pyerualjetwork 4.0.3__py3-none-any.whl → 4.0.3b0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -46,7 +46,7 @@ for package_name in package_names:
46
46
 
47
47
  print(f"PyerualJetwork is ready to use with {err} errors")
48
48
 
49
- __version__ = "4.0.3"
49
+ __version__ = "4.0.3b0"
50
50
  __update__ = "* Note: CUDA modules need cupy. Enter this command in your terminal: 'pip install cupy-cuda12x' or your cuda version.\n* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
51
51
 
52
52
  def print_version(__version__):
@@ -190,6 +190,7 @@ def load_model(model_name,
190
190
  Returns:
191
191
  lists: W(list[num]), activation_potentiation, DataFrame of the model
192
192
  """
193
+ np.set_printoptions(threshold=np.Infinity)
193
194
 
194
195
  try:
195
196
 
pyerualjetwork/plan.py CHANGED
@@ -17,13 +17,13 @@ import numpy as np
17
17
  from colorama import Fore
18
18
 
19
19
  ### LIBRARY IMPORTS ###
20
- from .ui import loading_bars, initialize_loading_bar
21
- from .data_operations import normalization, decode_one_hot, batcher
22
- from .loss_functions import binary_crossentropy, categorical_crossentropy
23
- from .activation_functions import apply_activation, Softmax, all_activations
24
- from .metrics import metrics
25
- from .model_operations import get_acc, get_preds, get_preds_softmax
26
- from .visualizations import (
20
+ from ui import loading_bars, initialize_loading_bar
21
+ from data_operations import normalization, decode_one_hot, batcher
22
+ from loss_functions import binary_crossentropy, categorical_crossentropy
23
+ from activation_functions import apply_activation, Softmax, all_activations
24
+ from metrics import metrics
25
+ from model_operations import get_acc, get_preds, get_preds_softmax
26
+ from visualizations import (
27
27
  draw_neural_web,
28
28
  plot_evaluate,
29
29
  neuron_history,
@@ -500,11 +500,11 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
500
500
 
501
501
 
502
502
  def feed_forward(
503
- Input, # num: Input data.
503
+ Input, # list[num]: Input data.
504
504
  w, # num: Weight matrix of the neural network.
505
505
  is_training, # bool: Flag indicating if the function is called during training (True or False).
506
- activation_potentiation, # (list): Activation potentiation list for deep PLAN. (optional)
507
- Class='?', # int: Which class is, if training.
506
+ activation_potentiation,
507
+ Class='?', # int: Which class is, if training. # (list): Activation potentiation list for deep PLAN. (optional)
508
508
  LTD=0
509
509
  ) -> tuple:
510
510
  """
@@ -515,7 +515,7 @@ def feed_forward(
515
515
  w (num): Weight matrix of the neural network.
516
516
  is_training (bool): Flag indicating if the function is called during training (True or False).
517
517
  Class (int): if is during training then which class(label) ? is isnt then put None.
518
- activation_potentiation (list): ac list for deep PLAN. default: [None] ('linear') (optional)
518
+ # activation_potentiation (list): ac list for deep PLAN. default: [None] ('linear') (optional)
519
519
 
520
520
  Returns:
521
521
  tuple: A tuple (vector) containing the neural layer result and the updated weight matrix.
@@ -64,9 +64,9 @@ def fit(
64
64
 
65
65
  fit Args:
66
66
 
67
- x_train (list[cupy-array]): List or numarray of input data.
67
+ x_train (list[num]): List or numarray of input data.
68
68
 
69
- y_train (list[cupy-array]): List or numarray of target labels. (one hot encoded)
69
+ y_train (list[num]): List or numarray of target labels. (one hot encoded)
70
70
 
71
71
  val (None or True): validation in training process ? None or True default: None (optional)
72
72
 
@@ -74,9 +74,9 @@ def fit(
74
74
 
75
75
  activation_potentiation (list): For deeper PLAN networks, activation function parameters. For more information please run this code: plan.activations_list() default: [None] (optional)
76
76
 
77
- x_val (list[cupy-array]): List of validation data. default: x_train (optional)
77
+ x_val (list[num]): List of validation data. default: x_train (optional)
78
78
 
79
- y_val (list[cupy-array]): List of target labels. (one hot encoded) default: y_train (optional)
79
+ y_val (list[num]): (list[num]): List of target labels. (one hot encoded) default: y_train (optional)
80
80
 
81
81
  show_training (bool, str): True or None default: None (optional)
82
82
 
@@ -251,7 +251,7 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
251
251
  if batch_size == 1:
252
252
  ncols = 100
253
253
  else:
254
- ncols = 120
254
+ ncols = 140
255
255
  progress = initialize_loading_bar(total=len(activation_potentiation), desc="", ncols=ncols, bar_format=bar_format_learner)
256
256
 
257
257
  # Initialize variables
@@ -506,22 +506,22 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
506
506
 
507
507
 
508
508
  def feed_forward(
509
- Input, # cupy-array: Input data.
510
- w, # cupy-array: Weight matrix of the neural network.
509
+ Input, # list[num]: Input data.
510
+ w, # num: Weight matrix of the neural network.
511
511
  is_training, # bool: Flag indicating if the function is called during training (True or False).
512
- activation_potentiation, # (list): Activation potentiation list for deep PLAN. (optional)
513
- Class='?', # int: Which class is, if training.
512
+ activation_potentiation,
513
+ Class='?', # int: Which class is, if training. # (list): Activation potentiation list for deep PLAN. (optional)
514
514
  LTD=0
515
515
  ) -> tuple:
516
516
  """
517
517
  Applies feature extraction process to the input data using synaptic potentiation.
518
518
 
