pyTEMlib 0.2025.4.1__py3-none-any.whl → 0.2025.9.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pyTEMlib might be problematic. Click here for more details.
- build/lib/pyTEMlib/__init__.py +33 -0
- build/lib/pyTEMlib/animation.py +640 -0
- build/lib/pyTEMlib/atom_tools.py +238 -0
- build/lib/pyTEMlib/config_dir.py +31 -0
- build/lib/pyTEMlib/crystal_tools.py +1219 -0
- build/lib/pyTEMlib/diffraction_plot.py +756 -0
- build/lib/pyTEMlib/dynamic_scattering.py +293 -0
- build/lib/pyTEMlib/eds_tools.py +826 -0
- build/lib/pyTEMlib/eds_xsections.py +432 -0
- build/lib/pyTEMlib/eels_tools/__init__.py +44 -0
- build/lib/pyTEMlib/eels_tools/core_loss_tools.py +751 -0
- build/lib/pyTEMlib/eels_tools/eels_database.py +134 -0
- build/lib/pyTEMlib/eels_tools/low_loss_tools.py +655 -0
- build/lib/pyTEMlib/eels_tools/peak_fit_tools.py +175 -0
- build/lib/pyTEMlib/eels_tools/zero_loss_tools.py +264 -0
- build/lib/pyTEMlib/file_reader.py +274 -0
- build/lib/pyTEMlib/file_tools.py +811 -0
- build/lib/pyTEMlib/get_bote_salvat.py +69 -0
- build/lib/pyTEMlib/graph_tools.py +1153 -0
- build/lib/pyTEMlib/graph_viz.py +599 -0
- build/lib/pyTEMlib/image/__init__.py +37 -0
- build/lib/pyTEMlib/image/image_atoms.py +270 -0
- build/lib/pyTEMlib/image/image_clean.py +197 -0
- build/lib/pyTEMlib/image/image_distortion.py +299 -0
- build/lib/pyTEMlib/image/image_fft.py +277 -0
- build/lib/pyTEMlib/image/image_graph.py +926 -0
- build/lib/pyTEMlib/image/image_registration.py +316 -0
- build/lib/pyTEMlib/image/image_utilities.py +309 -0
- build/lib/pyTEMlib/image/image_window.py +421 -0
- build/lib/pyTEMlib/image_tools.py +699 -0
- build/lib/pyTEMlib/interactive_image.py +1 -0
- build/lib/pyTEMlib/kinematic_scattering.py +1196 -0
- build/lib/pyTEMlib/microscope.py +61 -0
- build/lib/pyTEMlib/probe_tools.py +906 -0
- build/lib/pyTEMlib/sidpy_tools.py +153 -0
- build/lib/pyTEMlib/simulation_tools.py +104 -0
- build/lib/pyTEMlib/test.py +437 -0
- build/lib/pyTEMlib/utilities.py +314 -0
- build/lib/pyTEMlib/version.py +5 -0
- build/lib/pyTEMlib/xrpa_x_sections.py +20976 -0
- pyTEMlib/__init__.py +25 -3
- pyTEMlib/animation.py +31 -22
- pyTEMlib/atom_tools.py +29 -34
- pyTEMlib/config_dir.py +2 -28
- pyTEMlib/crystal_tools.py +129 -165
- pyTEMlib/eds_tools.py +559 -342
- pyTEMlib/eds_xsections.py +432 -0
- pyTEMlib/eels_tools/__init__.py +44 -0
- pyTEMlib/eels_tools/core_loss_tools.py +751 -0
- pyTEMlib/eels_tools/eels_database.py +134 -0
- pyTEMlib/eels_tools/low_loss_tools.py +655 -0
- pyTEMlib/eels_tools/peak_fit_tools.py +175 -0
- pyTEMlib/eels_tools/zero_loss_tools.py +264 -0
- pyTEMlib/file_reader.py +274 -0
- pyTEMlib/file_tools.py +260 -1130
- pyTEMlib/get_bote_salvat.py +69 -0
- pyTEMlib/graph_tools.py +101 -174
- pyTEMlib/graph_viz.py +150 -0
- pyTEMlib/image/__init__.py +37 -0
- pyTEMlib/image/image_atoms.py +270 -0
