)={len(activation_potentiation)}'
120
-
121
- else:
122
-
123
- bottom_left_text_1 = 'Aggregation Layers(Aggregates All Conversions)=0'
124
-
125
- bottom_left_text_2 = 'Potentiation Layer(Fully Connected)=1'
126
-
127
- if scaler_params is None:
128
- bottom_left_text = 'Standard Scaler=No'
129
- else:
130
- bottom_left_text = 'Standard Scaler=Yes'
131
-
132
- num_middle_axes = len(activation_potentiation)
133
-
134
- if style == 'detailed':
135
-
136
- col = 1
137
-
138
- elif style == 'basic':
139
96
 
140
- col = 2
141
-
142
- fig, axes = plt.subplots(1, num_middle_axes + col, figsize=(5 * (num_middle_axes + 2), 5))
143
-
144
- fig.suptitle("Model Architecture", fontsize=16, fontweight='bold')
145
-
146
- for i, activation in enumerate(activation_potentiation):
147
- x = np.linspace(-100, 100, 100)
148
- translated_x_train = draw_activations(x, activation)
149
- y = translated_x_train
150
-
151
- axes[i].plot(x, y, color='b', markersize=6, linewidth=2, label='Activations Over Depth')
152
- axes[i].set_title(activation_potentiation[i])
97
+ # Calculate dimensions based on number of activation functions
98
+ num_activations = len(activation_potentiation)
99
+ input_groups = num_activations # Number of input groups equals number of activations
100
+ num_inputs = W.shape[1]
153
101
 
154
- axes[i].spines['top'].set_visible(False)
155
- axes[i].spines['right'].set_visible(False)
156
- axes[i].spines['left'].set_visible(False)
157
- axes[i].spines['bottom'].set_visible(False)
158
- axes[i].get_xaxis().set_visible(False)
159
- axes[i].get_yaxis().set_visible(False)
102
+ # Create figure
103
+ fig = plt.figure(figsize=(15, 10))
104
+
105
+ # Calculate positions for nodes
106
+ def get_node_positions():
107
+ positions = {}
160
108
 
161
-
162
- if i < num_middle_axes - 1:
163
- axes[i].annotate('', xy=(1.05, 0.5), xytext=(0.95, 0.5),
164
- xycoords='axes fraction', textcoords='axes fraction',
165
- arrowprops=dict(arrowstyle="->", color='black', lw=1.5))
109
+ # Input layer positions
110
+ total_height = 0.8 # Maksimum dikey alan
111
+ group_height = total_height / input_groups # Her grup için ayrılan dikey alan
112
+ input_spacing = min(group_height / (num_inputs + 1), 0.1) # Her girdi arasındaki mesafe
113
+
114
+ for group in range(input_groups):
115
+ group_start_y = 0.9 - (group * group_height) # Grubun başlangıç y koordinatı
116
+ for i in range(num_inputs):
117
+ y_pos = group_start_y - ((i + 1) * input_spacing)
118
+ positions[f'input_{group}_{i}'] = (0.2, y_pos)
119
+
120
+ # Aggregation layer positions
121
+ agg_spacing = total_height / (num_inputs + 1)
122
+ for i in range(num_inputs):
123
+ positions[f'summed_{i}'] = (0.5, 0.9 - ((i + 1) * agg_spacing))
124
+
125
+ # Output layer positions
126
+ output_spacing = total_height / (W.shape[0] + 1)
127
+ for i in range(W.shape[0]):
128
+ positions[f'output_{i}'] = (0.8, 0.9 - ((i + 1) * output_spacing))
129
+
130
+ return positions
131
+
132
+ # Draw the network
133
+ pos = get_node_positions()
134
+
135
+ # Draw nodes
136
+ for group in range(input_groups):
137
+ # Draw input nodes
138
+ for i in range(num_inputs):
139
+ plt.plot(*pos[f'input_{group}_{i}'], 'o', color='lightgreen', markersize=20)
140
+ plt.text(pos[f'input_{group}_{i}'][0] - 0.05, pos[f'input_{group}_{i}'][1],
141
+ f'Input #{i+1} ({activation_potentiation[group]})', ha='right', va='center')
142
+
143
+ # Draw connections from input to summed input directly
144
+ plt.plot([pos[f'input_{group}_{i}'][0], pos[f'summed_{i}'][0]],
145
+ [pos[f'input_{group}_{i}'][1], pos[f'summed_{i}'][1]], 'k-')
146
+ # Draw aggregation nodes
147
+ if group == 0:
148
+ plt.plot(*pos[f'summed_{i}'], 'o', color='lightgreen', markersize=20)
149
+ plt.text(pos[f'summed_{i}'][0], pos[f'summed_{i}'][1] + 0.02,
150
+ f'Summed\nInput #{i+1}', ha='center', va='bottom')
151
+
152
+ # Draw output nodes and connections
153
+ for i in range(W.shape[0]):
154
+ plt.plot(*pos[f'output_{i}'], 'o', color='gold', markersize=20)
155
+ plt.text(pos[f'output_{i}'][0] + 0.05, pos[f'output_{i}'][1],
156
+ f'Output #{i+1}', ha='left', va='center', color='purple')
157
+
158
+ # Connect all aggregation nodes to each output
159
+ for group in range(num_inputs):
160
+ plt.plot([pos[f'summed_{group}'][0], pos[f'output_{i}'][0]],
161
+ [pos[f'summed_{group}'][1], pos[f'output_{i}'][1]], 'k-')
166
162
 
