pyadps 0.1.0__py3-none-any.whl → 0.1.0b0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyadps/Home_Page.py +5 -11
- pyadps/pages/01_Read_File.py +16 -190
- pyadps/pages/02_View_Raw_Data.py +33 -69
- pyadps/pages/03_Download_Raw_File.py +60 -124
- pyadps/pages/04_QC_Test.py +283 -0
- pyadps/pages/05_Profile_Test.py +389 -0
- pyadps/pages/06_Velocity_Test.py +293 -0
- pyadps/pages/07_Write_File.py +367 -0
- pyadps/utils/__init__.py +3 -3
- pyadps/utils/cutbin.py +413 -0
- pyadps/utils/plotgen.py +3 -505
- pyadps/utils/profile_test.py +145 -526
- pyadps/utils/pyreadrdi.py +6 -13
- pyadps/utils/readrdi.py +20 -167
- pyadps/utils/regrid.py +122 -0
- pyadps/utils/script.py +147 -197
- pyadps/utils/signal_quality.py +24 -344
- pyadps/utils/velocity_test.py +16 -99
- pyadps/utils/writenc.py +27 -104
- {pyadps-0.1.0.dist-info → pyadps-0.1.0b0.dist-info}/METADATA +22 -54
- pyadps-0.1.0b0.dist-info/RECORD +29 -0
- {pyadps-0.1.0.dist-info → pyadps-0.1.0b0.dist-info}/WHEEL +1 -1
- pyadps-0.1.0b0.dist-info/entry_points.txt +3 -0
- pyadps/pages/04_Sensor_Health.py +0 -905
- pyadps/pages/05_QC_Test.py +0 -476
- pyadps/pages/06_Profile_Test.py +0 -971
- pyadps/pages/07_Velocity_Test.py +0 -600
- pyadps/pages/08_Write_File.py +0 -574
- pyadps/pages/09_Auto_process.py +0 -62
- pyadps/utils/autoprocess.py +0 -530
- pyadps/utils/metadata/config.ini +0 -99
- pyadps/utils/metadata/demo.000 +0 -0
- pyadps/utils/sensor_health.py +0 -120
- pyadps-0.1.0.dist-info/RECORD +0 -33
- pyadps-0.1.0.dist-info/entry_points.txt +0 -5
- {pyadps-0.1.0.dist-info → pyadps-0.1.0b0.dist-info}/LICENSE +0 -0
@@ -0,0 +1,389 @@
|
|
1
|
+
import numpy as np
|
2
|
+
# import pandas as pd
|
3
|
+
# import plotly.express as px
|
4
|
+
import plotly.graph_objects as go
|
5
|
+
import streamlit as st
|
6
|
+
from plotly.subplots import make_subplots
|
7
|
+
from plotly_resampler import FigureResampler
|
8
|
+
from utils.profile_test import side_lobe_beam_angle
|
9
|
+
from utils.regrid import regrid2d, regrid3d
|
10
|
+
from utils.signal_quality import default_mask
|
11
|
+
|
12
|
+
if "flead" not in st.session_state:
|
13
|
+
st.write(":red[Please Select Data!]")
|
14
|
+
st.stop()
|
15
|
+
|
16
|
+
# `maskp` holds the temporary changes in the page
|
17
|
+
# `profile_mask`
|
18
|
+
if "maskp" not in st.session_state:
|
19
|
+
if "qc_mask" not in st.session_state:
|
20
|
+
st.session_state.maskp = np.copy(st.session_state.orig_mask)
|
21
|
+
else:
|
22
|
+
st.session_state.maskp = np.copy(st.session_state.qc_mask)
|
23
|
+
|
24
|
+
|
25
|
+
if st.session_state.isQCMask:
|
26
|
+
st.write(":grey[Working on a saved mask file ...]")
|
27
|
+
if st.session_state.isProfileMask:
|
28
|
+
st.write(
|
29
|
+
":orange[Warning: Profile test already completed. Reset to change settings.]"
|
30
|
+
)
|
31
|
+
reset_selectbox = st.selectbox(
|
32
|
+
"Choose reset option",
|
33
|
+
("QC Test", "Default"),
|
34
|
+
index=None,
|
35
|
+
placeholder="Reset mask to ...",
|
36
|
+
)
|
37
|
+
if reset_selectbox == "Default":
|
38
|
+
st.write("Default mask file selected")
|
39
|
+
st.session_state.maskp = st.session_state.orig_mask
|
40
|
+
elif reset_selectbox == "QC Test":
|
41
|
+
st.write("QC Test mask file selected")
|
42
|
+
st.session_state.maskp = st.session_state.qc_mask
|
43
|
+
else:
|
44
|
+
st.session_state.maskp = st.session_state.profile_mask
|
45
|
+
else:
|
46
|
+
st.session_state.maskp = st.session_state.qc_mask
|
47
|
+
else:
|
48
|
+
st.write(":orange[Creating a new mask file ...]")