- pyTEMlib/image/image_clean.py +197 -0
- pyTEMlib/image/image_distortion.py +299 -0
- pyTEMlib/image/image_fft.py +277 -0
- pyTEMlib/image/image_graph.py +926 -0
- pyTEMlib/image/image_registration.py +316 -0
- pyTEMlib/image/image_utilities.py +309 -0
- pyTEMlib/image/image_window.py +421 -0
- pyTEMlib/image_tools.py +154 -915
- pyTEMlib/kinematic_scattering.py +1 -1
- pyTEMlib/probe_tools.py +1 -1
- pyTEMlib/test.py +437 -0
- pyTEMlib/utilities.py +314 -0
- pyTEMlib/version.py +2 -3
- pyTEMlib/xrpa_x_sections.py +14 -10
- {pytemlib-0.2025.4.1.dist-info → pytemlib-0.2025.9.1.dist-info}/METADATA +13 -16
- pytemlib-0.2025.9.1.dist-info/RECORD +86 -0
- {pytemlib-0.2025.4.1.dist-info → pytemlib-0.2025.9.1.dist-info}/WHEEL +1 -1
- pytemlib-0.2025.9.1.dist-info/top_level.txt +6 -0
- pyTEMlib/core_loss_widget.py +0 -721
- pyTEMlib/eels_dialog.py +0 -754
- pyTEMlib/eels_dialog_utilities.py +0 -1199
- pyTEMlib/eels_tools.py +0 -2359
- pyTEMlib/file_tools_qt.py +0 -193
- pyTEMlib/image_dialog.py +0 -158
- pyTEMlib/image_dlg.py +0 -146
- pyTEMlib/info_widget.py +0 -1086
- pyTEMlib/info_widget3.py +0 -1120
- pyTEMlib/low_loss_widget.py +0 -479
- pyTEMlib/peak_dialog.py +0 -1129
- pyTEMlib/peak_dlg.py +0 -286
- pytemlib-0.2025.4.1.dist-info/RECORD +0 -38
- pytemlib-0.2025.4.1.dist-info/top_level.txt +0 -1
- {pytemlib-0.2025.4.1.dist-info → pytemlib-0.2025.9.1.dist-info}/entry_points.txt +0 -0
- {pytemlib-0.2025.4.1.dist-info → pytemlib-0.2025.9.1.dist-info}/licenses/LICENSE +0 -0
pyTEMlib/peak_dialog.py
DELETED
|
@@ -1,1129 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
EELS Input Dialog for ELNES Analysis
|
|
3
|
-
"""
|
|
4
|
-
from os import error
|
|
5
|
-
Qt_available = True
|
|
6
|
-
try:
|
|
7
|
-
from PyQt5 import QtCore, QtWidgets
|
|
8
|
-
except:
|
|
9
|
-
Qt_available = False
|
|
10
|
-
# print('Qt dialogs are not available')
|
|
11
|
-
|
|
12
|
-
import numpy as np
|
|
13
|
-
import scipy
|
|
14
|
-
import scipy.optimize
|
|
15
|
-
import scipy.signal
|
|
16
|
-
|
|
17
|
-
import ipywidgets
|
|
18
|
-
from IPython.display import display
|
|
19
|
-
import matplotlib
|
|
20
|
-
import matplotlib.pylab as plt
|
|
21
|
-
import matplotlib.patches as patches
|
|
22
|
-
|
|
23
|
-
import sidpy
|
|
24
|
-
import pyTEMlib.file_tools as ft
|
|
25
|
-
from pyTEMlib import eels_tools
|
|
26
|
-
from pyTEMlib import peak_dlg
|
|
27
|
-
from pyTEMlib import eels_dialog_utilities
|
|
28
|
-
|
|
29
|
-
advanced_present = True
|
|
30
|
-
try:
|
|
31
|
-
import advanced_eels_tools
|
|
32
|
-
print('advanced EELS features enabled')
|
|
33
|
-
except ModuleNotFoundError:
|
|
34
|
-
advanced_present = False
|
|
35
|
-
|
|
36
|
-
_version = .001
|
|
37
|
-
|
|
38
|
-
def get_sidebar():
|
|
39
|
-
side_bar = ipywidgets.GridspecLayout(16, 3, width='auto', grid_gap="0px")
|
|
40
|
-
row = 0
|
|
41
|
-
side_bar[row, :3] = ipywidgets.Button(description='Fit Area',
