pyadps 0.2.0b0__py3-none-any.whl → 0.3.0b0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.3
2
2
  Name: pyadps
3
- Version: 0.2.0b0
3
+ Version: 0.3.0b0
4
4
  Summary: A Python package for ADCP data processing
5
5
  Home-page: https://example.com
6
6
  License: MIT
@@ -22,18 +22,30 @@ Requires-Dist: numpy (>=1.26.4)
22
22
  Requires-Dist: pandas (>=2.2.2)
23
23
  Requires-Dist: plotly (>=5.22.0)
24
24
  Requires-Dist: plotly-resampler (>=0.10.0)
25
+ Requires-Dist: pygeomag (>=1.1.0,<2.0.0)
25
26
  Requires-Dist: scipy (>=1.14.0)
26
27
  Requires-Dist: streamlit (>=1.36.0)
27
- Requires-Dist: wmm2020 (>=1.1.1)
28
28
  Project-URL: Documentation, https://example.com/docs
29
29
  Project-URL: Repository, https://github.com/p-amol/pyadps
30
30
  Description-Content-Type: text/markdown
31
31
 
32
32
  # pyadps
33
33
 
34
- `pyadps` is a Python package for processing moored Acoustic Doppler Current Profiler (ADCP) data. It provides various functionalities such as data reading, quality control tests, NetCDF file creation, and visualization.
34
+ `pyadps` is a Python package for processing moored Acoustic Doppler
35
+ Current Profiler (ADCP) data. It provides various functionalities
36
+ such as data reading, quality control tests, NetCDF file creation,
37
+ and visualization.
35
38
 
36
- This software offers both a graphical interface (`Streamlit`) for those new to Python and direct Python package access for experienced users. Please note that `pyadps` is primarily designed for Teledyne RDI workhorse ADCPs. Other company's ADCP files are not compatible, and while some other RDI models may work, they might require additional considerations.
39
+ This software offers both a graphical interface (`Streamlit`) for
40
+ those new to Python and direct Python package access for experienced
41
+ users. Please note that `pyadps` is primarily designed for Teledyne
42
+ RDI workhorse ADCPs. Other company's ADCP files are not compatible,
43
+ and while some other RDI models may work, they might require additional
44
+ considerations.
45
+
46
+ - Documentation: <https://pyadps.readthedocs.io>
47
+ - Source code: <https://github.com/p-amol/pyadps>
48
+ - Bug reports: <https://github.com/p-amol/pyadps/issues>
37
49
 
38
50
  ## Table of Contents
39
51
 
@@ -43,37 +55,49 @@ This software offers both a graphical interface (`Streamlit`) for those new to P
43
55
 
44
56
  ## Installation
45
57
 
46
- We recommend installing the package within a virtual environment. At present, the package is compatible exclusively with Python version 3.12.
47
- You can create a Python environment using tools like `venv` or `conda`. Below are instructions for both methods.
58
+ We recommend installing the package within a virtual environment.
59
+ At present, the package is compatible exclusively with Python version 3.12.
60
+ You can create a Python environment using tools like `venv` or `conda`.
61
+ Below are instructions for both methods.
48
62
 
49
63
  ### 1. Using `venv` (Built-in Python Tool)
50
64
 
51
65
  #### Step 1: Install Python version 3.12 (if not already installed)
66
+
52
67
  Ensure you have Python installed. You can download the latest version from [python.org](https://www.python.org/downloads/).
53
68
 
54
- #### Step 2: Create a Virtual Environment
69
+ #### Step 2: Create a Virtual Environment
70
+
55
71
  - Open your terminal or command prompt.
56
72
  - Navigate to your project folder:
73
+
57
74
  ```bash
58
75
  cd /path/to/your/project
59
76
  ```
60
- - Run the following command to create a virtual environment (replace adpsenv with your preferred environment name):
77
+
78
+ - Run the following command to create a virtual environment
79
+ (replace adpsenv with your preferred environment name):
61
80
 
62
81
  ```bash
63
82
  python -m venv adpsenv
64
83
  ```
65
84
 
66
85
  #### Step 3: Activate the Environment
86
+
67
87
  - On Windows:
88
+
68
89
  ```bash
69
90
  adpsenv\Scripts\activate
70
91
  ```
71
92
 