|
49
|
+
|
50
|
+
mask = st.session_state.maskp
|
51
|
+
|
52
|
+
# Load data
|
53
|
+
flobj = st.session_state.flead
|
54
|
+
vlobj = st.session_state.vlead
|
55
|
+
velocity = st.session_state.velocity
|
56
|
+
echo = st.session_state.echo
|
57
|
+
correlation = st.session_state.correlation
|
58
|
+
pgood = st.session_state.pgood
|
59
|
+
fdata = flobj.fleader
|
60
|
+
vdata = vlobj.vleader
|
61
|
+
|
62
|
+
|
63
|
+
ensembles = st.session_state.head.ensembles
|
64
|
+
cells = flobj.field()["Cells"]
|
65
|
+
x = np.arange(0, ensembles, 1)
|
66
|
+
y = np.arange(0, cells, 1)
|
67
|
+
|
68
|
+
# Regrided data
|
69
|
+
if "velocity_regrid" not in st.session_state:
|
70
|
+
st.session_state.echo_regrid = np.copy(echo)
|
71
|
+
st.session_state.velocity_regrid = np.copy(velocity)
|
72
|
+
st.session_state.correlation_regrid = np.copy(correlation)
|
73
|
+
st.session_state.pgood_regrid = np.copy(pgood)
|
74
|
+
st.session_state.mask_regrid = np.copy(mask)
|
75
|
+
|
76
|
+
|
77
|
+
# @st.cache_data
|
78
|
+
def fillplot_plotly(
|
79
|
+
data, title="data", maskdata=None, missing=-32768, colorscale="balance"
|
80
|
+
):
|
81
|
+
fig = FigureResampler(go.Figure())
|
82
|
+
data1 = np.where(data == missing, np.nan, data)
|
83
|
+
fig.add_trace(
|
84
|
+
go.Heatmap(
|
85
|
+
z=data1,
|
86
|
+
x=x,
|
87
|
+
y=y,
|
88
|
+
colorscale=colorscale,
|
89
|
+
hoverongaps=False,
|
90
|
+
)
|
91
|
+
)
|
92
|
+
if mask is not None:
|
93
|
+
fig.add_trace(
|
94
|
+
go.Heatmap(
|
95
|
+
z=maskdata,
|
96
|
+
x=x,
|
97
|
+
y=y,
|
98
|
+
colorscale="gray",
|
99
|
+
hoverongaps=False,
|
100
|
+
showscale=False,
|
101
|
+
opacity=0.5,
|
102
|
+
)
|
103
|
+
)
|
104
|
+
fig.update_layout(
|
105
|
+
xaxis=dict(showline=True, mirror=True),
|
106
|
+
yaxis=dict(showline=True, mirror=True),
|
107
|
+
title_text=title,
|
108
|
+
)
|
109
|
+
fig.update_xaxes(title="Ensembles")
|
110
|
+
fig.update_yaxes(title="Depth Cells")
|
111
|
+
st.plotly_chart(fig)
|
112
|
+
|
113
|
+
|
114
|
+
def fillselect_plotly(data, title="data", colorscale="balance"):
|
115
|
+
fig = FigureResampler(go.Figure())
|
116
|
+
data1 = np.where(data == -32768, None, data)
|
117
|
+
fig.add_trace(
|
118
|
+
go.Heatmap(
|
119
|
+
z=data1,
|
120
|
+
x=x,
|
121
|
+
y=y,
|
122
|
+
colorscale=colorscale,
|
123
|
+
hoverongaps=False,
|
124
|
+
)
|
125
|
+
)
|
126
|
+
# fig.add_trace(
|
127
|
+
# go.Scatter(x=X, y=Y, marker=dict(color="black", size=16), mode="lines+markers")
|
128
|
+
# )
|
129
|
+
fig.update_layout(
|
130
|
+
xaxis=dict(showline=True, mirror=True),
|
131
|
+
yaxis=dict(showline=True, mirror=True),
|
132
|
+
title_text=title,
|
133
|
+
)
|
134
|
+
fig.update_xaxes(title="Ensembles")
|
135
|
+
fig.update_yaxes(title="Depth Cells")
|
136
|
+
fig.update_layout(clickmode="event+select")
|
137
|
+
event = st.plotly_chart(fig, key="1", on_select="rerun", selection_mode="box")
|
138
|
+
|
139
|
+
return event
|
140
|
+
|
141
|
+
|
142
|
+
@st.cache_data
|
143
|
+
def trim_ends(start_ens=0, end_ens=0, ens_range=20):
|
144
|
+
depth = vdata["Depth of Transducer"] / 10
|
145
|
+
fig = make_subplots(
|
146
|
+
rows=1,
|
147
|
+
cols=2,
|
148
|
+
subplot_titles=[
|
149
|
+
"Deployment Ensemble",
|
150
|
+
"Recovery Ensemble",
|
151
|
+
],
|
152
|
+
)
|
153
|
+
fig.add_trace(
|
154
|
+
go.Scatter(
|
155
|
+
x=x[0:ens_range],
|
156
|
+
y=depth[0:ens_range],
|
157
|
+
name="Deployment",
|
158
|
+
mode="markers",
|
159
