pyelq 1.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyelq/__init__.py +19 -0
- pyelq/component/__init__.py +6 -0
- pyelq/component/background.py +391 -0
- pyelq/component/component.py +79 -0
- pyelq/component/error_model.py +327 -0
- pyelq/component/offset.py +183 -0
- pyelq/component/source_model.py +875 -0
- pyelq/coordinate_system.py +598 -0
- pyelq/data_access/__init__.py +5 -0
- pyelq/data_access/data_access.py +104 -0
- pyelq/dispersion_model/__init__.py +5 -0
- pyelq/dispersion_model/gaussian_plume.py +625 -0
- pyelq/dlm.py +497 -0
- pyelq/gas_species.py +232 -0
- pyelq/meteorology.py +387 -0
- pyelq/model.py +209 -0
- pyelq/plotting/__init__.py +5 -0
- pyelq/plotting/plot.py +1183 -0
- pyelq/preprocessing.py +262 -0
- pyelq/sensor/__init__.py +5 -0
- pyelq/sensor/beam.py +55 -0
- pyelq/sensor/satellite.py +59 -0
- pyelq/sensor/sensor.py +241 -0
- pyelq/source_map.py +115 -0
- pyelq/support_functions/__init__.py +5 -0
- pyelq/support_functions/post_processing.py +377 -0
- pyelq/support_functions/spatio_temporal_interpolation.py +229 -0
- pyelq-1.1.0.dist-info/LICENSE.md +202 -0
- pyelq-1.1.0.dist-info/LICENSES/Apache-2.0.txt +73 -0
- pyelq-1.1.0.dist-info/METADATA +127 -0
- pyelq-1.1.0.dist-info/RECORD +32 -0
- pyelq-1.1.0.dist-info/WHEEL +4 -0
|
@@ -0,0 +1,327 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: 2024 Shell Global Solutions International B.V. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
4
|
+
|
|
5
|
+
# -*- coding: utf-8 -*-
|
|
6
|
+
"""Error model module."""
|
|
7
|
+
from dataclasses import dataclass, field
|
|
8
|
+
from typing import TYPE_CHECKING, Union
|
|
9
|
+
|
|
10
|
+
import numpy as np
|
|
11
|
+
from openmcmc import parameter
|
|
12
|
+
from openmcmc.distribution.distribution import Gamma
|
|
13
|
+
from openmcmc.model import Model
|
|
14
|
+
from openmcmc.sampler.sampler import NormalGamma
|
|
15
|
+
|
|
16
|
+
from pyelq.component.component import Component
|
|
17
|
+
from pyelq.gas_species import GasSpecies
|
|
18
|
+
from pyelq.meteorology import MeteorologyGroup
|
|
19
|
+
from pyelq.sensor.sensor import Sensor, SensorGroup
|
|
20
|
+
|
|
21
|
+
if TYPE_CHECKING:
|
|
22
|
+
from pyelq.plotting.plot import Plot
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
@dataclass
|
|
26
|
+
class ErrorModel(Component):
|
|
27
|
+
"""Measurement precision model component for the model.
|
|
28
|
+
|
|
29
|
+
Attributes:
|
|
30
|
+
n_sensor (int): number of sensors in the sensor object used for analysis.
|
|
31
|
+
precision_index (np.ndarray): index mapping precision parameters onto observations. Will be set up differently
|
|
32
|
+
for different model types.
|
|
33
|
+
precision_parameter (parameter.Parameter): parameter object which constructs the full measurement error
|
|
34
|
+
precision matrix from the components stored in state. Will be passed to the distribution for the observed
|
|
35
|
+
when the full model is constructed.
|
|
36
|
+
prior_precision_shape (Union[np.ndarray, float]): prior shape parameters for the precision model. Set up
|
|
37
|
+
differently per model type.
|
|
38
|
+
prior_precision_rate (Union[np.ndarray, float]): prior rate parameters for the precision model. Set up
|
|
39
|
+
differently per model type.
|
|
40
|
+
initial_precision (Union[np.ndarray, float]): initial value for the precision to be passed to the analysis
|
|
41
|
+
routine. Set up differently per model type.
|
|
42
|
+
precision (np.ndarray): array of sampled measurement error precision values, populated in self.from_mcmc() after
|
|
43
|
+
the MCMC run is completed.