72
93
  - On macOS/Linux:
94
+
73
95
  ```bash
74
96
  source adpsenv/bin/activate
75
97
  ```
76
- You’ll see the environment name in your terminal prompt indicating the environment is active.
98
+
99
+ You’ll see the environment name in your terminal prompt
100
+ indicating the environment is active.
77
101
 
78
102
  #### Step 4: Install Dependencies
79
103
 
@@ -84,44 +108,51 @@ pip install pyadps
84
108
  ```
85
109
 
86
110
  #### Step 5: Deactivate the Environment
111
+
87
112
  When you’re done working in the environment, deactivate it by running:
88
113
 
89
114
  ```bash
90
115
  deactivate
91
116
  ```
92
117
 
93
-
94
-
95
-
96
- ### 2. Using `conda` (Anaconda/Miniconda):
118
+ ### 2. Using `conda` (Anaconda/Miniconda)
97
119
 
98
120
  #### Step 1: Install Conda
121
+
99
122
  First, you need to have Conda installed on your system. You can either install:
100
123
 
101
124
  - [Anaconda (Full Distribution)](https://www.anaconda.com/products/individual)
102
125
  - [Miniconda (Lightweight Version)](https://docs.conda.io/en/latest/miniconda.html)
103
126
 
104
127
  #### Step 2: Create a Conda Environment with Python 3.12
105
- Once Conda is installed, open a terminal or command prompt and run the following to create a new environment (replace `adpsenv` with your preferred environment name):
128
+
129
+ Once Conda is installed, open a terminal or command prompt and run
130
+ the following to create a new environment (replace `adpsenv` with
131
+ your preferred environment name):
106
132
 
107
133
  ```bash
108
134
  conda create --name adpsenv python=3.12
109
135
  ```
110
136
 
111
- #### Step 3: Activate the Environment
137
+ #### Step 3: Activate the Conda Environment
138
+
112
139
  ```bash
113
140
  conda activate adpsenv
114
141
  ```
115
142
 
116
- #### Step 4: Install Dependencies
117
- You can install packages with pip inside Conda environments.
143
+ #### Step 4: Install pyadps Dependencies
144
+
145
+ You can install packages with pip inside Conda environments.
146
+
118
147
  ```bash
119
148
  pip install pyadps
120
149
  ```
121
150
 
122
- #### Step 5: Deactivate the Environment
123
- When done, deactivate the environment by running:
124
- ```
151
+ #### Step 5: Deactivate the Conda Environment
152
+
153
+ When done working in the environment, deactivate the environment by running:
154
+
155
+ ```bash
125
156
  conda deactivate
126
157
  ```
127
158
 
@@ -130,11 +161,11 @@ conda deactivate
130
161
  ### Streamlit web interface
131
162
 
132
163
  Open a terminal or command prompt, activate the environment, and run the command.
164
+
133
165
  ```bash
134
166
  run-pyadps
135
167
  ```
136
168
 
