pyelq 1.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,625 @@
1
+ # SPDX-FileCopyrightText: 2024 Shell Global Solutions International B.V. All Rights Reserved.
2
+ #
3
+ # SPDX-License-Identifier: Apache-2.0
4
+
5
+ # -*- coding: utf-8 -*-
6
+ """Gaussian Plume module.
7
+
8
+ The class for the Gaussian Plume dispersion model used in pyELQ.
9
+
10
+ The Mathematics of Atmospheric Dispersion Modeling, John M. Stockie, DOI. 10.1137/10080991X
11
+
12
+ """
13
+ from copy import deepcopy
14
+ from dataclasses import dataclass
15
+ from typing import Callable, Union
16
+
17
+ import numpy as np
18
+
19
+ import pyelq.support_functions.spatio_temporal_interpolation as sti
20
+ from pyelq.coordinate_system import ENU, LLA
21
+ from pyelq.gas_species import GasSpecies
22
+ from pyelq.meteorology import Meteorology, MeteorologyGroup
23
+ from pyelq.sensor.beam import Beam
24
+ from pyelq.sensor.satellite import Satellite
25
+ from pyelq.sensor.sensor import Sensor, SensorGroup
26
+ from pyelq.source_map import SourceMap
27
+
28
+
29
+ @dataclass
30
+ class GaussianPlume:
31
+ """Defines the Gaussian plume dispersion model class.
32
+
33
+ Attributes:
34
+ source_map (Sourcemap): SourceMap object used for the dispersion model
35
+ source_half_width (float): Source half width (radius) to be used in the Gaussian plume model (in meters)
36
+ minimum_contribution (float): All elements in the Gaussian plume coupling smaller than this number will be set
37
+ to 0. Helps to speed up matrix multiplications/matrix inverses, also helps with stability
38
+
39
+ """
40
+
41
+ source_map: SourceMap
42
+ source_half_width: float = 1
43
+ minimum_contribution: float = 0
44
+
45
+ def compute_coupling(
46
+ self,
47
+ sensor_object: Union[SensorGroup, Sensor],
48
+ meteorology_object: Union[MeteorologyGroup, Meteorology],
49
+ gas_object: GasSpecies = None,
50
+ output_stacked: bool = False,
51
+ run_interpolation: bool = True,
52
+ ) -> Union[list, np.ndarray, dict]:
53
+ """Top level function to calculate the Gaussian plume coupling.
54
+
55
+ Calculates the coupling for either a single sensor object or a dictionary of sensor objects.
56
+
57
+ When both a SensorGroup and a MeteorologyGroup have been passed in, we assume they are consistent and contain
58
+ exactly the same keys for each item in both groups. Also assuming interpolation has been performed and time axes
59
+ are consistent, so we set run_interpolation to False
60
+
61
+ When you input a SensorGroup and a single Meteorology object we convert this object into a dictionary, so we
62
+ don't have to duplicate the same code.
63
+
64
+ Args:
65
+ sensor_object (Union[SensorGroup, Sensor]): Single sensor object or SensorGroup object which is used in the
66
+ calculation of the plume coupling.
67
+ meteorology_object (Union[MeteorologyGroup, Meteorology]): Meteorology object or MeteorologyGroup object
68
+ which is used in the calculation of the plume coupling.
69
+ gas_object (GasSpecies, optional): Optional input, a gas species object to correctly calculate the
70
+ gas density which is used in the conversion of the units of the Gaussian plume coupling
71
+ output_stacked (bool, optional): if true outputs as stacked np.array across sensors if not
72
+ outputs as dict
73
+ run_interpolation (bool, optional): logical indicating whether interpolation of the meteorological data to
74
+ the sensor/source is required. Defaults to True.
75
+
76
+ Returns:
77
+ plume_coupling (Union[list, np.ndarray, dict]): List of arrays, single array or dictionary containing the
78
+ plume coupling in hr/kg. When a single source object is passed in as input this function returns a list
79
+ or an array depending on the sensor type.
