pyerualjetwork 2.6.2__py3-none-any.whl → 2.6.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- plan/plan.py +17 -16
- {pyerualjetwork-2.6.2.dist-info → pyerualjetwork-2.6.4.dist-info}/METADATA +2 -2
- pyerualjetwork-2.6.4.dist-info/RECORD +6 -0
- pyerualjetwork-2.6.2.dist-info/RECORD +0 -6
- {pyerualjetwork-2.6.2.dist-info → pyerualjetwork-2.6.4.dist-info}/WHEEL +0 -0
- {pyerualjetwork-2.6.2.dist-info → pyerualjetwork-2.6.4.dist-info}/top_level.txt +0 -0
plan/plan.py
CHANGED
@@ -63,15 +63,13 @@ def fit(
|
|
63
63
|
if val == True and val_count == None:
|
64
64
|
|
65
65
|
val_count = 0.1
|
66
|
-
val_count_copy = val_count
|
67
66
|
|
68
|
-
if val == True:
|
67
|
+
if val == True and val_count != None:
|
69
68
|
|
70
69
|
val_count = int(len(x_train) * val_count)
|
71
|
-
|
72
70
|
val_count_copy = val_count
|
73
71
|
|
74
|
-
if
|
72
|
+
if show_count == None:
|
75
73
|
|
76
74
|
show_count = 10
|
77
75
|
|
@@ -135,6 +133,13 @@ def fit(
|
|
135
133
|
|
136
134
|
if index == val_count:
|
137
135
|
|
136
|
+
if show_training == True:
|
137
|
+
try:
|
138
|
+
plt.close(fig)
|
139
|
+
|
140
|
+
except:
|
141
|
+
pass
|
142
|
+
|
138
143
|
val_count += val_count_copy
|
139
144
|
|
140
145
|
layers.append('cat')
|
@@ -204,13 +209,13 @@ def fit(
|
|
204
209
|
title_info = 'Weight Matrix Of Fex Layer'
|
205
210
|
|
206
211
|
|
207
|
-
|
212
|
+
|
208
213
|
|
209
214
|
progress_status = f"{progress:.1f}"
|
210
215
|
fig.suptitle(suptitle_info + progress_status)
|
211
216
|
plt.draw()
|
212
217
|
plt.pause(0.1)
|
213
|
-
|
218
|
+
|
214
219
|
|
215
220
|
W = weight_identification(
|
216
221
|
len(layers) - 1, len(class_count), neurons, x_train_size)
|
@@ -267,8 +272,7 @@ def fit(
|
|
267
272
|
elif calculating_est > 3600:
|
268
273
|
print('Total training time(h): ', calculating_est/3600)
|
269
274
|
|
270
|
-
|
271
|
-
trained_W.append(np.eye(len(class_count)))
|
275
|
+
|
272
276
|
|
273
277
|
|
274
278
|
return trained_W
|
@@ -502,7 +506,7 @@ def evaluate(
|
|
502
506
|
tuple: A tuple containing the predicted labels and the accuracy of the model.