|
|
44
|
+
|
|
45
|
+
"""
|
|
46
|
+
|
|
47
|
+
n_sensor: int = field(init=False)
|
|
48
|
+
precision_index: np.ndarray = field(init=False)
|
|
49
|
+
precision_parameter: parameter.Parameter = field(init=False)
|
|
50
|
+
prior_precision_shape: Union[np.ndarray, float] = field(init=False)
|
|
51
|
+
prior_precision_rate: Union[np.ndarray, float] = field(init=False)
|
|
52
|
+
initial_precision: Union[np.ndarray, float] = field(init=False)
|
|
53
|
+
precision: np.ndarray = field(init=False)
|
|
54
|
+
|
|
55
|
+
def initialise(
|
|
56
|
+
self, sensor_object: SensorGroup, meteorology: MeteorologyGroup = None, gas_species: GasSpecies = None
|
|
57
|
+
):
|
|
58
|
+
"""Take data inputs and extract relevant properties.
|
|
59
|
+
|
|
60
|
+
Args:
|
|
61
|
+
sensor_object (SensorGroup): sensor data.
|
|
62
|
+
meteorology (MeteorologyGroup): meteorology data. Defaults to None.
|
|
63
|
+
gas_species (GasSpecies): gas species information. Defaults to None.
|
|
64
|
+
|
|
65
|
+
"""
|
|
66
|
+
self.n_sensor = sensor_object.nof_sensors
|
|
67
|
+
|
|
68
|
+
def make_model(self, model: list = None) -> list:
|
|
69
|
+
"""Take model list and append new elements from current model component.
|
|
70
|
+
|
|
71
|
+
Args:
|
|
72
|
+
model (list, optional): Current list of model elements. Defaults to None.
|
|
73
|
+
|
|
74
|
+
Returns:
|
|
75
|
+
list: model output list.
|
|
76
|
+
|
|
77
|
+
"""
|
|
78
|
+
if model is None:
|
|
79
|
+
model = []
|
|
80
|
+
model.append(Gamma("tau", shape="a_tau", rate="b_tau"))
|
|
81
|
+
return model
|
|
82
|
+
|
|
83
|
+
def make_sampler(self, model: Model, sampler_list: list = None) -> list:
|
|
84
|
+
"""Take sampler list and append new elements from current model component.
|
|
85
|
+
|
|
86
|
+
Args:
|
|
87
|
+
model (Model): Full model list of distributions.
|
|
88
|
+
sampler_list (list, optional): Current list of samplers. Defaults to None.
|
|
89
|
+
|
|
90
|
+
Returns:
|
|
91
|
+
list: sampler output list.
|
|
92
|
+
|
|
93
|
+
"""
|
|
94
|
+
if sampler_list is None:
|
|
95
|
+
sampler_list = []
|
|
96
|
+
sampler_list.append(NormalGamma("tau", model))
|
|
97
|
+
return sampler_list
|
|
98
|
+
|
|
99
|
+
def make_state(self, state: dict = None) -> dict:
|
|
100
|
+
"""Take state dictionary and append initial values from model component.
|
|
101
|
+
|
|
102
|
+
Args:
|
|
103
|
+
state (dict, optional): current state vector. Defaults to None.
|
|
104
|
+
|
|
105
|
+
Returns:
|
|
106
|
+
dict: current state vector with components added.
|
|
107
|
+
|
|
108
|
+
"""
|
|
109
|
+
if state is None:
|
|
110
|
+
state = {}
|
|
111
|
+
state["a_tau"] = self.prior_precision_shape.flatten()
|
|
112
|
+
state["b_tau"] = self.prior_precision_rate.flatten()
|
|
113
|
+
state["precision_index"] = self.precision_index
|
|
114
|
+
state["tau"] = self.initial_precision.flatten()
|
|
115
|
+
return state
|
|
116
|
+
|
|
117
|
+
def from_mcmc(self, store: dict):
|
|
118
|
+
"""Extract results of mcmc from mcmc.store and attach to components.
|
|
119
|
+
|
|
120
|
+
Args:
|
|
121
|
+
store (dict): mcmc result dictionary.