80
+ If a dictionary of sensor objects is passed in as input and output_stacked=False this function returns
81
+ a dictionary consistent with the input dictionary keys, containing the corresponding plume coupling
82
+ outputs for each sensor.
83
+ If a dictionary of sensor objects is passed in as input and output_stacked=True this function returns
84
+ a np.array containing the stacked coupling matrices.
85
+
86
+ """
87
+ if isinstance(sensor_object, SensorGroup):
88
+ output = {}
89
+ if isinstance(meteorology_object, Meteorology):
90
+ meteorology_object = dict.fromkeys(sensor_object.keys(), meteorology_object)
91
+ elif isinstance(meteorology_object, MeteorologyGroup):
92
+ run_interpolation = False
93
+
94
+ for sensor_key in sensor_object:
95
+ output[sensor_key] = self.compute_coupling_single_sensor(
96
+ sensor_object=sensor_object[sensor_key],
97
+ meteorology=meteorology_object[sensor_key],
98
+ gas_object=gas_object,
99
+ run_interpolation=run_interpolation,
100
+ )
101
+ if output_stacked:
102
+ output = np.concatenate(tuple(output.values()), axis=0)
103
+
104
+ elif isinstance(sensor_object, Sensor):
105
+ if isinstance(meteorology_object, MeteorologyGroup):
106
+ raise TypeError("Please provide a single Meteorology object when using a single Sensor object")
107
+
108
+ output = self.compute_coupling_single_sensor(
109
+ sensor_object=sensor_object,
110
+ meteorology=meteorology_object,
111
+ gas_object=gas_object,
112
+ run_interpolation=run_interpolation,
113
+ )
114
+ else:
115
+ raise TypeError("Please provide either a Sensor or SensorGroup as input argument")
116
+
117
+ return output
118
+
119
+ def compute_coupling_single_sensor(
120
+ self,
121
+ sensor_object: Sensor,
122
+ meteorology: Meteorology,
123
+ gas_object: GasSpecies = None,
124
+ run_interpolation: bool = True,
125
+ ) -> Union[list, np.ndarray]:
126
+ """Wrapper function to compute the gaussian plume coupling for a single sensor.
127
+
128
+ Wrapper is used to identify specific cases and calculate the Gaussian plume coupling accordingly.
129
+
130
+ When the sensor object contains the source_on attribute we set all coupling values to 0 for observations for
131
+ which source_on is False. Making sure the source_on is column array, aligning with the 1st dimension
132
+ (nof_observations) of the plume coupling array.
133
+
134
+ Args:
135
+ sensor_object (Sensor): Single sensor object which is used in the calculation of the plume coupling
136
+ meteorology (Meteorology): Meteorology object which is used in the calculation of the plume coupling
137
+ gas_object (GasSpecies, optional): Optionally input a gas species object to correctly calculate the
138
+ gas density which is used in the conversion of the units of the Gaussian plume coupling
139
+ run_interpolation (bool): logical indicating whether interpolation of the meteorological data to
140
+ the sensor/source is required. Default passed from compute_coupling.
141
+
142
+ Returns:
143
+ plume_coupling (Union[list, np.ndarray]): List of arrays or single array containing the plume coupling
144
+ in 1e6*[hr/kg]. Entries of the list are per source in the case of a satellite sensor, if a single array
145
+ is returned the coupling for each observation (first dimension) to each source (second dimension) is
146
+ provided.