519
519
  Args:
520
- Input (cupy-array): Input data.
521
- w (cupy-array): Weight matrix of the neural network.
520
+ Input (num): Input data.
521
+ w (num): Weight matrix of the neural network.
522
522
  is_training (bool): Flag indicating if the function is called during training (True or False).
523
523
  Class (int): if is during training then which class(label) ? is isnt then put None.
524
- activation_potentiation (list): ac list for deep PLAN. default: [None] ('linear') (optional)
524
+ # activation_potentiation (list): ac list for deep PLAN. default: [None] ('linear') (optional)
525
525
 
526
526
  Returns:
527
527
  tuple: A tuple (vector) containing the neural layer result and the updated weight matrix.
@@ -563,9 +563,9 @@ def evaluate(
563
563
  Evaluates the neural network model with the given test data.
564
564
 
565
565
  Args:
566
- x_test (cupy-array): Test input data.
567
- y_test (cupy-array): Test labels.
568
- W (list[cupy-array]): Neural network weight matrix.
566
+ x_test (array-like): Test input data.
567
+ y_test (array-like): Test labels.
568
+ W (list[array-like]): Neural network weight matrix.
569
569
  activation_potentiation (list): Activation functions.
570
570
  loading_bar_status (bool): Loading bar status (optional).
571
571
  show_metrics (bool): Option to display metrics (optional).
@@ -574,6 +574,9 @@ def evaluate(
574
574
  tuple: model.
575
575
  """
576
576
 
577
+ x_test = cp.array(x_test, copy=False)
578
+ y_test = cp.array(y_test, copy=False)
579
+
577
580
  predict_probabilitys = cp.empty((len(x_test), W.shape[0]), dtype=cp.float32)
578
581
  real_classes = cp.empty(len(x_test), dtype=cp.int32)
579
582
  predict_classes = cp.empty(len(x_test), dtype=cp.int32)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.0.3
3
+ Version: 4.0.3b0
4
4
  Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=5oEPDEkbkCzfpVIefoFlRzsBsnwNxnlXqveqEij-DXs,2477
1
+ pyerualjetwork/__init__.py,sha256=AqFnWvlLN33ns13c-E0bw_fld7lXv64WqLwU1tfr8AY,2479
2
2
  pyerualjetwork/activation_functions.py,sha256=iJpdsX8FqZ3lB3x-YG7d9-em8xHD0y1ciJLNWmI7Y6A,9941
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=7p-_qZuuj-BZ9A7ds8PgU7hSQ_EGI16XLh4J_6ySkD8,9968
4
4
  pyerualjetwork/data_operations.py,sha256=mph66_qGQHxhg_gQtTuOzP2PjTwJsxTGzmRmvrzlQn4,12747
@@ -8,16 +8,16 @@ pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJie
8
8
  pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
9
9
  pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
10
10
  pyerualjetwork/metrics_cuda.py,sha256=1KKIJunalYfj7OC7AJDXmK4wANrMnyJe_bvbUmhgl_Q,6081
11
- pyerualjetwork/model_operations.py,sha256=d1cOuKBYiVMXKrWLJ6zy6rkfVCadzQGNw6OjqwWtBhA,11932
11
+ pyerualjetwork/model_operations.py,sha256=eXFUVZUO6vf_uO4auevWzne1RYSvD6Efz_IdH77DGZc,11980
12
12
  pyerualjetwork/model_operations_cuda.py,sha256=CAnHj8EQuz2p2oFYcqaa9Z-yJX70rLnFrBkh2sQwrYY,12168
13
- pyerualjetwork/plan.py,sha256=vfN_HIwU8NepZuB_UKY6nPickOBYWKXd_uymhaTLEoI,31525
14
- pyerualjetwork/plan_cuda.py,sha256=vUH6-l-TnxcgIZ704w4_t1gKegTlt4nRTP9SKlGlYRY,31255
13
+ pyerualjetwork/plan.py,sha256=_AduKIXKH_pkQXRAx_yTV9g7dnKuZvV8cgDg740W6Vw,31525
14
+ pyerualjetwork/plan_cuda.py,sha256=gbOw_wXR5gXEoPUjAES2DB3WZ9xB-miXgFWr6i9zd4Q,31307
15
15
  pyerualjetwork/planeat.py,sha256=3l4c-sMqTY6mQvW9u2OarcccUYcMxqASQXgx1GjNZSA,38061
16
16
  pyerualjetwork/planeat_cuda.py,sha256=zkXkvdHSYgzV2BSwtpUuUXB6_WbYb_EPL06OfBmRk9w,38094
17
17
  pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
18
18
  pyerualjetwork/visualizations.py,sha256=DvbiQGlvlKNAgBJ3O3ukAi6uxSheha9SRFh5YX7ZxIA,26678
19
19
  pyerualjetwork/visualizations_cuda.py,sha256=dA0u85ZIyKqjtoSJ6p3EbEpJs4V4vS5W5ftR6eif8yg,26713
20
- pyerualjetwork-4.0.3.dist-info/METADATA,sha256=3LkeCrAArMy4RKRjVfpVFpxunDxvEwKdtY1Q0dueiAI,6301
21
- pyerualjetwork-4.0.3.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
22
- pyerualjetwork-4.0.3.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
23
- pyerualjetwork-4.0.3.dist-info/RECORD,,
20
+ pyerualjetwork-4.0.3b0.dist-info/METADATA,sha256=Dol32fciutemeylwk72ivNGHvZ34w0S8eEcRJ_5qNW4,6303
21
+ pyerualjetwork-4.0.3b0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
22
+ pyerualjetwork-4.0.3b0.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
23
+ pyerualjetwork-4.0.3b0.dist-info/RECORD,,