|
|
122
|
+
|
|
123
|
+
"""
|
|
124
|
+
self.precision = store["tau"]
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
@dataclass
|
|
128
|
+
class BySensor(ErrorModel):
|
|
129
|
+
"""Version of measurement precision where each sensor object has a different precision.
|
|
130
|
+
|
|
131
|
+
Attributes:
|
|
132
|
+
prior_precision_shape (Union[np.ndarray, float]): prior shape parameters for the precision model, can be
|
|
133
|
+
specified either as a float or as a (nof_sensors, ) np.ndarray: a float specification will result in
|
|
134
|
+
the same parameter value for each sensor. Defaults to 1e-3.
|
|
135
|
+
prior_precision_rate (Union[np.ndarray, float]): prior rate parameters for the precision model, can be
|
|
136
|
+
specified either as a float or as a (nof_sensors, ) np.ndarray: a float specification will result in
|
|
137
|
+
the same parameter value for each sensor. Defaults to 1e-3.
|
|
138
|
+
initial_precision (Union[np.ndarray, float]): initial value for the precision parameters, can be specified
|
|
139
|
+
either as a float or as a (nof_sensors, ) np.ndarray: a float specification will result in the same
|
|
140
|
+
parameter value for each sensor. Defaults to 1.
|
|
141
|
+
precision_index (np.ndarray): index mapping precision parameters onto observations. Parameters 1:n_sensor are
|
|
142
|
+
mapped as the measurement error precisions of the corresponding sensors.
|
|
143
|
+
precision_parameter (Parameter.MixtureParameterMatrix): parameter specification for this model, maps the
|
|
144
|
+
current value of the parameter in the state dict onto the concentration data precisions.
|
|
145
|
+
|
|
146
|
+
"""
|
|
147
|
+
|
|
148
|
+
prior_precision_shape: Union[np.ndarray, float] = 1e-3
|
|
149
|
+
prior_precision_rate: Union[np.ndarray, float] = 1e-3
|
|
150
|
+
initial_precision: Union[np.ndarray, float] = 1.0
|
|
151
|
+
|
|
152
|
+
def initialise(
|
|
153
|
+
self, sensor_object: SensorGroup, meteorology: MeteorologyGroup = None, gas_species: GasSpecies = None
|
|
154
|
+
):
|
|
155
|
+
"""Set up the error model using sensor properties.
|
|
156
|
+
|
|
157
|
+
Args:
|
|
158
|
+
sensor_object (SensorGroup): sensor data.
|
|
159
|
+
meteorology (MeteorologyGroup): meteorology data. Defaults to None.
|
|
160
|
+
gas_species (GasSpecies): gas species information. Defaults to None.
|
|
161
|
+
|
|
162
|
+
"""
|
|
163
|
+
super().initialise(sensor_object=sensor_object, meteorology=meteorology, gas_species=gas_species)
|
|
164
|
+
self.prior_precision_shape = self.prior_precision_shape * np.ones((self.n_sensor,))
|
|
165
|
+
self.prior_precision_rate = self.prior_precision_rate * np.ones((self.n_sensor,))
|
|
166
|
+
self.initial_precision = self.initial_precision * np.ones((self.n_sensor,))
|
|
167
|
+
self.precision_index = sensor_object.sensor_index
|
|
168
|
+
self.precision_parameter = parameter.MixtureParameterMatrix(param="tau", allocation="precision_index")
|
|
169
|
+
|
|
170
|
+
def plot_iterations(self, plot: "Plot", sensor_object: Union[SensorGroup, Sensor], burn_in_value: int) -> "Plot":
|
|
171
|
+
"""Plots the error model values for every sensor with respect to the MCMC iterations.
|
|
172
|
+
|
|
173
|
+
Args:
|
|
174
|
+
sensor_object (Union[SensorGroup, Sensor]): Sensor object associated with the error_model
|
|
175
|
+
burn_in_value (int): Burn in value to show in plot.