147
+
148
+ """
149
+ if not isinstance(sensor_object, Sensor):
150
+ raise NotImplementedError("Please provide a valid sensor type")
151
+
152
+ (
153
+ gas_density,
154
+ u_interpolated,
155
+ v_interpolated,
156
+ wind_turbulence_horizontal,
157
+ wind_turbulence_vertical,
158
+ ) = self.interpolate_all_meteorology(
159
+ meteorology=meteorology,
160
+ sensor_object=sensor_object,
161
+ gas_object=gas_object,
162
+ run_interpolation=run_interpolation,
163
+ )
164
+
165
+ wind_speed = np.sqrt(u_interpolated**2 + v_interpolated**2)
166
+ theta = np.arctan2(v_interpolated, u_interpolated)
167
+
168
+ if isinstance(sensor_object, Satellite):
169
+ plume_coupling = self.compute_coupling_satellite(
170
+ sensor_object=sensor_object,
171
+ wind_speed=wind_speed,
172
+ theta=theta,
173
+ wind_turbulence_horizontal=wind_turbulence_horizontal,
174
+ wind_turbulence_vertical=wind_turbulence_vertical,
175
+ gas_density=gas_density,
176
+ )
177
+
178
+ else:
179
+ plume_coupling = self.compute_coupling_ground(
180
+ sensor_object=sensor_object,
181
+ wind_speed=wind_speed,
182
+ theta=theta,
183
+ wind_turbulence_horizontal=wind_turbulence_horizontal,
184
+ wind_turbulence_vertical=wind_turbulence_vertical,
185
+ gas_density=gas_density,
186
+ )
187
+
188
+ if sensor_object.source_on is not None:
189
+ plume_coupling = plume_coupling * sensor_object.source_on[:, None]
190
+
191
+ return plume_coupling
192
+
193
+ def compute_coupling_array(
194
+ self,
195
+ sensor_x: np.ndarray,
196
+ sensor_y: np.ndarray,
197
+ sensor_z: np.ndarray,
198
+ source_z: np.ndarray,
199
+ wind_speed: np.ndarray,
200
+ theta: np.ndarray,
201
+ wind_turbulence_horizontal: np.ndarray,
202
+ wind_turbulence_vertical: np.ndarray,
203
+ gas_density: Union[float, np.ndarray],
204
+ ) -> np.ndarray:
205
+ """Compute the Gaussian plume coupling.
206
+
207
+ Most low level function to calculate the Gaussian plume coupling. Assuming input shapes are consistent but no
208
+ checking is done on this.
209
+
210
+ Setting sigma_vert to 1e-16 when it is identically zero (distance_x == 0) so we don't get a divide by 0 error
211
+ all the time.
212
+
213
+ Args:
214
+ sensor_x (np.ndarray): sensor x location relative to source [m].
215
+ sensor_y (np.ndarray): sensor y location relative to source [m].
216
+ sensor_z (np.ndarray): sensor z location relative to ground height [m].
217
+ source_z (np.ndarray): source z location relative to ground height [m].
218
+ wind_speed (np.ndarray): wind speed at source locations in [m/s].
219
+ theta (np.ndarray): Mathematical wind direction at source locations [radians]:
220
+ calculated as np.arctan2(v_component_wind, u_component_wind).
221
+ wind_turbulence_horizontal (np.ndarray): Horizontal wind turbulence [deg].
222
+ wind_turbulence_vertical (np.ndarray): Vertical wind turbulence [deg].
223
+ gas_density (Union[float, np.ndarray]): Gas density to use in coupling calculation [kg/m^3].
224
+
225
+ Returns:
226
+ plume_coupling (np.ndarray): Gaussian plume coupling in (1e6)*[hr/kg]: gives concentrations
227
+ in [ppm] when multiplied by sources in [kg/hr].
228
+
229
+ """
230
+ cos_theta = np.cos(theta)
231
+ sin_theta = np.sin(theta)
232
+
233
+ distance_x = cos_theta * sensor_x + sin_theta * sensor_y
234
+ if np.all(distance_x < 0):
235
+ return np.zeros_like(distance_x)
236
+
237
+ distance_y = -sin_theta * sensor_x + cos_theta * sensor_y
238
+
239
+ sigma_hor = np.tan(wind_turbulence_horizontal * (np.pi / 180)) * np.abs(distance_x) + self.source_half_width
240
+ sigma_vert = np.tan(wind_turbulence_vertical * (np.pi / 180)) * np.abs(distance_x)
241
+
242
+ sigma_vert[sigma_vert == 0] = 1e-16
243
+
244
+ plume_coupling = (
245
+ (1 / (2 * np.pi * wind_speed * sigma_hor * sigma_vert))
246
+ * np.exp(-0.5 * (distance_y / sigma_hor) ** 2)
247
+ * (
248
+ np.exp(-0.5 * (((sensor_z + source_z) / sigma_vert) ** 2))
249
+ + np.exp(-0.5 * (((sensor_z - source_z) / sigma_vert) ** 2))
250
+ )
251
+ )
252
+
253
+ plume_coupling = np.divide(np.multiply(plume_coupling, 1e6), (gas_density * 3600))
254
+ plume_coupling[np.logical_or(distance_x < 0, plume_coupling < self.minimum_contribution)] = 0
255
+
256
+ return plume_coupling
257
+
258
+ def calculate_gas_density(
259
+ self, meteorology: Meteorology, sensor_object: Sensor, gas_object: Union[GasSpecies, None]
260
+ ) -> np.ndarray:
261
+ """Helper function to calculate the gas density using ideal gas law.
