pyerualjetwork 4.0.3__py3-none-any.whl → 4.0.3b0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/model_operations.py +1 -0
- pyerualjetwork/plan.py +11 -11
- pyerualjetwork/plan_cuda.py +18 -15
- {pyerualjetwork-4.0.3.dist-info → pyerualjetwork-4.0.3b0.dist-info}/METADATA +1 -1
- {pyerualjetwork-4.0.3.dist-info → pyerualjetwork-4.0.3b0.dist-info}/RECORD +8 -8
- {pyerualjetwork-4.0.3.dist-info → pyerualjetwork-4.0.3b0.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.0.3.dist-info → pyerualjetwork-4.0.3b0.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -46,7 +46,7 @@ for package_name in package_names:
|
|
46
46
|
|
47
47
|
print(f"PyerualJetwork is ready to use with {err} errors")
|
48
48
|
|
49
|
-
__version__ = "4.0.
|
49
|
+
__version__ = "4.0.3b0"
|
50
50
|
__update__ = "* Note: CUDA modules need cupy. Enter this command in your terminal: 'pip install cupy-cuda12x' or your cuda version.\n* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
51
51
|
|
52
52
|
def print_version(__version__):
|
pyerualjetwork/plan.py
CHANGED
@@ -17,13 +17,13 @@ import numpy as np
|
|
17
17
|
from colorama import Fore
|
18
18
|
|
19
19
|
### LIBRARY IMPORTS ###
|
20
|
-
from
|
21
|
-
from
|
22
|
-
from
|
23
|
-
from
|
24
|
-
from
|
25
|
-
from
|
26
|
-
from
|
20
|
+
from ui import loading_bars, initialize_loading_bar
|
21
|
+
from data_operations import normalization, decode_one_hot, batcher
|
22
|
+
from loss_functions import binary_crossentropy, categorical_crossentropy
|
23
|
+
from activation_functions import apply_activation, Softmax, all_activations
|
24
|
+
from metrics import metrics
|
25
|
+
from model_operations import get_acc, get_preds, get_preds_softmax
|
26
|
+
from visualizations import (
|
27
27
|
draw_neural_web,
|
28
28
|
plot_evaluate,
|
29
29
|
neuron_history,
|
@@ -500,11 +500,11 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
|
|
500
500
|
|
501
501
|
|
502
502
|
def feed_forward(
|
503
|
-
Input, # num: Input data.
|
503
|
+
Input, # list[num]: Input data.
|
504
504
|
w, # num: Weight matrix of the neural network.
|
505
505
|
is_training, # bool: Flag indicating if the function is called during training (True or False).
|
506
|
-
activation_potentiation,
|
507
|
-
Class='?', # int: Which class is, if training.
|
506
|
+
activation_potentiation,
|
507
|
+
Class='?', # int: Which class is, if training. # (list): Activation potentiation list for deep PLAN. (optional)
|
508
508
|
LTD=0
|
509
509
|
) -> tuple:
|
510
510
|
"""
|
@@ -515,7 +515,7 @@ def feed_forward(
|
|
515
515
|
w (num): Weight matrix of the neural network.
|
516
516
|
is_training (bool): Flag indicating if the function is called during training (True or False).
|
517
517
|
Class (int): if is during training then which class(label) ? is isnt then put None.
|
518
|
-
activation_potentiation (list): ac list for deep PLAN. default: [None] ('linear') (optional)
|
518
|
+
# activation_potentiation (list): ac list for deep PLAN. default: [None] ('linear') (optional)
|
519
519
|
|
520
520
|
Returns:
|
521
521
|
tuple: A tuple (vector) containing the neural layer result and the updated weight matrix.
|
pyerualjetwork/plan_cuda.py
CHANGED
@@ -64,9 +64,9 @@ def fit(
|
|
64
64
|
|
65
65
|
fit Args:
|
66
66
|
|
67
|
-
x_train (list[
|
67
|
+
x_train (list[num]): List or numarray of input data.