|
|
176
|
+
plot (Plot): Plot object to which this figure will be added in the figure dictionary
|
|
177
|
+
|
|
178
|
+
Returns:
|
|
179
|
+
plot (Plot): Plot object to which this figure is added in the figure dictionary with
|
|
180
|
+
key 'error_model_iterations'
|
|
181
|
+
|
|
182
|
+
"""
|
|
183
|
+
plot.plot_trace_per_sensor(
|
|
184
|
+
object_to_plot=self, sensor_object=sensor_object, plot_type="line", burn_in=burn_in_value
|
|
185
|
+
)
|
|
186
|
+
|
|
187
|
+
return plot
|
|
188
|
+
|
|
189
|
+
def plot_distributions(self, plot: "Plot", sensor_object: Union[SensorGroup, Sensor], burn_in_value: int) -> "Plot":
|
|
190
|
+
"""Plots the distribution of the error model values after the burn in for every sensor.
|
|
191
|
+
|
|
192
|
+
Args:
|
|
193
|
+
sensor_object (Union[SensorGroup, Sensor]): Sensor object associated with the error_model
|
|
194
|
+
burn_in_value (int): Burn in value to show in plot.
|
|
195
|
+
plot (Plot): Plot object to which this figure will be added in the figure dictionary
|
|
196
|
+
|
|
197
|
+
Returns:
|
|
198
|
+
plot (Plot): Plot object to which this figure is added in the figure dictionary with
|
|
199
|
+
key 'error_model_distributions'
|
|
200
|
+
|
|
201
|
+
"""
|
|
202
|
+
plot.plot_trace_per_sensor(
|
|
203
|
+
object_to_plot=self, sensor_object=sensor_object, plot_type="box", burn_in=burn_in_value
|
|
204
|
+
)
|
|
205
|
+
|
|
206
|
+
return plot
|
|
207
|
+
|
|
208
|
+
|
|
209
|
+
@dataclass
|
|
210
|
+
class ByRelease(ErrorModel):
|
|
211
|
+
"""ByRelease error model, special case of the measurement precision model.
|
|
212
|
+
|
|
213
|
+
Version of the measurement precision model where each sensor object has a different precision, and there are
|
|
214
|
+
different precisions for periods inside and outside controlled release periods. For all parameters: the first
|
|
215
|
+
element corresponds to the case where the sources are OFF; the second element corresponds to the case where the
|
|
216
|
+
sources are ON.
|
|
217
|
+
|
|
218
|
+
Attributes:
|
|
219
|
+
prior_precision_shape (np.ndarray): prior shape parameters for the precision model, can be
|
|
220
|
+
specified either as a (2, 1) np.ndarray or as a (2, nof_sensors) np.ndarray: the former specification
|
|
221
|
+
will result in the same prior specification for the off/on precisions for each sensor. Defaults to
|
|
222
|
+
np.array([1e-3, 1e-3]).
|
|
223
|
+
prior_precision_rate (np.ndarray): prior rate parameters for the precision model, can be
|
|
224
|
+
specified either as a (2, 1) np.ndarray or as a (2, nof_sensors) np.ndarray: the former specification
|
|
225
|
+
will result in the same prior specification for the off/on precisions for each sensor. Defaults to
|
|
226
|
+
np.array([1e-3, 1e-3]).
|
|
227
|
+
initial_precision (np.ndarray): initial value for the precision parameters, can be
|
|
228
|
+
specified either as a (2, 1) np.ndarray or as a (2, nof_sensors) np.ndarray: the former specification
|
|
229
|
+
will result in the same prior specification for the off/on precisions for each sensor. Defaults to
|
|
230
|
+
np.array([1.0, 1.0]).
|
|
231
|
+
precision_index (np.ndarray): index mapping precision parameters onto observations. Parameters 1:n_sensor are
|
|
232
|
+
mapped onto each sensor for the periods where the sources are OFF; parameters (n_sensor + 1):(2 * n_sensor)
|
|
233
|
+
are mapped onto each sensor for the periods where the sources are ON.
|
|
234
|
+
precision_parameter (Parameter.MixtureParameterMatrix): parameter specification for this model, maps the
|
|
235
|
+
current value of the parameter in the state dict onto the concentration data precisions.