262
+
263
+ https://en.wikipedia.org/wiki/Ideal_gas
264
+
265
+ When a gas object is passed as input we calculate the density according to that gas. We check if the
266
+ meteorology object has a temperature and/or pressure value and use those accordingly. Otherwise, we use Standard
267
+ Temperature and Pressure (STP).
268
+
269
+ We interpolate the temperature and pressure values to the source locations/times such that this is consistent
270
+ with the other calculations, i.e. we only do spatial interpolation when the sensor is a Satellite object
271
+ and temporal interpolation otherwise.
272
+
273
+ When no gas_object is passed in we just set the gas density value to 1.
274
+
275
+ Args:
276
+ meteorology (Meteorology): Meteorology object potentially containing temperature or pressure values
277
+ sensor_object (Sensor): Sensor object containing information about where to interpolate to
278
+ gas_object (Union[GasSpecies, None]): Gas species object which actually calculates the correct density
279
+
280
+ Returns:
281
+ gas_density (np.ndarray): Numpy array of shape [1 x nof_sources] (Satellite sensor)
282
+ or [nof_observations x 1] (otherwise) containing the gas density values to use
283
+
284
+ """
285
+ if not isinstance(gas_object, GasSpecies):
286
+ if isinstance(sensor_object, Satellite):
287
+ return np.ones((1, self.source_map.nof_sources))
288
+ return np.ones((sensor_object.nof_observations, 1))
289
+
290
+ temperature_interpolated = self.interpolate_meteorology(
291
+ meteorology=meteorology, variable_name="temperature", sensor_object=sensor_object
292
+ )
293
+ if temperature_interpolated is None:
294
+ temperature_interpolated = np.array([[273.15]])
295
+
296
+ pressure_interpolated = self.interpolate_meteorology(
297
+ meteorology=meteorology, variable_name="pressure", sensor_object=sensor_object
298
+ )
299
+ if pressure_interpolated is None:
300
+ pressure_interpolated = np.array([[101.325]])
301
+
302
+ gas_density = gas_object.gas_density(temperature=temperature_interpolated, pressure=pressure_interpolated)
303
+
304
+ return gas_density
305
+
306
+ def interpolate_all_meteorology(
307
+ self, sensor_object: Sensor, meteorology: Meteorology, gas_object: GasSpecies, run_interpolation: bool
308
+ ):
309
+ """Function which carries out interpolation of all meteorological information.
310
+
311
+ The flag run_interpolation determines whether the interpolation should be carried out. If this
312
+ is set to be False, the meteorological parameters are simply set to the values stored on the
313
+ meteorology object (i.e. we assume that the meteorology has already been interpolated). This
314
+ functionality is required to avoid wasted computation in the case of e.g. a reversible jump run.
315
+
316
+ Args:
317
+ sensor_object (Sensor): object containing locations/times onto which met information should
318
+ be interpolated.
319
+ meteorology (Meteorology): object containing meteorology information for interpolation.
320
+ gas_object (GasSpecies): object containing gas information.
321
+ run_interpolation (bool): logical indicating whether the meteorology information needs to be interpolated.
322
+
323
+ Returns:
324
+ gas_density (np.ndarray): numpy array of shape [n_data x 1] of gas densities.