|
|
42
|
-
layout=ipywidgets.Layout(width='auto', grid_area='header'),
|
|
43
|
-
style=ipywidgets.ButtonStyle(button_color='lightblue'))
|
|
44
|
-
row += 1
|
|
45
|
-
side_bar[row, :2] = ipywidgets.FloatText(value=7.5,description='Fit Start:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
46
|
-
side_bar[row, 2] = ipywidgets.widgets.Label(value="eV", layout=ipywidgets.Layout(width='20px'))
|
|
47
|
-
row += 1
|
|
48
|
-
side_bar[row, :2] = ipywidgets.FloatText(value=0.1, description='Fit End:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
49
|
-
side_bar[row, 2] = ipywidgets.widgets.Label(value="eV", layout=ipywidgets.Layout(width='20px'))
|
|
50
|
-
|
|
51
|
-
row += 1
|
|
52
|
-
side_bar[row, :3] = ipywidgets.Button(description='Peak Finding',
|
|
53
|
-
layout=ipywidgets.Layout(width='auto', grid_area='header'),
|
|
54
|
-
style=ipywidgets.ButtonStyle(button_color='lightblue'))
|
|
55
|
-
|
|
56
|
-
row += 1
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
side_bar[row, :2] = ipywidgets.Dropdown(
|
|
60
|
-
options=[('0', 0), ('1', 1), ('2', 2), ('3', 3), ('4', 4)],
|
|
61
|
-
value=0,
|
|
62
|
-
description='Peaks:',
|
|
63
|
-
disabled=False,
|
|
64
|
-
layout=ipywidgets.Layout(width='200px'))
|
|
65
|
-
|
|
66
|
-
side_bar[row, 2] = ipywidgets.Button(
|
|
67
|
-
description='Smooth',
|
|
68
|
-
disabled=False,
|
|
69
|
-
button_style='', # 'success', 'info', 'warning', 'danger' or ''
|
|
70
|
-
tooltip='Do Gaussian Mixing',
|
|
71
|
-
layout=ipywidgets.Layout(width='100px'))
|
|
72
|
-
|
|
73
|
-
row += 1
|
|
74
|
-
side_bar[row, :2] = ipywidgets.FloatText(value=0.1, description='Number:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
75
|
-
side_bar[row, 2] = ipywidgets.Button(
|
|
76
|
-
description='Find',
|
|
77
|
-
disabled=False,
|
|
78
|
-
button_style='', # 'success', 'info', 'warning', 'danger' or ''
|
|
79
|
-
tooltip='Find first peaks from Gaussian mixture',
|
|
80
|
-
layout=ipywidgets.Layout(width='100px'))
|
|
81
|
-
|
|
82
|
-
row += 1
|
|
83
|
-
|
|
84
|
-
side_bar[row, :3] = ipywidgets.Button(description='Peaks',
|
|
85
|
-
layout=ipywidgets.Layout(width='auto', grid_area='header'),
|
|
86
|
-
style=ipywidgets.ButtonStyle(button_color='lightblue'))
|
|
87
|
-
row += 1
|
|
88
|
-
side_bar[row, :2] = ipywidgets.Dropdown(
|
|
89
|
-
options=[('Peak 1', 0), ('add peak', -1)],
|
|
90
|
-
value=0,
|
|
91
|
-
description='Peaks:',
|
|
92
|
-
disabled=False,
|
|
93
|
-
layout=ipywidgets.Layout(width='200px'))
|
|
94
|
-
side_bar[row, 2] = ipywidgets.widgets.Label(value="", layout=ipywidgets.Layout(width='100px'))
|
|
95
|
-
row += 1
|
|
96
|
-
side_bar[row, :2] = ipywidgets.Dropdown(
|
|
97
|
-
options=[ 'Gauss', 'Lorentzian', 'Drude', 'Zero-Loss'],
|
|
98
|
-
value='Gauss',
|
|
99
|
-
description='Symmetry:',
|
|
100
|
-
disabled=False,
|
|
101
|
-