|
68
68
|
|
69
|
-
y_train (list[
|
69
|
+
y_train (list[num]): List or numarray of target labels. (one hot encoded)
|
70
70
|
|
71
71
|
val (None or True): validation in training process ? None or True default: None (optional)
|
72
72
|
|
@@ -74,9 +74,9 @@ def fit(
|
|
74
74
|
|
75
75
|
activation_potentiation (list): For deeper PLAN networks, activation function parameters. For more information please run this code: plan.activations_list() default: [None] (optional)
|
76
76
|
|
77
|
-
x_val (list[
|
77
|
+
x_val (list[num]): List of validation data. default: x_train (optional)
|
78
78
|
|
79
|
-
y_val (list[
|
79
|
+
y_val (list[num]): (list[num]): List of target labels. (one hot encoded) default: y_train (optional)
|
80
80
|
|
81
81
|
show_training (bool, str): True or None default: None (optional)
|
82
82
|
|
@@ -251,7 +251,7 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
|
|
251
251
|
if batch_size == 1:
|
252
252
|
ncols = 100
|
253
253
|
else:
|
254
|
-
ncols =
|
254
|
+
ncols = 140
|
255
255
|
progress = initialize_loading_bar(total=len(activation_potentiation), desc="", ncols=ncols, bar_format=bar_format_learner)
|
256
256
|
|
257
257
|
# Initialize variables
|
@@ -506,22 +506,22 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
|
|
506
506
|
|
507
507
|
|
508
508
|
def feed_forward(
|
509
|
-
Input, #
|
510
|
-
w, #
|
509
|
+
Input, # list[num]: Input data.
|
510
|
+
w, # num: Weight matrix of the neural network.
|
511
511
|
is_training, # bool: Flag indicating if the function is called during training (True or False).
|
512
|
-
activation_potentiation,
|
513
|
-
Class='?', # int: Which class is, if training.
|
512
|
+
activation_potentiation,
|
513
|
+
Class='?', # int: Which class is, if training. # (list): Activation potentiation list for deep PLAN. (optional)
|
514
514
|
LTD=0
|
515
515
|
) -> tuple:
|
516
516
|
"""
|
517
517
|
Applies feature extraction process to the input data using synaptic potentiation.
|
518
518
|
|
519
519
|
Args:
|
520
|
-
Input (
|
521
|
-
w (
|
520
|
+
Input (num): Input data.
|
521
|
+
w (num): Weight matrix of the neural network.
|
522
522
|
is_training (bool): Flag indicating if the function is called during training (True or False).
|
523
523
|
Class (int): if is during training then which class(label) ? is isnt then put None.
|
524
|
-
activation_potentiation (list): ac list for deep PLAN. default: [None] ('linear') (optional)
|
524
|
+
# activation_potentiation (list): ac list for deep PLAN. default: [None] ('linear') (optional)
|
525
525
|
|
526
526
|
Returns:
|
527
527
|
tuple: A tuple (vector) containing the neural layer result and the updated weight matrix.
|
@@ -563,9 +563,9 @@ def evaluate(
|
|
563
563
|
Evaluates the neural network model with the given test data.
|
564
564
|
|
565
565
|
Args:
|
566
|
-
x_test (
|
567
|
-
y_test (
|
568
|
-
W (list[
|
566
|
+
x_test (array-like): Test input data.
|
567
|
+
y_test (array-like): Test labels.
|
568
|
+
W (list[array-like]): Neural network weight matrix.
|
569
569
|
activation_potentiation (list): Activation functions.
|
570
570
|
loading_bar_status (bool): Loading bar status (optional).
|
571
571
|
show_metrics (bool): Option to display metrics (optional).
|
@@ -574,6 +574,9 @@ def evaluate(
|
|
574
574
|
tuple: model.