|
|
236
|
+
|
|
237
|
+
"""
|
|
238
|
+
|
|
239
|
+
prior_precision_shape: np.ndarray = field(default_factory=lambda: np.array([1e-3, 1e-3], ndmin=2).T)
|
|
240
|
+
prior_precision_rate: np.ndarray = field(default_factory=lambda: np.array([1e-3, 1e-3], ndmin=2).T)
|
|
241
|
+
initial_precision: np.ndarray = field(default_factory=lambda: np.array([1.0, 1.0], ndmin=2).T)
|
|
242
|
+
|
|
243
|
+
def initialise(
|
|
244
|
+
self, sensor_object: SensorGroup, meteorology: MeteorologyGroup = None, gas_species: GasSpecies = None
|
|
245
|
+
):
|
|
246
|
+
"""Set up the error model using sensor properties.
|
|
247
|
+
|
|
248
|
+
Args:
|
|
249
|
+
sensor_object (SensorGroup): sensor data.
|
|
250
|
+
meteorology (MeteorologyGroup): meteorology data. Defaults to None.
|
|
251
|
+
gas_species (GasSpecies): gas species information. Defaults to None.
|
|
252
|
+
|
|
253
|
+
"""
|
|
254
|
+
super().initialise(sensor_object=sensor_object, meteorology=meteorology, gas_species=gas_species)
|
|
255
|
+
self.prior_precision_shape = self.prior_precision_shape * np.ones((2, self.n_sensor))
|
|
256
|
+
self.prior_precision_rate = self.prior_precision_rate * np.ones((2, self.n_sensor))
|
|
257
|
+
self.initial_precision = self.initial_precision * np.ones((2, self.n_sensor))
|
|
258
|
+
self.precision_index = sensor_object.sensor_index + sensor_object.source_on * self.n_sensor
|
|
259
|
+
self.precision_parameter = parameter.MixtureParameterMatrix(param="tau", allocation="precision_index")
|
|
260
|
+
|
|
261
|
+
def plot_iterations(self, plot: "Plot", sensor_object: Union[SensorGroup, Sensor], burn_in_value: int) -> "Plot":
|
|
262
|
+
"""Plot the estimated error model parameters against iterations of the MCMC chain.
|
|
263
|
+
|
|
264
|
+
Works by simply creating a separate plot for each of the two categories of precision parameter (when the
|
|
265
|
+
sources are on/off). Creates a BySensor() object for each of the off/on precision cases, and then makes a
|
|
266
|
+
call to its plot function.
|
|
267
|
+
|
|
268
|
+
Args:
|
|
269
|
+
sensor_object (Union[SensorGroup, Sensor]): Sensor object associated with the error_model
|
|
270
|
+
burn_in_value (int): Burn in value to show in plot.
|
|
271
|
+
plot (Plot): Plot object to which this figure will be added in the figure dictionary
|
|
272
|
+
|
|
273
|
+
Returns:
|
|
274
|
+
plot (Plot): Plot object to which this figure is added in the figure dictionary with
|
|
275
|
+
key 'error_model_iterations'
|
|
276
|
+
|
|
277
|
+
"""
|
|
278
|
+
figure_keys = ["error_model_off_iterations", "error_model_on_iterations"]
|
|
279
|
+
figure_titles = [
|
|
280
|
+
"Estimated error parameter values: sources off",
|
|
281
|
+
"Estimated error parameter values: sources on",
|
|
282
|
+
]
|
|
283
|
+
precision_arrays = [
|
|
284
|
+
self.precision[: sensor_object.nof_sensors, :],
|
|
285
|
+
self.precision[sensor_object.nof_sensors :, :],
|
|
286
|
+
]
|
|
287
|
+
for key, title, array in zip(figure_keys, figure_titles, precision_arrays):
|
|
288
|
+
error_model = BySensor()
|
|
289
|
+
error_model.precision = array
|
|
290
|
+
plot = error_model.plot_iterations(plot, sensor_object, burn_in_value)
|
|
291
|
+
plot.figure_dict[key] = plot.figure_dict.pop("error_model_iterations")
|
|
292
|
+
plot.figure_dict[key].update_layout(title=title)
|
|
293
|
+
return plot
|
|
294
|
+
|
|
295
|
+
def plot_distributions(self, plot: "Plot", sensor_object: Union[SensorGroup, Sensor], burn_in_value: int) -> "Plot":
|
|
296
|
+
"""Plot the estimated distributions of error model parameters.
|
|
297
|
+
|
|
298
|
+
Works by simply creating a separate plot for each of the two categories of precision parameter (when the
|
|
299
|
+
sources are off/on). Creates a BySensor() object for each of the off/on precision cases, and then makes a
|
|
300
|
+
call to its plot function.