|
+
marker=dict(color="#1f77b4"),
|
160
|
+
),
|
161
|
+
row=1,
|
162
|
+
col=1,
|
163
|
+
)
|
164
|
+
|
165
|
+
fig.add_trace(
|
166
|
+
go.Scatter(
|
167
|
+
x=x[-1 * ens_range :],
|
168
|
+
y=depth[-1 * ens_range :],
|
169
|
+
name="Recovery",
|
170
|
+
mode="markers",
|
171
|
+
marker=dict(color="#17becf"),
|
172
|
+
),
|
173
|
+
row=1,
|
174
|
+
col=2,
|
175
|
+
)
|
176
|
+
|
177
|
+
if start_ens > x[0]:
|
178
|
+
fig.add_trace(
|
179
|
+
go.Scatter(
|
180
|
+
x=x[0:start_ens],
|
181
|
+
y=depth[0:start_ens],
|
182
|
+
name="Selected Points (D)",
|
183
|
+
mode="markers",
|
184
|
+
marker=dict(color="red"),
|
185
|
+
),
|
186
|
+
row=1,
|
187
|
+
col=1,
|
188
|
+
)
|
189
|
+
|
190
|
+
if end_ens < x[-1] + 1:
|
191
|
+
fig.add_trace(
|
192
|
+
go.Scatter(
|
193
|
+
x=x[end_ens : x[-1] + 1],
|
194
|
+
y=depth[end_ens : x[-1] + 1],
|
195
|
+
name="Selected Points (R)",
|
196
|
+
mode="markers",
|
197
|
+
marker=dict(color="orange"),
|
198
|
+
),
|
199
|
+
row=1,
|
200
|
+
col=2,
|
201
|
+
)
|
202
|
+
|
203
|
+
fig.update_layout(height=600, width=800, title_text="Transducer depth")
|
204
|
+
fig.update_xaxes(title="Ensembles")
|
205
|
+
fig.update_yaxes(title="Depth (m)")
|
206
|
+
st.plotly_chart(fig)
|
207
|
+
|
208
|
+
|
209
|
+
st.header("Profile Test")
|
210
|
+
|
211
|
+
############## TRIM ENDS #################
|
212
|
+
st.header("Trim Ends", divider="blue")
|
213
|
+
n = 20
|
214
|
+
m = 20
|
215
|
+
if "update_mask" not in st.session_state:
|
216
|
+
st.session_state.update_mask = False
|
217
|
+
st.session_state.endpoints = None
|
218
|
+
if "update_mask_cutbin" not in st.session_state:
|
219
|
+
st.session_state.update_mask_cutbin = False
|
220
|
+
|
221
|
+
ens_range = st.number_input("Change range", x[0], x[-1], 20)
|
222
|
+
start_ens = st.slider("Deployment Ensembles", 0, ens_range, 0)
|
223
|
+
end_ens = st.slider("Recovery Ensembles", x[-1] - ens_range, x[-1] + 1, x[-1] + 1)
|
224
|
+
|
225
|
+
n = int(ens_range)
|
226
|
+
|
227
|
+
if start_ens or end_ens:
|
228
|
+
trim_ends(start_ens=start_ens, end_ens=end_ens, ens_range=n)
|
229
|
+
st.session_state.update_mask = False
|
230
|
+
|
231
|
+
update_mask = st.button("Update mask data")
|
232
|
+
if update_mask:
|
233
|
+
if start_ens > 0:
|
234
|
+
mask[:, :start_ens] = 1
|
235
|
+
|
236
|
+
if end_ens < x[-1]:
|
237
|
+
mask[:, end_ens:] = 1
|
238
|
+
|
239
|
+
st.session_state.ens_range = ens_range
|
240
|
+
st.session_state.start_ens = start_ens
|
241
|
+
st.session_state.end_ens = end_ens
|
242
|
+
st.session_state.maskp = mask
|
243
|
+
st.write(":green[mask data updated]")
|
244
|
+
st.session_state.endpoints = np.array(
|
245
|
+
[st.session_state.start_ens, st.session_state.end_ens]
|
246
|
+
)
|
247
|
+
st.write(st.session_state.endpoints)
|
248
|
+
st.session_state.update_mask = True
|
249
|
+
|
250
|
+
if not st.session_state.update_mask:
|
251
|
+
st.write(":red[mask data not updated]")
|
252
|
+
|
253
|
+
|
254
|
+
############ CUT BINS (SIDE LOBE) ############################
|
255
|
+
st.header("Cut Bins: Side Lobe Contamination", divider="blue")
|
256
|
+
st.write(
|
257
|
+
"""
|
258
|
+
The side lobe echos from hard surface such as sea surface or bottom of the ocean can contaminate
|
259
|
+
data closer to this region. The data closer to the surface or bottom can be removed using
|
260
|
+
the relation between beam angle and the thickness of the contaminated layer.
