pyerualjetwork 2.6.2__py3-none-any.whl → 2.6.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
plan/plan.py CHANGED
@@ -63,15 +63,13 @@ def fit(
63
63
  if val == True and val_count == None:
64
64
 
65
65
  val_count = 0.1
66
- val_count_copy = val_count
67
66
 
68
- if val == True:
67
+ if val == True and val_count != None:
69
68
 
70
69
  val_count = int(len(x_train) * val_count)
71
-
72
70
  val_count_copy = val_count
73
71
 
74
- if show_training == True or show_training == 'final' and show_count == None:
72
+ if show_count == None:
75
73
 
76
74
  show_count = 10
77
75
 
@@ -135,6 +133,13 @@ def fit(
135
133
 
136
134
  if index == val_count:
137
135
 
136
+ if show_training == True:
137
+ try:
138
+ plt.close(fig)
139
+
140
+ except:
141
+ pass
142
+
138
143
  val_count += val_count_copy
139
144
 
140
145
  layers.append('cat')
@@ -204,13 +209,13 @@ def fit(
204
209
  title_info = 'Weight Matrix Of Fex Layer'
205
210
 
206
211
 
207
-
212
+
208
213
 
209
214
  progress_status = f"{progress:.1f}"
210
215
  fig.suptitle(suptitle_info + progress_status)
211
216
  plt.draw()
212
217
  plt.pause(0.1)
213
-
218
+
214
219
 
215
220
  W = weight_identification(
216
221
  len(layers) - 1, len(class_count), neurons, x_train_size)
@@ -267,8 +272,7 @@ def fit(
267
272
  elif calculating_est > 3600:
268
273
  print('Total training time(h): ', calculating_est/3600)
269
274
 
270
- layers.append('cat')
271
- trained_W.append(np.eye(len(class_count)))
275
+
272
276
 
273
277
 
274
278
  return trained_W
@@ -502,7 +506,7 @@ def evaluate(
502
506
  tuple: A tuple containing the predicted labels and the accuracy of the model.
503
507
  """
504
508
 
505
- layers = ['fex', 'cat']
509
+ layers = ['fex']
506
510
 
507
511
  try:
508
512
  Wc = [0] * len(W) # Wc = Weight copy
@@ -528,8 +532,7 @@ def evaluate(
528
532
 
529
533
  if Layer == 'fex':
530
534
  neural_layer = fex(neural_layer, W[index], False, None, activation_potentiation)
531
- elif Layer == 'cat':
532
- neural_layer = np.dot(W[index], neural_layer)
535
+
533
536
 
534
537
  for i, w in enumerate(Wc):
535
538
  W[i] = np.copy(w)
@@ -651,8 +654,6 @@ def multiple_evaluate(
651
654
 
652
655
  if Layer == 'fex':
653
656
  neural_layer = fex(neural_layer, W[index], False, None, activation_potentiation)
654
- elif Layer == 'cat':
655
- neural_layer = np.dot(W[index], neural_layer)
656
657
 
657
658
  output_layer += neural_layer
658
659
 
@@ -760,7 +761,7 @@ def save_model(model_name,
760
761
  # Operations to be performed by the function will be written here
761
762
  pass
762
763
 
763
- layers = ['fex', 'cat']
764
+ layers = ['fex']
764
765
 
765
766
  if weights_type != 'txt' and weights_type != 'npy' and weights_type != 'mat':
766
767
  print(Fore.RED + "ERROR110: Save Weight type (File Extension) Type must be 'txt' or 'npy' or 'mat' from: save_model" +
@@ -971,7 +972,7 @@ def predict_model_ssd(Input, model_name, model_path):
971
972
  non_scaled = True
972
973
 
973
974
 
974
- layers = ['fex', 'cat']
975
+ layers = ['fex']
975
976
 
976
977
  Wc = [0] * len(W)
977
978
  for i, w in enumerate(W):
@@ -1017,7 +1018,7 @@ def predict_model_ram(Input, scaler_params, W, activation_potentiation=None):
1017
1018
 
1018
1019
  Input = standard_scaler(None, Input, scaler_params)
1019
1020
 
1020
- layers = ['fex', 'cat']
1021
+ layers = ['fex']
1021
1022
 
1022
1023
  Wc = [0] * len(W)
1023
1024
  for i, w in enumerate(W):
@@ -1,7 +1,7 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 2.6.2
4
- Summary: New optional parameters added for fit function, x_val, y_val show_count, val_count, val. For more information please read user document
3
+ Version: 2.6.4
4
+ Summary: Code improvements
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
7
7
  Keywords: model evaluation,classifcation,pruning learning artficial neural networks
@@ -0,0 +1,6 @@
1
+ plan/__init__.py,sha256=gmaz8lnQfl18MbOQwabBUPmShajK5S99jfyY-hQe8tc,502
2
+ plan/plan.py,sha256=XcEAeyweDvP4WRRNdL_hOue_fOeqf1_rXsJ75q4sEdk,55940
3
+ pyerualjetwork-2.6.4.dist-info/METADATA,sha256=9_sisdjKeZGNIwLdOa_OFXmcPXrEga9FgRUyIfO-e-w,239
4
+ pyerualjetwork-2.6.4.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
5
+ pyerualjetwork-2.6.4.dist-info/top_level.txt,sha256=G0Al3HuNJ88434XneyDtRKAIUaLCizOFYFYNhd7e2OM,5
6
+ pyerualjetwork-2.6.4.dist-info/RECORD,,
@@ -1,6 +0,0 @@
1
- plan/__init__.py,sha256=gmaz8lnQfl18MbOQwabBUPmShajK5S99jfyY-hQe8tc,502
2
- plan/plan.py,sha256=wkQSVEkwLc4Zm0lI5Vsexi32n5Fd_xHRzEKMt1Jl5h8,56152
3
- pyerualjetwork-2.6.2.dist-info/METADATA,sha256=tOuWNnuocHSzidsvZmt_HAsINww6sGLiTOoBvrVoSHA,357
4
- pyerualjetwork-2.6.2.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
5
- pyerualjetwork-2.6.2.dist-info/top_level.txt,sha256=G0Al3HuNJ88434XneyDtRKAIUaLCizOFYFYNhd7e2OM,5
6
- pyerualjetwork-2.6.2.dist-info/RECORD,,