137
-
138
169
  ## License
139
170
 
140
171
  This project is licensed under the MIT License. See the LICENSE file for details.
@@ -0,0 +1,33 @@
1
+ pyadps/Home_Page.py,sha256=gC0eFMtn85U_A4KcVlCEzXkB6a_J0WD3vpK691Kmyw8,1180
2
+ pyadps/__init__.py,sha256=bNCm6_WIhiwvaUeOZhRkyLZyzzUKfSH80Fslg0JPJyk,232
3
+ pyadps/__main__.py,sha256=cIFUayxPnKl00oIR99L6IUEvc8trW7dijtfBQCAen5c,356
4
+ pyadps/pages/01_Read_File.py,sha256=VfzxaOETEAdIJwth6QPiqDLgWtPc-nZf30huJR1velM,11611
5
+ pyadps/pages/02_View_Raw_Data.py,sha256=AhT7gvDbcMRPf-WIBzTQ0o-nn9_q7NH6plTlpMtgzaY,6170
6
+ pyadps/pages/03_Download_Raw_File.py,sha256=6tv1b5zyImSOVkTVhhGpm2TUVkvanhlTUksUlKJMWC8,8791
7
+ pyadps/pages/04_Sensor_Health.py,sha256=2abiawkByeOIx8h2B2-cm_UVL--dKWR7OWkZHu6TnY0,33499
8
+ pyadps/pages/05_QC_Test.py,sha256=kHTB4X3trKjLjT2pgIKzHMRCR2MvRf23V6BaThieAPU,16043
9
+ pyadps/pages/06_Profile_Test.py,sha256=bjfEqTwYUTdpFPf8ovEIqiz7O5pP_Y4Kxnj6AidF0FE,34163
10
+ pyadps/pages/07_Velocity_Test.py,sha256=mFYjXaswTZNkpWd9k2peq96uPBj-oTd6QYE7J8eQSHY,22792
11
+ pyadps/pages/08_Write_File.py,sha256=GrAo2KVOck2DYSp0x3Lb1pdYL-lZF8SBEdyDT7ev_j0,19542
12
+ pyadps/pages/09_Auto_process.py,sha256=gOvLEfwAPxe9v-W8DASKSuNQzB5BjHLnPkwUgOufwdI,1776
13
+ pyadps/pages/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
+ pyadps/utils/__init__.py,sha256=v1FzqeMdtqNlZfYN_Hzl7oNtMLkJacT-vATgz45hhno,373
15
+ pyadps/utils/autoprocess.py,sha256=aLsbLD5CoZ7bz1p737g01w1ym8BjEZjZpgGzLrngdUM,13825
16
+ pyadps/utils/metadata/config.ini,sha256=TC7htzGwUukIXt_u3JR5ycyvOoDj_JxWgGY6khjNeck,2154
17
+ pyadps/utils/metadata/demo.000,sha256=qxB3sgjABrpv4DNXkwjpbSxk5sc4UwAI8kgQX0--PM8,234468
18
+ pyadps/utils/metadata/flmeta.json,sha256=diIB9nht_0uw9YJNSFGdZYGzeVbR-07zIZS9Nf4VPSE,14245
19
+ pyadps/utils/metadata/vlmeta.json,sha256=_dkQlGkkUvpAIM7S6kEUenSaiCpOrwXg8n1aU3dDF3s,22535
20
+ pyadps/utils/plotgen.py,sha256=YsOetfczZ6NQMcLDZGMs_GsOT4AISsyaBA62rq7-CdM,26228
21
+ pyadps/utils/profile_test.py,sha256=RRTDJNKeUG8mJWFDhVJpBQQNidLG5C06pOT8XbWeeXE,20401
22
+ pyadps/utils/pyreadrdi.py,sha256=P1UTDrglgbYn3XQGUTsqNPynDGE-zp4cI_TW8yfOlic,35090
23
+ pyadps/utils/readrdi.py,sha256=36GfMn3bLQis8PsrL3zlAC22rBU9ItosWug3_44yesg,47403
24
+ pyadps/utils/script.py,sha256=RCRPm1s_HJpqWRO-E316WmFkONv9lkp2tzzvPGF2-I4,4919
25
+ pyadps/utils/sensor_health.py,sha256=aHRaU4kMJZ9dGmYypKpCCgq-owWoNjvcl1I_9I7dG68,3973
26
+ pyadps/utils/signal_quality.py,sha256=ab0Sr0oPFxkFWBjuGbl_IZNQEnfi_mXPyHmVzaGSOBU,16239
27
+ pyadps/utils/velocity_test.py,sha256=-95NKLQJ8Ni8etdxhDHxsfMF4MdRWcXL9fgLgWy7Kn0,6112
28
+ pyadps/utils/writenc.py,sha256=WrL5uh--qPLTPo-f2b49j0Ozm7Fq6H-97AJe4KMWkyE,10071
29
+ pyadps-0.3.0b0.dist-info/LICENSE,sha256=sfY_7DzQF5FxnO2T6ek74dfm5uBmwEp1oEg_WlzNsb8,1092
30
+ pyadps-0.3.0b0.dist-info/METADATA,sha256=RiQu9cwuLigYrVrbkjr9I9nfJh2Jrdaj2chl8aiSZG4,4463
31
+ pyadps-0.3.0b0.dist-info/WHEEL,sha256=RaoafKOydTQ7I_I3JTrPCg6kUmTgtm4BornzOqyEfJ8,88
32
+ pyadps-0.3.0b0.dist-info/entry_points.txt,sha256=qS5lbmTJLC4Ys0nu4-2tJoBpAHxTREta30KFrDyTfsY,90
33
+ pyadps-0.3.0b0.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: poetry-core 1.9.1
2
+ Generator: poetry-core 2.0.0
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
@@ -1,334 +0,0 @@
1
- import numpy as np
2
- import pandas as pd
3
- import plotly.express as px
4
- import plotly.graph_objects as go
5
- import streamlit as st
6
- from plotly.subplots import make_subplots
7
- from plotly_resampler import FigureResampler