325
+ u_interpolated (np.ndarray): numpy array of shape [n_data x 1] of northerly wind components.
326
+ v_interpolated (np.ndarray): numpy array of shape [n_data x 1] of easterly wind components.
327
+ wind_turbulence_horizontal (np.ndarray): numpy array of shape [n_data x 1] of horizontal turbulence
328
+ parameters.
329
+ wind_turbulence_vertical (np.ndarray): numpy array of shape [n_data x 1] of vertical turbulence
330
+ parameters.
331
+
332
+ """
333
+ if run_interpolation:
334
+ gas_density = self.calculate_gas_density(
335
+ meteorology=meteorology, sensor_object=sensor_object, gas_object=gas_object
336
+ )
337
+ u_interpolated = self.interpolate_meteorology(
338
+ meteorology=meteorology, variable_name="u_component", sensor_object=sensor_object
339
+ )
340
+ v_interpolated = self.interpolate_meteorology(
341
+ meteorology=meteorology, variable_name="v_component", sensor_object=sensor_object
342
+ )
343
+ wind_turbulence_horizontal = self.interpolate_meteorology(
344
+ meteorology=meteorology, variable_name="wind_turbulence_horizontal", sensor_object=sensor_object
345
+ )
346
+ wind_turbulence_vertical = self.interpolate_meteorology(
347
+ meteorology=meteorology, variable_name="wind_turbulence_vertical", sensor_object=sensor_object
348
+ )
349
+ else:
350
+ gas_density = gas_object.gas_density(temperature=meteorology.temperature, pressure=meteorology.pressure)
351
+ gas_density = gas_density.reshape((gas_density.size, 1))
352
+ u_interpolated = meteorology.u_component.reshape((meteorology.u_component.size, 1))
353
+ v_interpolated = meteorology.v_component.reshape((meteorology.v_component.size, 1))
354
+ wind_turbulence_horizontal = meteorology.wind_turbulence_horizontal.reshape(
355
+ (meteorology.wind_turbulence_horizontal.size, 1)
356
+ )
357
+ wind_turbulence_vertical = meteorology.wind_turbulence_vertical.reshape(
358
+ (meteorology.wind_turbulence_vertical.size, 1)
359
+ )
360
+
361
+ return gas_density, u_interpolated, v_interpolated, wind_turbulence_horizontal, wind_turbulence_vertical
362
+
363
+ def interpolate_meteorology(
364
+ self, meteorology: Meteorology, variable_name: str, sensor_object: Sensor
365
+ ) -> Union[np.ndarray, None]:
366
+ """Helper function to interpolate meteorology variables.
367
+
368
+ This function interpolates meteorological variables to times in Sensor or Sources in sourcemap. It also
369
+ calculates the wind speed and mathematical angle between the u- and v-components which in turn gets used in the
370
+ calculation of the Gaussian plume.
371
+
372
+ When the input sensor object is a Satellite type we use spatial interpolation using the interpolation method
373
+ from the coordinate system class as this takes care of the coordinate systems.
374
+ When the input sensor object is of another time we use temporal interpolation (assumption is spatial uniformity
375
+ for all observations over a small(er) area).
376
+
377
+ Args:
378
+ meteorology (Meteorology): Meteorology object containing u- and v-components of wind including their
379
+ spatial location
380
+ variable_name (str): String name of an attribute in the meteorology input object which needs to be
381
+ interpolated
382
+ sensor_object (Sensor): Sensor object containing information about where to interpolate to
383
+
384
+ Returns:
385
+ variable_interpolated (np.ndarray): Interpolated values
386
+
387
+ """
388
+ variable = getattr(meteorology, variable_name)
389
+ if variable is None:
390
+ return None
391
+
392
+ if isinstance(sensor_object, Satellite):
393
+ variable_interpolated = meteorology.location.interpolate(variable, self.source_map.location)
394
+ variable_interpolated = variable_interpolated.reshape(1, self.source_map.nof_sources)
395
+ else:
396
+ variable_interpolated = sti.interpolate(
397
+ time_in=meteorology.time, values_in=variable, time_out=sensor_object.time
398
+ )
399
+ variable_interpolated = variable_interpolated.reshape(sensor_object.nof_observations, 1)
400
+ return variable_interpolated
401
+
402
+ def compute_coupling_satellite(
403
+ self,
404
+ sensor_object: Sensor,
405
+ wind_speed: np.ndarray,
406
+ theta: np.ndarray,
407
+ wind_turbulence_horizontal: np.ndarray,
408
+ wind_turbulence_vertical: np.ndarray,
409
+ gas_density: np.ndarray,
410
+ ) -> list:
411
+ """Compute Gaussian plume coupling for satellite sensor.