|
|
301
|
+
|
|
302
|
+
Args:
|
|
303
|
+
sensor_object (Union[SensorGroup, Sensor]): Sensor object associated with the error_model
|
|
304
|
+
burn_in_value (int): Burn in value to show in plot.
|
|
305
|
+
plot (Plot): Plot object to which this figure will be added in the figure dictionary
|
|
306
|
+
|
|
307
|
+
Returns:
|
|
308
|
+
plot (Plot): Plot object to which this figure is added in the figure dictionary with
|
|
309
|
+
key 'error_model_distributions'
|
|
310
|
+
|
|
311
|
+
"""
|
|
312
|
+
figure_keys = ["error_model_off_distributions", "error_model_on_distributions"]
|
|
313
|
+
figure_titles = [
|
|
314
|
+
"Estimated error parameter distribution: sources off",
|
|
315
|
+
"Estimated error parameter distribution: sources on",
|
|
316
|
+
]
|
|
317
|
+
precision_arrays = [
|
|
318
|
+
self.precision[: sensor_object.nof_sensors, :],
|
|
319
|
+
self.precision[sensor_object.nof_sensors :, :],
|
|
320
|
+
]
|
|
321
|
+
for key, title, array in zip(figure_keys, figure_titles, precision_arrays):
|
|
322
|
+
error_model = BySensor()
|
|
323
|
+
error_model.precision = array
|
|
324
|
+
plot = error_model.plot_distributions(plot, sensor_object, burn_in_value)
|
|
325
|
+
plot.figure_dict[key] = plot.figure_dict.pop("error_model_distributions")
|
|
326
|
+
plot.figure_dict[key].update_layout(title=title)
|
|
327
|
+
return plot
|
|
@@ -0,0 +1,183 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: 2024 Shell Global Solutions International B.V. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
4
|
+
|
|
5
|
+
# -*- coding: utf-8 -*-
|
|
6
|
+
"""Offset module."""
|
|
7
|
+
from dataclasses import dataclass, field
|
|
8
|
+
from typing import TYPE_CHECKING, Union
|
|
9
|
+
|
|
10
|
+
import numpy as np
|
|
11
|
+
from openmcmc import parameter
|
|
12
|
+
from openmcmc.distribution.distribution import Gamma
|
|
13
|
+
from openmcmc.distribution.location_scale import Normal
|
|
14
|
+
from openmcmc.model import Model
|
|
15
|
+
from openmcmc.sampler.sampler import NormalGamma, NormalNormal
|
|
16
|
+
from scipy import sparse
|
|
17
|
+
|
|
18
|
+
from pyelq.component.component import Component
|
|
19
|
+
from pyelq.gas_species import GasSpecies
|
|
20
|
+
from pyelq.meteorology import Meteorology
|
|
21
|
+
from pyelq.sensor.sensor import Sensor, SensorGroup
|
|
22
|
+
|
|
23
|
+
if TYPE_CHECKING:
|
|
24
|
+
from pyelq.plotting.plot import Plot
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
@dataclass
|
|
28
|
+
class PerSensor(Component):
|
|
29
|
+
"""Offset implementation which assumes an additive offset between sensors.
|
|
30
|
+
|
|
31
|
+
The offset is which is constant in space and time and accounts for calibration differences between sensors.
|
|
32
|
+
To maintain parameter identifiability, the offset for the first sensor (with index 0) is assumed to be 0, and other
|
|
33
|
+
sensor offsets are defined relative to this beam.
|
|
34
|
+
|
|
35
|
+
Attributes:
|
|
36
|
+
n_sensor (int): number of sensors in the sensor object used for analysis.
|
|
37
|
+
offset (np.ndarray): array of sampled offset values, populated in self.from_mcmc() after the MCMC run is
|
|
38
|
+
completed.
|
|
39
|
+
precision_scalar (np.ndarray): array of sampled offset precision values, populated in self.from_mcmc() after
|
|
40
|
+
the MCMC run is completed. Only populated if update_precision is True.
|
|
41
|
+
indicator_basis (sparse.csc_matrix): [nof_observations x (nof_sensors - 1)] sparse matrix which assigns the
|
|
42
|
+
offset parameters to the correct observations.