167
- if style == 'detailed':
163
+ # Add labels and annotations
164
+ plt.text(0.2, 0.95, 'Input Layer', ha='center', va='bottom', fontsize=12)
165
+ plt.text(0.5, 0.95, 'Aggregation\nLayer', ha='center', va='bottom', fontsize=12)
166
+ plt.text(0.8, 0.95, 'Output Layer', ha='center', va='bottom', fontsize=12)
168
167
 
169
- G = nx.Graph()
170
- draw_neural_web(W=W, ax=axes[num_middle_axes], G=G)
171
-
172
- elif style == 'basic':
173
-
174
- circle1 = plt.Circle((0.5, 0.5), 0.4, color='skyblue', ec='black', lw=1.5)
175
- axes[num_middle_axes].add_patch(circle1)
176
- axes[num_middle_axes].text(0.5, 0.5, text_1, ha='center', va='center', fontsize=12)
177
- axes[num_middle_axes].set_xlim(0, 1)
178
- axes[num_middle_axes].set_ylim(0, 1)
179
- axes[num_middle_axes].axis('off')
180
-
181
- circle2 = plt.Circle((0.5, 0.5), 0.4, color='lightcoral', ec='black', lw=1.5)
182
- axes[-1].add_patch(circle2)
183
- axes[-1].text(0.5, 0.5, text_2, ha='center', va='center', fontsize=12)
184
- axes[-1].set_xlim(0, 1)
185
- axes[-1].set_ylim(0, 1)
186
- axes[-1].axis('off')
187
-
188
-
189
- fig.text(0.01, 0, bottom_left_text, ha='left', va='bottom', fontsize=10)
190
- fig.text(0.01, 0.04, bottom_left_text_1, ha='left', va='bottom', fontsize=10)
191
- fig.text(0.01, 0.08, bottom_left_text_2, ha='left', va='bottom', fontsize=10)
168
+ # Remove axes
169
+ plt.axis('off')
170
+
171
+ # Add model information
172
+ if scaler_params is None:
173
+ plt.text(0.95, 0.05, 'Standard Scaler=No', fontsize=10, ha='right', va='bottom')
174
+ else:
175
+ plt.text(0.95, 0.05, 'Standard Scaler=Yes', fontsize=10, ha='right', va='bottom')
192
176
 