8
- from streamlit.runtime.state import session_state
9
- from utils.signal_quality import ev_check, false_target, pg_check, qc_check
10
-
11
- if "flead" not in st.session_state:
12
- st.write(":red[Please Select Data!]")
13
- st.stop()
14
-
15
- # `mask` holds the temporary changes in the page
16
- # `qcmask` holds the final changes in the page
17
- if "mask" not in st.session_state:
18
- st.session_state.mask = np.copy(st.session_state.orig_mask)
19
-
20
- if not st.session_state.isQCMask:
21
- st.write(":grey[Creating a new mask file ...]")
22
- st.session_state.qc_mask = np.copy(st.session_state.orig_mask)
23
- st.session_state.isSubmit = False
24
- else:
25
- st.write(":grey[Working on a saved mask file ...]")
26
- st.write(":orange[WARNING! QC test already completed. Reset to change settings.]")
27
- reset_button1 = st.button("Reset Mask Data")
28
- if reset_button1:
29
- st.session_state.mask = np.copy(st.session_state.orig_mask)
30
- st.session_state.qc_mask = np.copy(st.session_state.orig_mask)
31
- st.write(":green[Mask data is reset to default]")
32
-
33
- if "isThresh" not in st.session_state:
34
- st.session_state.isThresh = False
35
-
36
- # Load data
37
- flobj = st.session_state.flead
38
- vlobj = st.session_state.vlead
39
- velocity = st.session_state.velocity
40
- echo = st.session_state.echo
41
- correlation = st.session_state.correlation
42
- pgood = st.session_state.pgood
43
- ensembles = st.session_state.head.ensembles
44
- cells = flobj.field()["Cells"]
45
- fdata = flobj.fleader
46
- vdata = vlobj.vleader
47
- x = np.arange(0, ensembles, 1)
48
- y = np.arange(0, cells, 1)
49
-
50
-
51
- @st.cache_data
52
- def fillplot_plotly(data, colorscale="balance"):
53
- fig = FigureResampler(go.Figure())
54
- data1 = np.where(data == -32768, np.nan, data)
55
- fig.add_trace(
56
- go.Heatmap(z=data1[:, 0:-1], x=x, y=y, colorscale=colorscale, hoverongaps=False)
57
- )
58
- st.plotly_chart(fig)
59
-
60
-
61
- @st.cache_data
62
- def plot_noise(dep=0, rec=-1):
63
- n = dep
64
- m = rec
65
- colorleft = [
66
- "rgb(240, 255, 255)",
67
- "rgb(115, 147, 179)",
68
- "rgb(100, 149, 237)",
69
- "rgb(15, 82, 186)",
70
- ]
71
- colorright = [
72
- "rgb(250, 200, 152)",
73
- "rgb(255, 165, 0)",
74
- "rgb(255, 95, 31)",
75
- "rgb(139, 64, 0)",
76
- ]
77
- fig = make_subplots(
78
- rows=1,
79
- cols=2,
80
- subplot_titles=[
81
- f"Deployment Ensemble ({x[n]+1})",
82
- f"Recovery Ensemble ({x[m]+1})",
83
- ],
84
- )
85
- for i in range(4):
86
- fig.add_trace(
87
- go.Scatter(
88
- x=echo[i, :, n],
89
- y=y,
90
- name=f"Beam (D) {i+1}",
91
- line=dict(color=colorleft[i]),
92
- ),
93
- row=1,
94
- col=1,
95
- )
96
- for i in range(4):
97
- fig.add_trace(
98
- go.Scatter(
99
- x=echo[i, :, m],
100
- y=y,
101
- name=f"Beam (R) {i+1}",
102
- line=dict(color=colorright[i]),
103
- ),
104
- row=1,
105
- col=2,
106
- )
107
-
108
- fig.update_layout(height=600, width=800, title_text="Echo Intensity")
109
- fig.update_xaxes(title="Echo (count)")
110
- fig.update_yaxes(title="Cells")
111
- st.plotly_chart(fig)
112
-
113
- ######### NOISE FLOOR IDENTIFICATION ##############
114
- dn = rn = 1
115
- st.header("Noise Floor Identification", divider="blue")
116
- st.write(
117
- """
118
- If the ADCP has collected data from the air either
119
- before deployment or after recovery, this data can
120
- be used to estimate the echo intensity threshold.
121
- The plots below show the echo intensity from the first