|
261
|
+
"""
|
262
|
+
)
|
263
|
+
|
264
|
+
# Reset mask
|
265
|
+
mask = st.session_state.maskp
|
266
|
+
beam = st.radio("Select beam", (1, 2, 3, 4), horizontal=True)
|
267
|
+
beam = beam - 1
|
268
|
+
st.session_state.beam = beam
|
269
|
+
fillplot_plotly(echo[beam, :, :], title="Echo Intensity")
|
270
|
+
|
271
|
+
with st.form(key="cutbin_form"):
|
272
|
+
extra_cells = st.number_input("Additional Cells to Delete", 0, 10, 0)
|
273
|
+
cut_bins_mask = st.form_submit_button(label="Cut bins")
|
274
|
+
|
275
|
+
if cut_bins_mask:
|
276
|
+
st.session_state.extra_cells = extra_cells
|
277
|
+
mask = side_lobe_beam_angle(flobj, vlobj, mask, extra_cells=extra_cells)
|
278
|
+
fillplot_plotly(
|
279
|
+
echo[beam, :, :],
|
280
|
+
title="Echo Intensity (Masked)",
|
281
|
+
maskdata=mask,
|
282
|
+
)
|
283
|
+
fillplot_plotly(mask, colorscale="greys", title="Mask Data")
|
284
|
+
|
285
|
+
update_mask_cutbin = st.button("Update mask file after cutbin")
|
286
|
+
if update_mask_cutbin:
|
287
|
+
st.session_state.maskp = mask
|
288
|
+
st.write(":green[mask file updated]")
|
289
|
+
st.session_state.update_mask_cutbin = True
|
290
|
+
|
291
|
+
if not st.session_state.update_mask_cutbin:
|
292
|
+
st.write(":red[mask file not updated]")
|
293
|
+
|
294
|
+
|
295
|
+
############ CUT BINS: Manual #################
|
296
|
+
st.header("Cut Bins: Manual", divider="blue")
|
297
|
+
|
298
|
+
|
299
|
+
############ REGRID ###########################################
|
300
|
+
st.header("Regrid Depth Cells", divider="blue")
|
301
|
+
|
302
|
+
st.write(
|
303
|
+
"""
|
304
|
+
When the ADCP buoy has vertical oscillations (greater than depth cell size),
|
305
|
+
the depth bins has to be regridded based on the pressure sensor data. The data
|
306
|
+
can be regrided either till the surface or till the last bin.
|
307
|
+
If the `bin` option is selected, ensure that the end data are trimmed.
|
308
|
+
"""
|
309
|
+
)
|
310
|
+
|
311
|
+
last_cell = st.radio(
|
312
|
+
"Select the depth of last bin for regridding", ("Bin", "Surface"), horizontal=True
|
313
|
+
)
|
314
|
+
st.session_state.last_cell = last_cell
|
315
|
+
st.write(last_cell)
|
316
|
+
regrid_button = st.button(label="Regrid Data")
|
317
|
+
|
318
|
+
|
319
|
+
if regrid_button:
|
320
|
+
st.write(st.session_state.endpoints)
|
321
|
+
z, st.session_state.velocity_regrid = regrid3d(
|
322
|
+
flobj, vlobj, velocity, -32768, trimends=st.session_state.endpoints
|
323
|
+
)
|
324
|
+
st.write(":grey[Regrided velocity ...]")
|
325
|
+
z, st.session_state.echo_regrid = regrid3d(
|
326
|
+
flobj, vlobj, echo, -32768, trimends=st.session_state.endpoints
|
327
|
+
)
|
328
|
+
st.write(":grey[Regrided echo intensity ...]")
|
329
|
+
z, st.session_state.correlation_regrid = regrid3d(
|
330
|
+
flobj, vlobj, correlation, -32768, trimends=st.session_state.endpoints
|
331
|
+
)
|
332
|
+
st.write(":grey[Regrided correlation...]")