177
+ # Add model architecture title
178
+ plt.text(0.95, 0.1, f"PLAN Model Architecture: {model_name}", fontsize=12, ha='right', va='bottom', fontweight='bold')
193
179
  plt.tight_layout()
194
180
  plt.show()
195
-
181
+
196
182
 
197
183
  def draw_activations(x_train, activation):
198
184
 
@@ -479,7 +465,7 @@ def plot_decision_boundary(x, y, activation_potentiation, W, artist=None, ax=Non
479
465
  np.arange(y_min, y_max, h))
480
466
 
481
467
  grid = np.c_[xx.ravel(), yy.ravel()]
482
- grid_full = np.zeros((grid.shape[0], x.shape[1]))
468
+ grid_full = np.zeros((grid.shape[0], x.shape[1]), dtype=np.float32)
483
469
  grid_full[:, feature_indices] = grid
484
470
 
485
471
  Z = [None] * len(grid_full)
@@ -487,7 +473,7 @@ def plot_decision_boundary(x, y, activation_potentiation, W, artist=None, ax=Non
487
473
  for i in range(len(grid_full)):
488
474
  Z[i] = np.argmax(predict_model_ram(grid_full[i], W=W, activation_potentiation=activation_potentiation))
489
475
 
490
- Z = np.array(Z)
476
+ Z = np.array(Z, dtype=np.int32)
491
477
  Z = Z.reshape(xx.shape)
492
478
 
493
479
  if ax is None:
@@ -513,11 +499,11 @@ def plot_decision_boundary(x, y, activation_potentiation, W, artist=None, ax=Non
513
499
 
514
500
  except:
515
501
 
516
- art1_1 = ax[0].contourf(xx, yy, Z, alpha=0.8)
517
- art1_2 = ax[0].scatter(x[:, feature_indices[0]], x[:, feature_indices[1]], c=decode_one_hot(y), edgecolors='k', marker='o', s=20, alpha=0.9)
518
- ax[0].set_xlabel(f'Feature {0 + 1}')
519
- ax[0].set_ylabel(f'Feature {1 + 1}')
520
- ax[0].set_title('Decision Boundary')
502
+ art1_1 = ax.contourf(xx, yy, Z, alpha=0.8)
503
+ art1_2 = ax.scatter(x[:, feature_indices[0]], x[:, feature_indices[1]], c=decode_one_hot(y), edgecolors='k', marker='o', s=20, alpha=0.9)
504
+ ax.set_xlabel(f'Feature {0 + 1}')
505
+ ax.set_ylabel(f'Feature {1 + 1}')
506
+ ax.set_title('Decision Boundary')
521
507
 
522
508
 
523
509
  return art1_1, art1_2
@@ -558,7 +544,7 @@ def plot_decision_space(x, y, y_preds=None, s=100, color='tab20'):
558
544
  if y_preds[i] == cls:
559
545
  class_points.append(X_pca[i])
560
546
 
561
- class_points = np.array(class_points)
547
+ class_points = np.array(class_points, dtype=y.dtype)
562
548
 
563
549
 
564
550
  if len(class_points) > 2:
@@ -573,8 +559,8 @@ def plot_decision_space(x, y, y_preds=None, s=100, color='tab20'):
573
559
 
574
560
  plt.draw()
575
561
 
576
-
577
- def neuron_history(LTPW, ax1, row, col, class_count, artist5, data, fig1, acc=False, loss=False):
562
+
563
+ def update_neuron_history_for_learner(LTPW, ax1, row, col, class_count, artist5, data, fig1, acc=False, loss=False):
578
564
 
579
565
  for j in range(len(class_count)):
580
566
 
@@ -601,15 +587,40 @@ def neuron_history(LTPW, ax1, row, col, class_count, artist5, data, fig1, acc=Fa
601
587
 