412
+
413
+ When the sensor is a Satellite object we calculate the plume coupling per source. Given the large number of
414
+ sources and the possibility of using the inclusion radius and inclusion indices here and validity of a local
415
+ ENU system over large distances we loop over each source and calculate the coupling on a per-source basis.
416
+
417
+ If source_map.inclusion_n_obs is None, we do not do any filtering on observations and we want to include all
418
+ observations in the plume coupling calculations.
419
+
420
+ All np.ndarray inputs should have a shape of [1 x nof_sources]
421
+
422
+ Args:
423
+ sensor_object (Sensor): Sensor object used in plume coupling calculation
424
+ wind_speed (np.ndarray): Wind speed [m/s]
425
+ theta (np.ndarray): Mathematical angle between the u- and v-components of wind [radians]
426
+ wind_turbulence_horizontal (np.ndarray): Parameter of the wind stability in horizontal direction [deg]
427
+ wind_turbulence_vertical (np.ndarray): Parameter of the wind stability in vertical direction [deg]
428
+ gas_density: (np.ndarray): Numpy array containing the gas density values to use [kg/m^3]
429
+
430
+ Returns:
431
+ plume_coupling (list): List of Gaussian plume coupling 1e6*[hr/kg] arrays. The list has a length of
432
+ nof_sources, each array has the shape [nof_observations x 1] or [inclusion_n_obs x 1] when
433
+ inclusion_idx is used.
434
+
435
+ """
436
+ plume_coupling = []
437
+
438
+ source_map_location_lla = self.source_map.location.to_lla()
439
+ for current_source in range(self.source_map.nof_sources):
440
+ if self.source_map.inclusion_n_obs is None:
441
+ enu_sensor_array = sensor_object.location.to_enu(
442
+ ref_latitude=source_map_location_lla.latitude[current_source],
443
+ ref_longitude=source_map_location_lla.longitude[current_source],
444
+ ref_altitude=0,
445
+ ).to_array()
446
+
447
+ else:
448
+ if self.source_map.inclusion_n_obs[current_source] == 0:
449
+ plume_coupling.append(np.array([]))
450
+ continue
451
+
452
+ enu_sensor_array = _create_enu_sensor_array(
453
+ inclusion_idx=self.source_map.inclusion_idx[current_source],
454
+ sensor_object=sensor_object,
455
+ source_map_location_lla=source_map_location_lla,
456
+ current_source=current_source,
457
+ )
458
+
459
+ temp_coupling = self.compute_coupling_array(
460
+ enu_sensor_array[:, [0]],
461
+ enu_sensor_array[:, [1]],
462
+ enu_sensor_array[:, [2]],
463
+ source_map_location_lla.altitude[current_source],
464
+ wind_speed[:, current_source],
465
+ theta[:, current_source],
466
+ wind_turbulence_horizontal[:, current_source],
467
+ wind_turbulence_vertical[:, current_source],
468
+ gas_density[:, current_source],
469
+ )
470
+
471
+ plume_coupling.append(temp_coupling)
472
+
473
+ return plume_coupling
474
+
475
+ def compute_coupling_ground(
476
+ self,
477
+ sensor_object: Sensor,
478
+ wind_speed: np.ndarray,
479
+ theta: np.ndarray,
480
+ wind_turbulence_horizontal: np.ndarray,
481
+ wind_turbulence_vertical: np.ndarray,
482
+ gas_density: np.ndarray,
483
+ ) -> np.ndarray:
484
+ """Compute Gaussian plume coupling for a ground sensor.