layout=ipywidgets.Layout(width='200px'))
|
|
102
|
-
row += 1
|
|
103
|
-
side_bar[row, :2] = ipywidgets.FloatText(value=0.1, description='Position:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
104
|
-
side_bar[row, 2] = ipywidgets.widgets.Label(value="eV", layout=ipywidgets.Layout(width='100px'))
|
|
105
|
-
row += 1
|
|
106
|
-
side_bar[row, :2] = ipywidgets.FloatText(value=0.1, description='Amplitude:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
107
|
-
side_bar[row, 2] = ipywidgets.widgets.Label(value="eV", layout=ipywidgets.Layout(width='100px'))
|
|
108
|
-
row += 1
|
|
109
|
-
side_bar[row, :2] = ipywidgets.FloatText(value=0.1, description='Width FWHM:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
110
|
-
side_bar[row, 2] = ipywidgets.widgets.Label(value="eV", layout=ipywidgets.Layout(width='100px'))
|
|
111
|
-
row += 1
|
|
112
|
-
side_bar[row, :2] = ipywidgets.FloatText(value=0.1, description='Asymmetry:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
113
|
-
side_bar[row, 2] = ipywidgets.widgets.Label(value="a.u.", layout=ipywidgets.Layout(width='100px'))
|
|
114
|
-
row += 1
|
|
115
|
-
|
|
116
|
-
side_bar[row, :3] = ipywidgets.Button(description='White-Line',
|
|
117
|
-
layout=ipywidgets.Layout(width='auto', grid_area='header'),
|
|
118
|
-
style=ipywidgets.ButtonStyle(button_color='lightblue'))
|
|
119
|
-
|
|
120
|
-
row += 1
|
|
121
|
-
side_bar[row, :2] = ipywidgets.Dropdown(
|
|
122
|
-
options=[('None', 0)],
|
|
123
|
-
value=0,
|
|
124
|
-
description='Ratio:',
|
|
125
|
-
disabled=False,
|
|
126
|
-
layout=ipywidgets.Layout(width='200px'))
|
|
127
|
-
side_bar[row, 2] = ipywidgets.widgets.Label(value=" ", layout=ipywidgets.Layout(width='100px'))
|
|
128
|
-
row += 1
|
|
129
|
-
side_bar[row, :2] = ipywidgets.Dropdown(
|
|
130
|
-
options=[('None', 0)],
|
|
131
|
-
value=0,
|
|
132
|
-
description= 'Sum:',
|
|
133
|
-
disabled=False,
|
|
134
|
-
layout=ipywidgets.Layout(width='200px'))
|
|
135
|
-
side_bar[row, 2] = ipywidgets.widgets.Label(value=" ", layout=ipywidgets.Layout(width='100px'))
|
|
136
|
-
return side_bar
|
|
137
|
-
|
|
138
|
-
class PeakFitWidget(object):
|
|
139
|
-
def __init__(self, datasets, key):
|
|
140
|
-
self.datasets = datasets
|
|
141
|
-
if not isinstance(datasets, dict):
|
|
142
|
-
raise TypeError('need dictioary of sidpy datasets')
|
|
143
|
-
|
|
144
|
-
self.sidebar = get_sidebar()
|
|
145
|
-
self.key = key
|
|
146
|
-
self.dataset = datasets[self.key]
|
|
147
|
-
if not isinstance(self.dataset, sidpy.Dataset):
|
|
148
|
-
raise TypeError('dataset or first item inhas to be a sidpy dataset')
|
|
149
|
-
|
|
150
|
-
self.model = np.array([])
|
|
151
|
-
self.y_scale = 1.0
|
|
152
|
-
self.change_y_scale = 1.0
|
|
153
|
-
self.spectrum_ll = None
|
|
154
|
-
self.low_loss_key = None
|
|
155
|
-
|
|
156
|
-
self.peaks = {}
|
|
157
|
-
|
|
158
|
-