122
- and last ensembles. The noise level is typically around
123
- 30-40 counts throughout the entire profile.
124
- """
125
- )
126
- dn = st.number_input("Deployment Ensemble", x[0] + 1, x[-1] + 1, x[0] + 1)
127
- # r = st.number_input("Recovery Ensemble", -1 * (x[-1] + 1), -1 * (x[0] + 1), -1)
128
- rn = st.number_input("Recovery Ensemble", x[0] + 1, x[-1] + 1, x[-1] + 1)
129
- dn = dn - 1
130
- rn = rn - 1
131
-
132
- plot_noise(dep=dn, rec=rn)
133
-
134
-
135
- ################## QC Test ###################
136
-
137
- st.header("Quality Control Tests", divider="blue")
138
- st.write("")
139
-
140
- left, right = st.columns([1, 1])
141
- with left:
142
- st.write(""" Teledyne RDI recommends these quality control tests,
143
- some of which can be configured before deployment.
144
- The pre-deployment values configured for the ADCP are listed
145
- in the table below. The noise-floor identification graph above
146
- can assist in determining the echo intensity threshold.
147
- For more information about these tests,
148
- refer to *Acoustic Doppler Current Profiler Principles of
149
- Operation: A Practical Primer* by Teledyne RDI.""")
150
- fdata = st.session_state.flead.field()
151
- st.divider()
152
- st.write(":blue-background[Additional Information:]")
153
- st.write(f"Number of Pings per Ensemble: `{fdata["Pings"]}`")
154
- st.write(f"Number of Beams: `{fdata["Beams"]}`")
155
- st.divider()
156
- st.write(":red-background[Thresholds used during deployment:]")
157
- thresh = pd.DataFrame(
158
- [
159
- ["Correlation", fdata["Correlation Thresh"]],
160
- ["Error Velocity", fdata["Error Velocity Thresh"]],
161
- ["Echo Intensity", 0],
162
- ["False Target", fdata["False Target Thresh"]],
163
- ["Percentage Good", fdata["Percent Good Min"]],
164
- ],
165
- columns=["Threshold", "Values"],
166
- )
167
-
168
- st.write(thresh)
169
-
170
- with right:
171
- with st.form(key="my_form"):
172
- st.write("Would you like to apply new threshold?")
173
-
174
- ct = st.number_input(
175
- "Select Correlation Threshold",
176
- 0,
177
- 255,
178
- fdata["Correlation Thresh"],
179
- )
180
-
181
- evt = st.number_input(
182
- "Select Error Velocity Threshold",
183
- 0,
184
- 9999,
185
- fdata["Error Velocity Thresh"],
186
- )
187
-
188
- et = st.number_input(
189
- "Select Echo Intensity Threshold",
190
- 0,
191
- 255,
192
- 0,
193
- )
194
-
195
- ft = st.number_input(
196
- "Select False Target Threshold",
197
- 0,
198
- 255,
199
- fdata["False Target Thresh"],
200
- )
201
-
202
- option = st.selectbox(
203
- "Would you like to use a three-beam solution?", (True, False)
204
- )
205
-
206
- pgt = st.number_input(
207
- "Select Percent Good Threshold",
208
- 0,
209
- 100,
210
- fdata["Percent Good Min"],
211
- )
212
- submit_button = st.form_submit_button(label="Submit")
213
-
214
-
215
- mask = st.session_state.mask
216
- with left:
217
- if submit_button:
218
- st.session_state.newthresh = pd.DataFrame(
219
- [
220
- ["Correlation", str(ct)],
221
- ["Error Velocity", str(evt)],
222
- ["Echo Intensity", str(et)],
223
- ["False Target", str(ft)],
224
- ["Three Beam", str(option)],
225
- ["Percentage Good", str(pgt)],
226
- ],
227
- columns=["Threshold", "Values"],
228
- )
229
- st.session_state.isThresh = True
230
- # st.write(st.session_state.newthresh)
231
-
232
- mask = pg_check(pgood, mask, pgt, threebeam=option)
233
- mask = qc_check(correlation, mask, ct)
234