|
333
|
+
z, st.session_state.pgood_regrid = regrid3d(
|
334
|
+
flobj, vlobj, pgood, -32768, trimends=st.session_state.endpoints
|
335
|
+
)
|
336
|
+
st.write(":grey[Regrided percent good...]")
|
337
|
+
z, st.session_state.mask_regrid = regrid2d(
|
338
|
+
flobj, vlobj, mask, 1, trimends=st.session_state.endpoints
|
339
|
+
)
|
340
|
+
|
341
|
+
st.session_state.depth = z
|
342
|
+
|
343
|
+
st.write(":grey[Regrided mask...]")
|
344
|
+
st.write(":green[All data regrided!]")
|
345
|
+
|
346
|
+
st.write("No. of grid depth bins before regridding: ", np.shape(velocity)[1])
|
347
|
+
st.write(
|
348
|
+
"No. of grid depth bins after regridding: ",
|
349
|
+
np.shape(st.session_state.velocity_regrid)[1],
|
350
|
+
)
|
351
|
+
fillplot_plotly(
|
352
|
+
st.session_state.velocity_regrid[0, :, :], title="Regridded Velocity File"
|
353
|
+
)
|
354
|
+
fillplot_plotly(velocity[0, :, :], title="Original File")
|
355
|
+
fillplot_plotly(
|
356
|
+
st.session_state.mask_regrid, colorscale="greys", title="Regridded Mask File"
|
357
|
+
)
|
358
|
+
|
359
|
+
st.session_state.isGrid = True
|
360
|
+
st.session_state.isGridSave = False
|
361
|
+
|
362
|
+
|
363
|
+
########### Save and Reset Mask ##############
|
364
|
+
st.header("Save & Reset Mask Data", divider="blue")
|
365
|
+
|
366
|
+
col1, col2 = st.columns([1, 1])
|
367
|
+
with col1:
|
368
|
+
save_mask_button = st.button(label="Save Mask Data")
|
369
|
+
if save_mask_button:
|
370
|
+
if st.session_state.isGrid:
|
371
|
+
st.session_state.profile_mask = st.session_state.mask_regrid
|
372
|
+
st.session_state.isGridSave = True
|
373
|
+
else:
|
374
|
+
st.session_state.profile_mask = st.session_state.maskp
|
375
|
+
st.session_state.isProfileMask = True
|
376
|
+
st.session_state.isVelocityMask = False
|
377
|
+
st.write(":green[Mask data saved]")
|
378
|
+
else:
|
379
|
+
st.write(":red[Mask data not saved]")
|
380
|
+
with col2:
|
381
|
+
reset_mask_button = st.button("Reset mask data")
|
382
|
+
if reset_mask_button:
|
383
|
+
st.session_state.maskp = np.copy(st.session_state.orig_mask)
|
384
|
+
st.write(":green[Mask data is reset to default]")
|
385
|
+
st.session_state.isQCMask = False
|
386
|
+
st.session_state.isProfileMask = False
|
387
|
+
st.session_state.isGrid = False
|
388
|
+
st.session_state.isGridSave = False
|
389
|
+
st.session_state.isVelocityMask = False
|
@@ -0,0 +1,293 @@
|
|
1
|
+
import numpy as np
|
2
|
+
import pandas as pd
|
3
|
+
import plotly.express as px
|
4
|
+
import plotly.graph_objects as go
|
5
|
+
import streamlit as st
|
6
|
+
from plotly.subplots import make_subplots
|
7
|
+
from plotly_resampler import FigureResampler
|
8
|
+
from streamlit.runtime.state import session_state
|
9
|
+
from utils.profile_test import side_lobe_beam_angle
|
10
|
+
from utils.signal_quality import default_mask
|
11
|
+
from utils.velocity_test import (despike, flatline, magnetic_declination,
|
12
|
+
velocity_cutoff)
|
13
|
+
|
14
|
+
if "flead" not in st.session_state:
|
15
|
+
st.write(":red[Please Select Data!]")
|
16
|
+
st.stop()
|
17
|
+
|
18
|
+
flobj = st.session_state.flead
|
19
|
+
vlobj = st.session_state.vlead
|
20
|
+
fdata = flobj.fleader
|
21
|
+
vdata = vlobj.vleader
|
22
|
+
|
23
|
+
|
24
|
+
####### Initialize Mask File ##############
|
25
|
+
# Is this the best way?
|
26
|
+
if st.session_state.isProfileMask or st.session_state.isQCMask:
|
27
|
+
st.write(":grey[Working on a saved mask file ...]")