|
503
507
|
"""
|
504
508
|
|
505
|
-
layers = ['fex'
|
509
|
+
layers = ['fex']
|
506
510
|
|
507
511
|
try:
|
508
512
|
Wc = [0] * len(W) # Wc = Weight copy
|
@@ -528,8 +532,7 @@ def evaluate(
|
|
528
532
|
|
529
533
|
if Layer == 'fex':
|
530
534
|
neural_layer = fex(neural_layer, W[index], False, None, activation_potentiation)
|
531
|
-
|
532
|
-
neural_layer = np.dot(W[index], neural_layer)
|
535
|
+
|
533
536
|
|
534
537
|
for i, w in enumerate(Wc):
|
535
538
|
W[i] = np.copy(w)
|
@@ -651,8 +654,6 @@ def multiple_evaluate(
|
|
651
654
|
|
652
655
|
if Layer == 'fex':
|
653
656
|
neural_layer = fex(neural_layer, W[index], False, None, activation_potentiation)
|
654
|
-
elif Layer == 'cat':
|
655
|
-
neural_layer = np.dot(W[index], neural_layer)
|
656
657
|
|
657
658
|
output_layer += neural_layer
|
658
659
|
|
@@ -760,7 +761,7 @@ def save_model(model_name,
|
|
760
761
|
# Operations to be performed by the function will be written here
|
761
762
|
pass
|
762
763
|
|
763
|
-
layers = ['fex'
|
764
|
+
layers = ['fex']
|
764
765
|
|
765
766
|
if weights_type != 'txt' and weights_type != 'npy' and weights_type != 'mat':
|
766
767
|
print(Fore.RED + "ERROR110: Save Weight type (File Extension) Type must be 'txt' or 'npy' or 'mat' from: save_model" +
|
@@ -971,7 +972,7 @@ def predict_model_ssd(Input, model_name, model_path):
|
|
971
972
|
non_scaled = True
|
972
973
|
|
973
974
|
|
974
|
-
layers = ['fex'
|
975
|
+
layers = ['fex']
|
975
976
|
|
976
977
|
Wc = [0] * len(W)
|
977
978
|
for i, w in enumerate(W):
|
@@ -1017,7 +1018,7 @@ def predict_model_ram(Input, scaler_params, W, activation_potentiation=None):
|
|
1017
1018
|
|
1018
1019
|
Input = standard_scaler(None, Input, scaler_params)
|
1019
1020
|
|
1020
|
-
layers = ['fex'
|
1021
|
+
layers = ['fex']
|
1021
1022
|
|
1022
1023
|
Wc = [0] * len(W)
|
1023
1024
|
for i, w in enumerate(W):
|
@@ -1,7 +1,7 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 2.6.
|
4
|
-
Summary:
|
3
|
+
Version: 2.6.4
|
4
|
+
Summary: Code improvements
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
7
7
|
Keywords: model evaluation,classifcation,pruning learning artficial neural networks
|
@@ -0,0 +1,6 @@
|
|
1
|
+
plan/__init__.py,sha256=gmaz8lnQfl18MbOQwabBUPmShajK5S99jfyY-hQe8tc,502
|
2
|
+
plan/plan.py,sha256=XcEAeyweDvP4WRRNdL_hOue_fOeqf1_rXsJ75q4sEdk,55940
|
3
|
+
pyerualjetwork-2.6.4.dist-info/METADATA,sha256=9_sisdjKeZGNIwLdOa_OFXmcPXrEga9FgRUyIfO-e-w,239
|
4
|
+
pyerualjetwork-2.6.4.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
5
|
+
pyerualjetwork-2.6.4.dist-info/top_level.txt,sha256=G0Al3HuNJ88434XneyDtRKAIUaLCizOFYFYNhd7e2OM,5
|
6
|
+
pyerualjetwork-2.6.4.dist-info/RECORD,,
|
@@ -1,6 +0,0 @@
|
|
1
|
-
plan/__init__.py,sha256=gmaz8lnQfl18MbOQwabBUPmShajK5S99jfyY-hQe8tc,502
|
2
|
-
plan/plan.py,sha256=wkQSVEkwLc4Zm0lI5Vsexi32n5Fd_xHRzEKMt1Jl5h8,56152
|
3
|
-
pyerualjetwork-2.6.2.dist-info/METADATA,sha256=tOuWNnuocHSzidsvZmt_HAsINww6sGLiTOoBvrVoSHA,357
|
4
|
-
pyerualjetwork-2.6.2.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
5
|
-
pyerualjetwork-2.6.2.dist-info/top_level.txt,sha256=G0Al3HuNJ88434XneyDtRKAIUaLCizOFYFYNhd7e2OM,5
|
6
|
-
pyerualjetwork-2.6.2.dist-info/RECORD,,
|
File without changes
|
File without changes
|