|
|
43
|
+
update_precision (bool): logical indicating whether the offset prior precision parameter should be updated as
|
|
44
|
+
part of the analysis.
|
|
45
|
+
mean_offset (float): prior mean parameter for the offsets, assumed to be the same for each beam. Default is 0.
|
|
46
|
+
prior_precision_shape (float): shape parameter for the prior gamma distribution for the scalar precision
|
|
47
|
+
parameter. Default is 1e-3.
|
|
48
|
+
prior_precision_rate (float): rate parameter for the prior gamma distribution for the scalar precision
|
|
49
|
+
parameter(s). Default is 1e-3.
|
|
50
|
+
initial_precision (float): initial value for the scalar precision parameter. Default is 1.0.
|
|
51
|
+
|
|
52
|
+
"""
|
|
53
|
+
|
|
54
|
+
n_sensor: int = field(init=False)
|
|
55
|
+
offset: np.ndarray = field(init=False)
|
|
56
|
+
precision_scalar: np.ndarray = field(init=False)
|
|
57
|
+
indicator_basis: sparse.csc_matrix = field(init=False)
|
|
58
|
+
update_precision: bool = False
|
|
59
|
+
mean_offset: float = 0.0
|
|
60
|
+
prior_precision_shape: float = 1e-3
|
|
61
|
+
prior_precision_rate: float = 1e-3
|
|
62
|
+
initial_precision: float = 1.0
|
|
63
|
+
|
|
64
|
+
def initialise(self, sensor_object: SensorGroup, meteorology: Meteorology, gas_species: GasSpecies):
|
|
65
|
+
"""Take data inputs and extract relevant properties.
|
|
66
|
+
|
|
67
|
+
Args:
|
|
68
|
+
sensor_object (SensorGroup): sensor data
|
|
69
|
+
meteorology (MeteorologyGroup): meteorology data wind data
|
|
70
|
+
gas_species (GasSpecies): gas species information
|
|
71
|
+
|
|
72
|
+
"""
|
|
73
|
+
self.n_sensor = len(sensor_object)
|
|
74
|
+
self.indicator_basis = sparse.csc_matrix(
|
|
75
|
+
np.equal(sensor_object.sensor_index[:, np.newaxis], np.array(range(1, self.n_sensor)))
|
|
76
|
+
)
|
|
77
|
+
|
|
78
|
+
def make_model(self, model: list = None) -> list:
|
|
79
|
+
"""Take model list and append new elements from current model component.
|
|
80
|
+
|
|
81
|
+
Args:
|
|
82
|
+
model (list, optional): Current list of model elements. Defaults to [].
|
|
83
|
+
|
|
84
|
+
Returns:
|
|
85
|
+
list: model output list.
|
|
86
|
+
|
|
87
|
+
"""
|
|
88
|
+
if model is None:
|
|
89
|
+
model = []
|
|
90
|
+
off_precision_predictor = parameter.ScaledMatrix(matrix="P_d", scalar="lambda_d")
|
|
91
|
+
model.append(Normal("d", mean="mu_d", precision=off_precision_predictor))
|
|
92
|
+
if self.update_precision:
|
|
93
|
+
model.append(Gamma("lambda_d", shape="a_lam_d", rate="b_lam_d"))
|
|
94
|
+
return model
|
|
95
|
+
|
|
96
|
+
def make_sampler(self, model: Model, sampler_list: list = None) -> list:
|
|
97
|
+
"""Take sampler list and append new elements from current model component.
|
|
98
|
+
|
|
99
|
+
Args:
|
|
100
|
+
model (Model): Full model list of distributions.
|
|
101
|
+
sampler_list (list, optional): Current list of samplers. Defaults to [].
|
|
102
|
+
|
|
103
|
+
Returns:
|
|
104
|
+
list: sampler output list.
|
|
105
|
+
|
|
106
|
+
"""
|
|
107
|
+
if sampler_list is None:
|
|
108
|
+
sampler_list = []
|
|
109
|
+
sampler_list.append(NormalNormal("d", model))
|
|
110
|
+
if self.update_precision:
|
|
111
|
+
sampler_list.append(NormalGamma("lambda_d", model))
|
|
112
|
+
return sampler_list
|
|
113
|
+
|
|
114
|
+
def make_state(self, state: dict = None) -> dict:
|
|
115
|
+
"""Take state dictionary and append initial values from model component.