|
28
|
+
if st.session_state.isVelocityMask:
|
29
|
+
st.write(
|
30
|
+
":orange[Warning: Velocity test already completed. Reset to change settings.]"
|
31
|
+
)
|
32
|
+
reset_selectbox = st.selectbox(
|
33
|
+
"Choose reset option",
|
34
|
+
("Profile Test", "QC Test", "Default"),
|
35
|
+
index=None,
|
36
|
+
placeholder="Reset mask to ...",
|
37
|
+
)
|
38
|
+
if reset_selectbox == "Default":
|
39
|
+
st.write("Default mask file selected")
|
40
|
+
st.session_state.maskd = st.session_state.orig_mask
|
41
|
+
st.session_state.dummyvelocity = st.session_state.velocity
|
42
|
+
elif reset_selectbox == "QC Test":
|
43
|
+
st.write("QC Test mask file selected")
|
44
|
+
st.session_state.maskd = st.session_state.qc_mask
|
45
|
+
st.session_state.dummyvelocity = st.session_state.velocity
|
46
|
+
elif reset_selectbox == "Profile Test":
|
47
|
+
st.session_state.maskd = st.session_state.profile_mask
|
48
|
+
if st.session_state.isGridSave:
|
49
|
+
st.session_state.dummyvelocity = st.session_state.velocity_regrid
|
50
|
+
else:
|
51
|
+
st.session_state.dummyvelocity = st.session_state.velocity
|
52
|
+
else:
|
53
|
+
st.session_state.maskd = st.session_state.velocity_mask
|
54
|
+
st.session_state.dummyvelocity = st.session_state.velocity
|
55
|
+
else:
|
56
|
+
if st.session_state.isProfileMask:
|
57
|
+
st.session_state.maskd = st.session_state.profile_mask
|
58
|
+
elif st.session_state.isQCMask:
|
59
|
+
st.session_state.maskd = st.session_state.qc_mask
|
60
|
+
else:
|
61
|
+
st.session_state.maskd = st.session_state.orig_mask
|
62
|
+
else:
|
63
|
+
st.write(":grey[Creating a new mask file ...]")
|
64
|
+
|
65
|
+
|
66
|
+
if "isCutoff" not in st.session_state:
|
67
|
+
st.session_state.isMagnet = False
|
68
|
+
st.session_state.isCutoff = False
|
69
|
+
st.session_state.isDespike = False
|
70
|
+
st.session_state.isFlatline = False
|
71
|
+
|
72
|
+
if "maskd" not in st.session_state:
|
73
|
+
if st.session_state.isProfileMask:
|
74
|
+
st.session_state.maskd = np.copy(st.session_state.profile_mask)
|
75
|
+
elif st.session_state.isQCMask:
|
76
|
+
st.session_state.maskd = np.copy(st.session_state.qc_mask)
|
77
|
+
else:
|
78
|
+
st.session_state.maskd = np.copy(st.session_state.orig_mask)
|
79
|
+
|
80
|
+
# If data are not regrided use the default one
|
81
|
+
if st.session_state.isGridSave:
|
82
|
+
st.session_state.dummyvelocity = np.copy(st.session_state.velocity_regrid)
|
83
|
+
else:
|
84
|
+
st.session_state.dummyvelocity = np.copy(st.session_state.velocity)
|
85
|
+
|
86
|
+
velocity = st.session_state.dummyvelocity
|
87
|
+
|
88
|
+
ensembles = st.session_state.head.ensembles
|
89
|
+
cells = flobj.field()["Cells"]
|
90
|
+
x = np.arange(0, ensembles, 1)
|
91
|
+
y = np.arange(0, cells, 1)
|
92
|
+
|
93
|
+
|
94
|
+
########### Introduction ##########
|
95
|
+
st.header("Velocity Test", divider="orange")
|
96
|
+
|
97
|
+
st.write(
|
98
|
+
"""
|
99
|
+
The processing in this page apply only to the velocity data.
|
100
|
+
"""
|
101
|
+
)
|
102
|
+
|
103
|
+
############ Magnetic Declination ##############
|
104
|
+
st.header("Magnetic Declination", divider="blue")
|
105
|
+
st.write(
|
106
|
+
"""
|
107
|
+
The magnetic declination is obtained from World Magnetic Model 2020 (WMM2020).
|
108
|
+
The python wrapper module `wmm2020` is available from this [Link](https://github.com/space-physics/wmm2020).
|
109
|
+
If the magnetic declination is reset, re-run the remaining tests again.
