pyerualjetwork 2.5.3__py3-none-any.whl → 2.5.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
plan/plan.py CHANGED
@@ -106,7 +106,7 @@ def fit(
106
106
 
107
107
  except:
108
108
 
109
- print(Fore.MAGENTA + 'WARNING: You try train showing but inputs is raveled. x_train inputs should be reshaped for training_show.', infoPLAN + Style.RESET_ALL)
109
+ print(Fore.MAGENTA + 'WARNING: You trying show_training but inputs is raveled. x_train inputs should be reshaped for show_training.' + Style.RESET_ALL)
110
110
 
111
111
  try:
112
112
  row, col = find_numbers(len(x_train[0]))
@@ -1078,6 +1078,9 @@ def standard_scaler(x_train, x_test, scaler_params=None):
1078
1078
  train_data_scaled = (x_train - mean) / std
1079
1079
  test_data_scaled = (x_test - mean) / std
1080
1080
 
1081
+ train_data_scaled = np.nan_to_num(train_data_scaled, nan=0)
1082
+ test_data_scaled = np.nan_to_num(test_data_scaled, nan=0)
1083
+
1081
1084
  scaler_params = [mean, std]
1082
1085
 
1083
1086
  return scaler_params, train_data_scaled, test_data_scaled
@@ -1088,6 +1091,8 @@ def standard_scaler(x_train, x_test, scaler_params=None):
1088
1091
  std = np.std(x_train, axis=0)
1089
1092
  train_data_scaled = (x_train - mean) / std
1090
1093
 
1094
+ train_data_scaled = np.nan_to_num(train_data_scaled, nan=0)
1095
+
1091
1096
  scaler_params = [mean, std]
1092
1097
 
1093
1098
  return scaler_params, train_data_scaled
@@ -1095,6 +1100,8 @@ def standard_scaler(x_train, x_test, scaler_params=None):
1095
1100
  if scaler_params != None:
1096
1101
 
1097
1102
  test_data_scaled = (x_test - scaler_params[0]) / scaler_params[1]
1103
+ test_data_scaled = np.nan_to_num(test_data_scaled, nan=0)
1104
+
1098
1105
  return test_data_scaled
1099
1106
 
1100
1107
  except:
@@ -1,7 +1,7 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 2.5.3
4
- Summary: plan_di and plan_bi merged to 'plan'. use 'import plan
3
+ Version: 2.5.5
4
+ Summary: standard_scaler function improved. Changes possibily nan values to 0
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
7
7
  Keywords: model evaluation,classifcation,pruning learning artficial neural networks
@@ -0,0 +1,6 @@
1
+ plan/__init__.py,sha256=gmaz8lnQfl18MbOQwabBUPmShajK5S99jfyY-hQe8tc,502
2
+ plan/plan.py,sha256=Dt_PXXMLx0J4e-gqyRAN4YqPZA2UX0YlCaKrd5Rqd5Q,53491
3
+ pyerualjetwork-2.5.5.dist-info/METADATA,sha256=9320HpScX-TASWWJNe3uruu1-8kOZe-pBAQKDXkF6ag,290
4
+ pyerualjetwork-2.5.5.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
5
+ pyerualjetwork-2.5.5.dist-info/top_level.txt,sha256=G0Al3HuNJ88434XneyDtRKAIUaLCizOFYFYNhd7e2OM,5
6
+ pyerualjetwork-2.5.5.dist-info/RECORD,,
@@ -1,6 +0,0 @@
1
- plan/__init__.py,sha256=gmaz8lnQfl18MbOQwabBUPmShajK5S99jfyY-hQe8tc,502
2
- plan/plan.py,sha256=P03dm_Hvf75kP9JGL3tOqtk_9sP3ypwywOmD9ii5-hs,53168
3
- pyerualjetwork-2.5.3.dist-info/METADATA,sha256=Jyzi5rwxcM-0j6XpleeOPn8TaOOnX37c_uQgoCIIyB8,276
4
- pyerualjetwork-2.5.3.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
5
- pyerualjetwork-2.5.3.dist-info/top_level.txt,sha256=G0Al3HuNJ88434XneyDtRKAIUaLCizOFYFYNhd7e2OM,5
6
- pyerualjetwork-2.5.3.dist-info/RECORD,,