602
588
  return artist5
603
589
 
590
+ def update_neuron_history(LTPW, ax1, row, col, class_count, artist5, fig1, acc=False, loss=False):
591
+
592
+ for j in range(class_count):
593
+
594
+ if acc != False and loss != False:
595
+ suptitle_info = ' Accuracy:' + str(acc) + '\n' + '\nNeurons Memory:'
596
+ else:
597
+ suptitle_info = 'Neurons Memory:'
598
+
599
+ mat = LTPW[j,:].reshape(row, col)
600
+
601
+ title_info = f'{j+1}. Neuron'
602
+
603
+ art5 = ax1[j].imshow(mat, interpolation='sinc', cmap='viridis')
604
+
605
+ ax1[j].set_aspect('equal')
606
+ ax1[j].set_xticks([])
607
+ ax1[j].set_yticks([])
608
+ ax1[j].set_title(title_info)
609
+
610
+
611
+ artist5.append([art5])
612
+
613
+ fig1.suptitle(suptitle_info, fontsize=16)
614
+
604
615
 
605
616
  def initialize_visualization_for_fit(val, show_training, neurons_history, x_train, y_train):
606
617
  """Initializes the visualization setup based on the parameters."""
607
618
  from .data_operations import find_closest_factors
608
619
  visualization_objects = {}
609
620
 
610
- if show_training:
621
+ if show_training or neurons_history:
611
622
  if not val:
612
- raise ValueError("For showing training, 'val' parameter must be True.")
623
+ raise ValueError("For showing training or neurons history, 'val' parameter must be True.")
613
624
 
614
625
  G = nx.Graph()
615
626
  fig, ax = plt.subplots(2, 2)
@@ -626,7 +637,7 @@ def initialize_visualization_for_fit(val, show_training, neurons_history, x_trai
626
637
 
627
638
  if neurons_history:
628
639
  row, col = find_closest_factors(len(x_train[0]))
629
- fig1, ax1 = plt.subplots(1, len(set(y_train)), figsize=(18, 14))
640
+ fig1, ax1 = plt.subplots(1, len(y_train[0]), figsize=(18, 14))
630
641
  visualization_objects.update({
631
642
  'fig1': fig1,
632
643
  'ax1': ax1,
@@ -637,6 +648,16 @@ def initialize_visualization_for_fit(val, show_training, neurons_history, x_trai
637
648
 
638
649
  return visualization_objects
639
650
 
651
+
652
+
653
+ def update_neural_web_for_fit(W, ax, G, artist):
654
+ """
655
+ The function `update_neural_web_for_fit` updates a neural web visualization for fitting.
656
+ """
657
+ art5_1, art5_2, art5_3 = draw_neural_web(W=W, ax=ax, G=G, return_objs=True)
658
+ art5_list = [art5_1] + [art5_2] + list(art5_3.values())
659
+ artist.append(art5_list)
660
+
640
661
 
641
662
  def update_weight_visualization_for_fit(ax, LTPW, artist2):
642
663
  """Updates the weight visualization plot."""
@@ -673,11 +694,12 @@ def update_validation_history_for_fit(ax, val_list, artist3):
673
694
  def display_visualization_for_fit(fig, artist_list, interval):
674
695
  """Displays the animation for the given artist list."""
675
696
  ani = ArtistAnimation(fig, artist_list, interval=interval, blit=True)
697
+ return ani
698
+
699
+ def show():
676
700
  plt.tight_layout()
677
701
  plt.show()
678
702
 
679
-
680
-
681
703
  def initialize_visualization_for_learner(show_history, neurons_history, neural_web_history, x_train, y_train):
682
704
  """Initialize all visualization components"""
683
705
  from .data_operations import find_closest_factors
@@ -765,7 +787,7 @@ def display_visualizations_for_learner(viz_objects, best_weights, data, best_acc
765
787
  if 'neurons' in viz_objects:
766
788
  neurons = viz_objects['neurons']
767
789
  for _ in range(10):
768
- neurons['artists'] = neuron_history(
790
+ neurons['artists'] = update_neuron_history_for_learner(
769
791
  np.copy(best_weights),
770
792
  neurons['ax'],
771
793
  neurons['row'],