|
110
|
+
"""
|
111
|
+
)
|
112
|
+
|
113
|
+
if "isMagnetButton" not in st.session_state:
|
114
|
+
st.session_state.isMagnetButton = False
|
115
|
+
|
116
|
+
|
117
|
+
def toggle_btns():
|
118
|
+
st.session_state.isMagnetButton = not st.session_state.isMagnetButton
|
119
|
+
|
120
|
+
|
121
|
+
with st.form(key="magnet_form"):
|
122
|
+
lat = st.number_input("Latitude", -90.0, 90.0, 0.0, step=1.0)
|
123
|
+
lon = st.number_input("Longitude", 0.0, 360.0, 0.1, step=1.0, format="%.4f")
|
124
|
+
depth = st.number_input("Depth", 0, 1000, 0, step=1)
|
125
|
+
year = st.number_input("Year", 1950, 2100, 2024, 1)
|
126
|
+
|
127
|
+
if st.form_submit_button(
|
128
|
+
"Compute", on_click=toggle_btns, disabled=st.session_state.isMagnetButton
|
129
|
+
):
|
130
|
+
st.session_state.dummyvelocity, mag = magnetic_declination(
|
131
|
+
velocity, lat, lon, depth, year
|
132
|
+
)
|
133
|
+
st.session_state.lat = lat
|
134
|
+
st.session_state.lon = lon
|
135
|
+
st.session_state.magnetic_dec_depth = depth
|
136
|
+
st.session_state.year = year
|
137
|
+
st.session_state.angle = np.trunc(mag[0][0])
|
138
|
+
st.session_state.isMagnet = True
|
139
|
+
|
140
|
+
if st.session_state.isMagnet:
|
141
|
+
st.write(f"Magnetic declination: {st.session_state.angle}\u00b0")
|
142
|
+
st.write(":green[Magnetic declination correction applied to velocities]")
|
143
|
+
|
144
|
+
if st.button(
|
145
|
+
"Reset Magnetic Declination",
|
146
|
+
on_click=toggle_btns,
|
147
|
+
disabled=not st.session_state.isMagnetButton,
|
148
|
+
):
|
149
|
+
st.session_state.dummyvelocity = np.copy(velocity)
|
150
|
+
st.session_state.isMagnet = False
|
151
|
+
|
152
|
+
############# Velocity Cutoffs #################
|
153
|
+
st.header("Velocity Cutoffs", divider="blue")
|
154
|
+
st.write(
|
155
|
+
"""
|
156
|
+
Drop velocities whose magnitude is larger than the threshold.
|
157
|
+
"""
|
158
|
+
)
|
159
|
+
with st.form(key="cutbin_form"):
|
160
|
+
maxuvel = st.number_input("Maximum Zonal Velocity Cutoff (cm/s)", 0, 2000, 250, 1)
|
161
|
+
maxvvel = st.number_input(
|
162
|
+
"Maximum Meridional Velocity Cutoff (cm/s)", 0, 2000, 250, 1
|
163
|
+
)
|
164
|
+
maxwvel = st.number_input("Maximum Vertical Velocity Cutoff (cm/s)", 0, 2000, 15, 1)
|
165
|
+
submit_cutoff = st.form_submit_button(label="Submit")
|
166
|
+
|
167
|
+
if submit_cutoff:
|
168
|
+
|
169
|
+
st.session_state.maxuvel = maxuvel
|
170
|
+
st.session_state.maxvvel = maxvvel
|
171
|
+
st.session_state.maxwvel = maxwvel
|
172
|
+
|
173
|
+
|
174
|
+
st.session_state.maskd = velocity_cutoff(
|
175
|
+
velocity[0, :, :], st.session_state.maskd, cutoff=maxuvel
|
176
|
+
)
|
177
|
+
st.session_state.maskd = velocity_cutoff(
|
178
|
+
velocity[1, :, :], st.session_state.maskd, cutoff=maxvvel
|
179
|
+
)
|
180
|
+
st.session_state.maskd = velocity_cutoff(
|
181
|
+
velocity[2, :, :], st.session_state.maskd, cutoff=maxwvel
|
182
|
+
)
|
183
|
+
st.session_state.isCutoff = True
|
184
|
+
|
185
|
+
|
186
|
+
if st.session_state.isCutoff:
|
187
|
+
st.write("Cutoff Applied")
|
188
|
+
a = {
|
189
|
+
"Max. Zonal Velocity": maxuvel,
|
190
|
+
"Max. Meridional Velocity": maxvvel,
|
191
|
+
"Max. Vertical Velocity": maxwvel,
|
192
|
+
}
|
193
|
+
st.write(a)
|
194
|
+
|
195
|
+
|
196
|
+
############## DESPIKE DATA #################
|
197
|
+
st.header("Despike Data", divider="blue")
|
198
|
+
despike_kernal = st.number_input(