485
+
486
+ If the source map is already defined as ENU the reference location is maintained but the sensor is checked
487
+ to make sure the same reference location is used. Otherwise, when converting to ENU object for the sensor
488
+ observations we use a single source and altitude 0 as the reference location. This way our ENU system is a
489
+ system w.r.t. ground level which is required for the current implementation of the actual coupling calculation.
490
+
491
+ When the sensor is a Beam object we calculate the plume coupling for all sources to all beam knot locations at
492
+ once in the same ENU coordinate system and finally averaged over the beam knots to get the final output.
493
+
494
+ In general, we calculate the coupling from all sources to all sensor observation locations. In order to achieve
495
+ this we input the sensor array as column and source array as row vector in calculating relative x etc.,
496
+ with the beam knot locations being the third dimension. When the sensor is a single point Sensor or a Drone
497
+ sensor we effectively have one beam knot, making the mean operation at the end effectively a reshape operation
498
+ which gets rid of the third dimension.
499
+
500
+ All np.ndarray inputs should have a shape of [nof_observations x 1]
501
+
502
+ Args:
503
+ sensor_object (Sensor): Sensor object used in plume coupling calculation
504
+ wind_speed (np.ndarray): Wind speed [m/s]
505
+ theta (np.ndarray): Mathematical angle between the u- and v-components of wind [radians]
506
+ wind_turbulence_horizontal (np.ndarray): Parameter of the wind stability in horizontal direction [deg]
507
+ wind_turbulence_vertical (np.ndarray): Parameter of the wind stability in vertical direction [deg]
508
+ gas_density: (np.ndarray): Numpy array containing the gas density values to use [kg/m^3]
509
+
510
+ Returns:
511
+ plume_coupling (np.ndarray): Gaussian plume coupling 1e6*[hr/kg] array. The array has the
512
+ shape [nof_observations x nof_sources]
513
+
514
+ """
515
+ if not isinstance(self.source_map.location, ENU):
516
+ source_map_lla = self.source_map.location.to_lla()
517
+ source_map_enu = source_map_lla.to_enu(
518
+ ref_latitude=source_map_lla.latitude[0], ref_longitude=source_map_lla.longitude[0], ref_altitude=0
519
+ )
520
+ else:
521
+ source_map_enu = self.source_map.location
522
+
523
+ enu_source_array = source_map_enu.to_array()
524
+
525
+ if isinstance(sensor_object, Beam):
526
+ enu_sensor_array = sensor_object.make_beam_knots(
527
+ ref_latitude=source_map_enu.ref_latitude,
528
+ ref_longitude=source_map_enu.ref_longitude,
529
+ ref_altitude=source_map_enu.ref_altitude,
530
+ )
531
+ relative_x = np.subtract(enu_sensor_array[:, 0][None, None, :], enu_source_array[:, 0][None, :, None])
532
+ relative_y = np.subtract(enu_sensor_array[:, 1][None, None, :], enu_source_array[:, 1][None, :, None])
533
+ z_sensor = enu_sensor_array[:, 2][None, None, :]
534
+ else:
535
+ enu_sensor_array = sensor_object.location.to_enu(
536
+ ref_latitude=source_map_enu.ref_latitude,
537
+ ref_longitude=source_map_enu.ref_longitude,
538
+ ref_altitude=source_map_enu.ref_altitude,
539
+ ).to_array()
540
+ relative_x = np.subtract(enu_sensor_array[:, 0][:, None, None], enu_source_array[:, 0][None, :, None])
541
+ relative_y = np.subtract(enu_sensor_array[:, 1][:, None, None], enu_source_array[:, 1][None, :, None])
542
+ z_sensor = enu_sensor_array[:, 2][:, None, None]
543
+
544
+ z_source = enu_source_array[:, 2][None, :, None]
545
+
546
+ plume_coupling = self.compute_coupling_array(
547
+ relative_x,
548
+ relative_y,
549
+ z_sensor,
550
+ z_source,
551
+ wind_speed[:, :, None],
552
+ theta[:, :, None],
553
+ wind_turbulence_horizontal[:, :, None],
554
+ wind_turbulence_vertical[:, :, None],
555
+ gas_density[:, :, None],
556
+ )
557
+
558
+ plume_coupling = plume_coupling.mean(axis=2)
559
+
560
+ return plume_coupling
561
+
562
+ @staticmethod
563
+ def compute_coverage(
564
+ couplings: np.ndarray, threshold_function: Callable, coverage_threshold: float = 6, **kwargs
565
+ ) -> Union[np.ndarray, dict]:
566
+ """Returns a logical vector that indicates which sources in the couplings are, or are not, within the coverage.