|
575
575
|
"""
|
576
576
|
|
577
|
+
x_test = cp.array(x_test, copy=False)
|
578
|
+
y_test = cp.array(y_test, copy=False)
|
579
|
+
|
577
580
|
predict_probabilitys = cp.empty((len(x_test), W.shape[0]), dtype=cp.float32)
|
578
581
|
real_classes = cp.empty(len(x_test), dtype=cp.int32)
|
579
582
|
predict_classes = cp.empty(len(x_test), dtype=cp.int32)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.0.
|
3
|
+
Version: 4.0.3b0
|
4
4
|
Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,4 +1,4 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=AqFnWvlLN33ns13c-E0bw_fld7lXv64WqLwU1tfr8AY,2479
|
2
2
|
pyerualjetwork/activation_functions.py,sha256=iJpdsX8FqZ3lB3x-YG7d9-em8xHD0y1ciJLNWmI7Y6A,9941
|
3
3
|
pyerualjetwork/activation_functions_cuda.py,sha256=7p-_qZuuj-BZ9A7ds8PgU7hSQ_EGI16XLh4J_6ySkD8,9968
|
4
4
|
pyerualjetwork/data_operations.py,sha256=mph66_qGQHxhg_gQtTuOzP2PjTwJsxTGzmRmvrzlQn4,12747
|
@@ -8,16 +8,16 @@ pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJie
|
|
8
8
|
pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
|
9
9
|
pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
|
10
10
|
pyerualjetwork/metrics_cuda.py,sha256=1KKIJunalYfj7OC7AJDXmK4wANrMnyJe_bvbUmhgl_Q,6081
|
11
|
-
pyerualjetwork/model_operations.py,sha256=
|
11
|
+
pyerualjetwork/model_operations.py,sha256=eXFUVZUO6vf_uO4auevWzne1RYSvD6Efz_IdH77DGZc,11980
|
12
12
|
pyerualjetwork/model_operations_cuda.py,sha256=CAnHj8EQuz2p2oFYcqaa9Z-yJX70rLnFrBkh2sQwrYY,12168
|
13
|
-
pyerualjetwork/plan.py,sha256=
|
14
|
-
pyerualjetwork/plan_cuda.py,sha256=
|
13
|
+
pyerualjetwork/plan.py,sha256=_AduKIXKH_pkQXRAx_yTV9g7dnKuZvV8cgDg740W6Vw,31525
|
14
|
+
pyerualjetwork/plan_cuda.py,sha256=gbOw_wXR5gXEoPUjAES2DB3WZ9xB-miXgFWr6i9zd4Q,31307
|
15
15
|
pyerualjetwork/planeat.py,sha256=3l4c-sMqTY6mQvW9u2OarcccUYcMxqASQXgx1GjNZSA,38061
|
16
16
|
pyerualjetwork/planeat_cuda.py,sha256=zkXkvdHSYgzV2BSwtpUuUXB6_WbYb_EPL06OfBmRk9w,38094
|
17
17
|
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
18
18
|
pyerualjetwork/visualizations.py,sha256=DvbiQGlvlKNAgBJ3O3ukAi6uxSheha9SRFh5YX7ZxIA,26678
|
19
19
|
pyerualjetwork/visualizations_cuda.py,sha256=dA0u85ZIyKqjtoSJ6p3EbEpJs4V4vS5W5ftR6eif8yg,26713
|
20
|
-
pyerualjetwork-4.0.
|
21
|
-
pyerualjetwork-4.0.
|
22
|
-
pyerualjetwork-4.0.
|
23
|
-
pyerualjetwork-4.0.
|
20
|
+
pyerualjetwork-4.0.3b0.dist-info/METADATA,sha256=Dol32fciutemeylwk72ivNGHvZ34w0S8eEcRJ_5qNW4,6303
|
21
|
+
pyerualjetwork-4.0.3b0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
22
|
+
pyerualjetwork-4.0.3b0.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
23
|
+
pyerualjetwork-4.0.3b0.dist-info/RECORD,,
|
File without changes
|
File without changes
|