pyerualjetwork 2.5.3__py3-none-any.whl → 2.5.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- plan/plan.py +8 -1
- {pyerualjetwork-2.5.3.dist-info → pyerualjetwork-2.5.5.dist-info}/METADATA +2 -2
- pyerualjetwork-2.5.5.dist-info/RECORD +6 -0
- pyerualjetwork-2.5.3.dist-info/RECORD +0 -6
- {pyerualjetwork-2.5.3.dist-info → pyerualjetwork-2.5.5.dist-info}/WHEEL +0 -0
- {pyerualjetwork-2.5.3.dist-info → pyerualjetwork-2.5.5.dist-info}/top_level.txt +0 -0
plan/plan.py
CHANGED
@@ -106,7 +106,7 @@ def fit(
|
|
106
106
|
|
107
107
|
except:
|
108
108
|
|
109
|
-
print(Fore.MAGENTA + 'WARNING: You
|
109
|
+
print(Fore.MAGENTA + 'WARNING: You trying show_training but inputs is raveled. x_train inputs should be reshaped for show_training.' + Style.RESET_ALL)
|
110
110
|
|
111
111
|
try:
|
112
112
|
row, col = find_numbers(len(x_train[0]))
|
@@ -1078,6 +1078,9 @@ def standard_scaler(x_train, x_test, scaler_params=None):
|
|
1078
1078
|
train_data_scaled = (x_train - mean) / std
|
1079
1079
|
test_data_scaled = (x_test - mean) / std
|
1080
1080
|
|
1081
|
+
train_data_scaled = np.nan_to_num(train_data_scaled, nan=0)
|
1082
|
+
test_data_scaled = np.nan_to_num(test_data_scaled, nan=0)
|
1083
|
+
|
1081
1084
|
scaler_params = [mean, std]
|
1082
1085
|
|
1083
1086
|
return scaler_params, train_data_scaled, test_data_scaled
|
@@ -1088,6 +1091,8 @@ def standard_scaler(x_train, x_test, scaler_params=None):
|
|
1088
1091
|
std = np.std(x_train, axis=0)
|
1089
1092
|
train_data_scaled = (x_train - mean) / std
|
1090
1093
|
|
1094
|
+
train_data_scaled = np.nan_to_num(train_data_scaled, nan=0)
|
1095
|
+
|
1091
1096
|
scaler_params = [mean, std]
|
1092
1097
|
|
1093
1098
|
return scaler_params, train_data_scaled
|
@@ -1095,6 +1100,8 @@ def standard_scaler(x_train, x_test, scaler_params=None):
|
|
1095
1100
|
if scaler_params != None:
|
1096
1101
|
|
1097
1102
|
test_data_scaled = (x_test - scaler_params[0]) / scaler_params[1]
|
1103
|
+
test_data_scaled = np.nan_to_num(test_data_scaled, nan=0)
|
1104
|
+
|
1098
1105
|
return test_data_scaled
|
1099
1106
|
|
1100
1107
|
except:
|
@@ -1,7 +1,7 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 2.5.
|
4
|
-
Summary:
|
3
|
+
Version: 2.5.5
|
4
|
+
Summary: standard_scaler function improved. Changes possibily nan values to 0
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
7
7
|
Keywords: model evaluation,classifcation,pruning learning artficial neural networks
|
@@ -0,0 +1,6 @@
|
|
1
|
+
plan/__init__.py,sha256=gmaz8lnQfl18MbOQwabBUPmShajK5S99jfyY-hQe8tc,502
|
2
|
+
plan/plan.py,sha256=Dt_PXXMLx0J4e-gqyRAN4YqPZA2UX0YlCaKrd5Rqd5Q,53491
|
3
|
+
pyerualjetwork-2.5.5.dist-info/METADATA,sha256=9320HpScX-TASWWJNe3uruu1-8kOZe-pBAQKDXkF6ag,290
|
4
|
+
pyerualjetwork-2.5.5.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
5
|
+
pyerualjetwork-2.5.5.dist-info/top_level.txt,sha256=G0Al3HuNJ88434XneyDtRKAIUaLCizOFYFYNhd7e2OM,5
|
6
|
+
pyerualjetwork-2.5.5.dist-info/RECORD,,
|
@@ -1,6 +0,0 @@
|
|
1
|
-
plan/__init__.py,sha256=gmaz8lnQfl18MbOQwabBUPmShajK5S99jfyY-hQe8tc,502
|
2
|
-
plan/plan.py,sha256=P03dm_Hvf75kP9JGL3tOqtk_9sP3ypwywOmD9ii5-hs,53168
|
3
|
-
pyerualjetwork-2.5.3.dist-info/METADATA,sha256=Jyzi5rwxcM-0j6XpleeOPn8TaOOnX37c_uQgoCIIyB8,276
|
4
|
-
pyerualjetwork-2.5.3.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
5
|
-
pyerualjetwork-2.5.3.dist-info/top_level.txt,sha256=G0Al3HuNJ88434XneyDtRKAIUaLCizOFYFYNhd7e2OM,5
|
6
|
-
pyerualjetwork-2.5.3.dist-info/RECORD,,
|
File without changes
|
File without changes
|