|
199
|
+
"Enter Despike Kernal Size for Median Filter", 0, 1000, 5, 1
|
200
|
+
)
|
201
|
+
despike_cutoff = st.number_input("Enter Despike Cutoff (mm/s)", 0, 1000, 150, 1)
|
202
|
+
despike_button = st.button("Despike")
|
203
|
+
if despike_button:
|
204
|
+
|
205
|
+
st.session_state.despike_kernal = despike_kernal
|
206
|
+
st.session_state.despike_cutoff = despike_cutoff
|
207
|
+
|
208
|
+
st.session_state.maskd = despike(
|
209
|
+
velocity[0, :, :],
|
210
|
+
st.session_state.maskd,
|
211
|
+
kernal_size=despike_kernal,
|
212
|
+
cutoff=despike_cutoff,
|
213
|
+
)
|
214
|
+
st.session_state.maskd = despike(
|
215
|
+
velocity[1, :, :],
|
216
|
+
st.session_state.maskd,
|
217
|
+
kernal_size=despike_kernal,
|
218
|
+
cutoff=despike_cutoff,
|
219
|
+
)
|
220
|
+
st.session_state.isDespike = True
|
221
|
+
|
222
|
+
if st.session_state.isDespike:
|
223
|
+
st.write("Data Despiked")
|
224
|
+
b = {
|
225
|
+
"Kernal Size": despike_kernal,
|
226
|
+
"Despike Cutoff": despike_cutoff,
|
227
|
+
}
|
228
|
+
st.write(b)
|
229
|
+
|
230
|
+
st.header("Remove Flatline", divider="blue")
|
231
|
+
flatline_kernal = st.number_input("Enter Flatline Kernal Size", 0, 100, 13, 1)
|
232
|
+
flatline_cutoff = st.number_input("Enter Flatline deviation", 0, 100, 1, 1)
|
233
|
+
|
234
|
+
flatline_button = st.button("Remove Flatline")
|
235
|
+
|
236
|
+
if flatline_button:
|
237
|
+
st.session_state.flatline_kernal = flatline_kernal
|
238
|
+
st.session_state.flatline_cutoff = flatline_cutoff
|
239
|
+
|
240
|
+
st.session_state.maskd = flatline(
|
241
|
+
velocity[0, :, :],
|
242
|
+
st.session_state.maskd,
|
243
|
+
kernal_size=flatline_kernal,
|
244
|
+
cutoff=flatline_cutoff,
|
245
|
+
)
|
246
|
+
st.session_state.maskd = flatline(
|
247
|
+
velocity[1, :, :],
|
248
|
+
st.session_state.maskd,
|
249
|
+
kernal_size=flatline_kernal,
|
250
|
+
cutoff=flatline_cutoff,
|
251
|
+
)
|
252
|
+
st.session_state.maskd = flatline(
|
253
|
+
velocity[2, :, :],
|
254
|
+
st.session_state.maskd,
|
255
|
+
kernal_size=flatline_kernal,
|
256
|
+
cutoff=flatline_cutoff,
|
257
|
+
)
|
258
|
+
st.session_state.isFlatline = True
|
259
|
+
|
260
|
+
if st.session_state.isFlatline:
|
261
|
+
st.write(":green[Flatline Removed]")
|
262
|
+
b = {
|
263
|
+
"Kernal Size": flatline_kernal,
|
264
|
+
"Flatline Cutoff": flatline_cutoff,
|
265
|
+
}
|
266
|
+
st.write(b)
|
267
|
+
|
268
|
+
|
269
|
+
##################### SAVE DATA ###################
|
270
|
+
st.header("Save & Reset Data", divider="blue")
|
271
|
+
|
272
|
+
|
273
|
+
def reset_data():
|
274
|
+
st.session_state.dummyvelocity = np.copy(st.session_state.velocity_regrid)
|
275
|
+
st.session_state.isMagnet = False
|
276
|
+
st.session_state.isCutoff = False
|
277
|
+
st.session_state.isDespike = False
|
278
|
+
st.session_state.isFlatline = False
|
279
|
+
|
280
|
+
|
281
|
+
col1, col2 = st.columns([1, 1])
|
282
|
+
with col1:
|
283
|
+
save_button = st.button(label="Save Data")
|
284
|
+
if save_button:
|
285
|
+
st.session_state.veltest_velocity = np.copy(st.session_state.dummyvelocity)
|
286
|
+
st.session_state.velocity_mask = np.copy(st.session_state.maskd)
|
287
|
+
st.session_state.isVelocityMask = True
|
288
|
+
st.write(":green[Mask data saved]")
|
289
|
+
else:
|
290
|
+
st.write(":red[Data not saved]")
|
291
|
+
|
292
|
+
with col2:
|
293
|
+
st.button(label="Reset Data", on_click=reset_data)
|