567
+
568
+ The 'coverage' is the area inside which all sources are well covered by wind data. E.g. If wind exclusively
569
+ blows towards East, then all sources to the East of any sensor are 'invisible', and are not within the coverage.
570
+
571
+ Couplings are returned in hr/kg. Some threshold function defines the largest allowed coupling value. This is
572
+ used to calculate estimated emission rates in kg/hr. Any emissions which are greater than the value of
573
+ 'coverage_threshold' are defined as not within the coverage.
574
+
575
+ Args:
576
+ couplings (np.ndarray): Array of coupling values. Dimensions: n_datapoints x n_sources.
577
+ threshold_function (Callable): Callable function which returns some single value that defines the
578
+ maximum or 'threshold' coupling. For example: np.quantile(., q=0.95)
579
+ coverage_threshold (float, optional): The threshold value of the estimated emission rate which is
580
+ considered to be within the coverage. Defaults to 6 kg/hr.
581
+ kwargs (dict, optional): Keyword arguments required for the threshold function.
582
+
583
+ Returns:
584
+ coverage (Union[np.ndarray, dict]): A logical array specifying which sources are within the coverage.
585
+
586
+ """
587
+ coupling_threshold = threshold_function(couplings, **kwargs)
588
+ no_warning_threshold = np.where(coupling_threshold <= 1e-100, 1, coupling_threshold)
589
+ no_warning_estimated_emission_rates = np.where(coupling_threshold <= 1e-100, np.inf, 1 / no_warning_threshold)
590
+ coverage = no_warning_estimated_emission_rates < coverage_threshold
591
+
592
+ return coverage
593
+
594
+
595
+ def _create_enu_sensor_array(
596
+ inclusion_idx: np.ndarray, sensor_object: Sensor, source_map_location_lla: LLA, current_source: int
597
+ ):
598
+ """Helper function to create ENU sensor array when we only want ot include specific observation locations.
599
+
600
+ This function gets called when we need to create the enu_sensor_array when we only want to include specific
601
+ observation locations. First we obtain the subset of locations from the sensor object and convert that to an array.
602
+ Given we don't know which coordinate system the sensor_object is created in, we make a copy of the original sensor
603
+ object, thereby keeping all key details of the coordinate system and repopulate the location values accordingly
604
+ through the from_array method using the subset of locations from the sensor object. Finally, we convert the subset
605
+ to ENU and return that as output.
606
+
607
+ Args:
608
+ inclusion_idx (np.ndarray): Numpy array containing the indices of observations in the sensor_object to be used
609
+ in the Gaussian plume coupling.
610
+ sensor_object (Sensor): Sensor object to be used in the Gaussian Plume calculation.
611
+ source_map_location_lla (LLA): LLA coordinate object of the source map locations.
612
+ current_source (int): Integer index of the current source for which we want to use in the Gaussian plume
613
+ calculation.
614
+
615
+ """
616
+ temp_array = sensor_object.location.to_array()[inclusion_idx, :]
617
+ temp_object = deepcopy(sensor_object.location)
618
+ temp_object.from_array(array=temp_array)
619
+ enu_sensor_array = temp_object.to_enu(
620
+ ref_latitude=source_map_location_lla.latitude[current_source],
621
+ ref_longitude=source_map_location_lla.longitude[current_source],
622
+ ref_altitude=0,
623
+ ).to_array()
624
+
625
+ return enu_sensor_array