|
|
116
|
+
|
|
117
|
+
Args:
|
|
118
|
+
state (dict, optional): current state vector. Defaults to {}.
|
|
119
|
+
|
|
120
|
+
Returns:
|
|
121
|
+
dict: current state vector with components added.
|
|
122
|
+
|
|
123
|
+
"""
|
|
124
|
+
if state is None:
|
|
125
|
+
state = {}
|
|
126
|
+
state["mu_d"] = np.ones((self.n_sensor - 1, 1)) * self.mean_offset
|
|
127
|
+
state["d"] = np.zeros((self.n_sensor - 1, 1))
|
|
128
|
+
state["B_d"] = self.indicator_basis
|
|
129
|
+
state["P_d"] = sparse.eye(self.n_sensor - 1, format="csc")
|
|
130
|
+
state["lambda_d"] = self.initial_precision
|
|
131
|
+
if self.update_precision:
|
|
132
|
+
state["a_lam_d"] = self.prior_precision_shape
|
|
133
|
+
state["b_lam_d"] = self.prior_precision_rate
|
|
134
|
+
return state
|
|
135
|
+
|
|
136
|
+
def from_mcmc(self, store: dict):
|
|
137
|
+
"""Extract results of mcmc from mcmc.store and attach to components.
|
|
138
|
+
|
|
139
|
+
Args:
|
|
140
|
+
store (dict): mcmc result dictionary.
|
|
141
|
+
|
|
142
|
+
"""
|
|
143
|
+
self.offset = store["d"]
|
|
144
|
+
if self.update_precision:
|
|
145
|
+
self.precision_scalar = store["lambda_d"]
|
|
146
|
+
|
|
147
|
+
def plot_iterations(self, plot: "Plot", sensor_object: Union[SensorGroup, Sensor], burn_in_value: int) -> "Plot":
|
|
148
|
+
"""Plots the offset values for every sensor with respect to the MCMC iterations.
|
|
149
|
+
|
|
150
|
+
Args:
|
|
151
|
+
sensor_object (Union[SensorGroup, Sensor]): Sensor object associated with the offset_model
|
|
152
|
+
burn_in_value (int): Burn in value to show in plot.
|
|
153
|
+
plot (Plot): Plot object to which this figure will be added in the figure dictionary
|
|
154
|
+
|
|
155
|
+
Returns:
|
|
156
|
+
plot (Plot): Plot object to which this figure is added in the figure dictionary with
|
|
157
|
+
key 'offset_iterations'
|
|
158
|
+
|
|
159
|
+
"""
|
|
160
|
+
plot.plot_trace_per_sensor(
|
|
161
|
+
object_to_plot=self, sensor_object=sensor_object, plot_type="line", burn_in=burn_in_value
|
|
162
|
+
)
|
|
163
|
+
|
|
164
|
+
return plot
|
|
165
|
+
|
|
166
|
+
def plot_distributions(self, plot: "Plot", sensor_object: Union[SensorGroup, Sensor], burn_in_value: int) -> "Plot":
|
|
167
|
+
"""Plots the distribution of the offset values after the burn in for every sensor.
|
|
168
|
+
|
|
169
|
+
Args:
|
|
170
|
+
sensor_object (Union[SensorGroup, Sensor]): Sensor object associated with the offset_model
|
|
171
|
+
burn_in_value (int): Burn in value to use for plot.
|
|
172
|
+
plot (Plot): Plot object to which this figure will be added in the figure dictionary
|
|
173
|
+
|
|
174
|
+
Returns:
|
|
175
|
+
plot (Plot): Plot object to which this figure is added in the figure dictionary with
|
|
176
|
+
key 'offset_distributions'
|
|
177
|
+
|
|
178
|
+
"""
|
|
179
|
+
plot.plot_trace_per_sensor(
|
|
180
|
+
object_to_plot=self, sensor_object=sensor_object, plot_type="box", burn_in=burn_in_value
|
|
181
|
+
)
|
|
182
|
+
|
|
183
|
+
return plot
|