- mask = qc_check(echo, mask, et)
235
- mask = ev_check(velocity[3, :, :], mask, evt)
236
- mask = false_target(echo, mask, ft, threebeam=True)
237
- st.session_state.mask = mask
238
-
239
- if st.session_state.isThresh:
240
- st.write(":green-background[Current Thresholds]")
241
- st.write(st.session_state.newthresh)
242
-
243
-
244
-
245
- st.header("Mask File", divider="blue")
246
- st.write(
247
- """
248
- Displayed the mask file.
249
- Ensure to save any necessary changes or apply additional thresholds if needed.
250
- """
251
- )
252
-
253
-
254
- if st.button("Display mask file"):
255
- st.subheader("Default Mask File")
256
- st.write(
257
- """
258
- ADCP assigns missing values based on thresholds set before deployment.
259
- These values cannot be recovered and the default
260
- """
261
- )
262
- fillplot_plotly(st.session_state.orig_mask, colorscale="greys")
263
-
264
-
265
- st.subheader("Update Mask File")
266
- st.write(
267
- """
268
- Update, display and save the updated mask file after applying threshold.
269
- If thresholds are not saved, default mask file is used.
270
- """
271
- )
272
- # values, counts = np.unique(mask, return_counts=True)
273
- fillplot_plotly(st.session_state.mask, colorscale="greys")
274
-
275
- ############## SENSOR HEALTH ######################
276
- st.header("Sensor Health", divider="blue")
277
- st.write("The following details can be used to determine whether the additional sensors are functioning properly.")
278
- # ################## Pressure Sensor Check ###################
279
- # st.subheader("Pressure Sensor Check", divider="orange")
280
- #
281
- # st.subheader("Temperature Sensor Check", divider="orange")
282
- #
283
- # st.subheader("Tilt Sensor Check", divider="orange")
284
- ################## Fix Orientation ###################
285
- st.subheader("Fix Orientation", divider="orange")
286
-
287
-
288
- if st.session_state.beam_direction == 'Up':
289
- beamalt = 'Down'
290
- else:
291
- beamalt = 'Up'
292
- st.write(f"The current orientation of ADCP is `{st.session_state.beam_direction}`. Use the below option to correct the orientation.")
293
-
294
- beamdir_select = st.radio(f'Change orientation to {beamalt}', ['No', 'Yes'])
295
- if beamdir_select == 'Yes':
296
- st.session_state.beam_direction = beamalt
297
- st.write(f"The orientation changed to `{st.session_state.beam_direction}`")
298
-
299
-
300
-
301
-
302
- ################## Save Button #############
303
- st.header("Save Data", divider="blue")
304
- col1, col2 = st.columns([1, 1])
305
- with col1:
306
- save_mask_button = st.button(label="Save Mask Data")
307
-
308
- if save_mask_button:
309
- # st.session_state.mask = mask
310
- st.session_state.qc_mask = np.copy(st.session_state.mask)
311
- st.session_state.isQCMask = True
312
- st.session_state.isProfileMask = False
313
- st.session_state.isGridSave = False
314
- st.session_state.isVelocityMask = False
315
- st.write(":green[Mask file saved]")
316
- else:
317
- st.write(":red[Mask data not saved]")
318
- with col2:
319
- reset_mask_button = st.button("Reset mask Data")
320
- if reset_mask_button:
321
- st.session_state.mask = np.copy(st.session_state.orig_mask)
322
- st.session_state.isQCMask = False
323
- st.session_state.isGrid = False
324
- st.session_state.isProfileMask = False
325
- st.session_state.isVelocityMask = False
326
- st.write(":green[Mask data is reset to default]")
327
-
328
-
329
-
330
-
331
-
332
-
333
-
334
-