self.show_regions = False
|
|
159
|
-
|
|
160
|
-
self.set_dataset()
|
|
161
|
-
|
|
162
|
-
self.app_layout = ipywidgets.AppLayout(
|
|
163
|
-
left_sidebar=self.sidebar,
|
|
164
|
-
center=self.view.panel,
|
|
165
|
-
footer=None,#message_bar,
|
|
166
|
-
pane_heights=[0, 10, 0],
|
|
167
|
-
pane_widths=[4, 10, 0],
|
|
168
|
-
)
|
|
169
|
-
display(self.app_layout)
|
|
170
|
-
self.set_action()
|
|
171
|
-
|
|
172
|
-
def line_select_callback(self, x_min, x_max):
|
|
173
|
-
self.start_cursor.value = np.round(x_min,3)
|
|
174
|
-
self.end_cursor.value = np.round(x_max, 3)
|
|
175
|
-
self.start_channel = np.searchsorted(self.datasets[self.key].energy_loss, self.start_cursor.value)
|
|
176
|
-
self.end_channel = np.searchsorted(self.datasets[self.key].energy_loss, self.end_cursor.value)
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
def set_peak_list(self):
|
|
180
|
-
self.peak_list = []
|
|
181
|
-
if 'peaks' not in self.peaks:
|
|
182
|
-
self.peaks['peaks'] = {}
|
|
183
|
-
key = 0
|
|
184
|
-
for key in self.peaks['peaks']:
|
|
185
|
-
if key.isdigit():
|
|
186
|
-
self.peak_list.append((f'Peak {int(key) + 1}', int(key)))
|
|
187
|
-
self.peak_list.append(('add peak', -1))
|
|
188
|
-
#self.sidebar[7, 0].options = self.peak_list
|
|
189
|
-
#self.sidebar[7, 0].value = 0
|
|
190
|
-
|
|
191
|
-
|
|
192
|
-
def plot(self, scale=True):
|
|
193
|
-
|
|
194
|
-
self.view.change_y_scale = self.change_y_scale
|
|
195
|
-
self.view.y_scale = self.y_scale
|
|
196
|
-
self.energy_scale = self.dataset.energy_loss.values
|
|
197
|
-
|
|
198
|
-
if self.dataset.data_type == sidpy.DataType.SPECTRAL_IMAGE:
|
|
199
|
-
spectrum = self.dataset.view.get_spectrum()
|
|
200
|
-
else:
|
|
201
|
-
spectrum = self.dataset
|
|
202
|
-
#if 'features' in self.peaks:
|
|
203
|
-
if 'resolution_function' in self.datasets.keys():
|
|
204
|
-
|
|
205
|
-
zl = self.datasets['resolution_function'] # self.peaks['features']]
|
|
206
|
-
additional_spectra = {}
|
|
207
|
-
if len(self.model) > 1:
|
|
208
|
-
additional_spectra = {'model': self.model,
|
|
209
|
-
'difference': spectrum-self.model,
|
|
210
|
-
'zero_loss': self.datasets['resolution_function']}
|
|
211
|
-
else:
|
|
212
|
-
additional_spectra = {}
|
|
213
|
-
if 'peaks' in self.peaks:
|
|
214
|
-
if len(self.peaks)>0:
|
|
215
|
-
for index, peak in self.peaks['peaks'].items(): # ll
|
|
216
|
-
p = [peak['position'], peak['amplitude'], peak['width']]
|
|
217
|
-
additional_spectra[f'peak {index}']= gauss(np.array(self.energy_scale), p)
|
|
218
|
-
self.view.plot(scale=True, additional_spectra=additional_spectra )
|
|
219
|
-
self.change_y_scale = 1.
|
|
220
|
-
|
|
221
|
-
self.view.figure.canvas.draw_idle()
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
def set_dataset(self, index=0):
|
|
225
|
-
self.spec_dim = ft.get_dimensions_by_type('spectral', self.dataset)
|
|
226
|
-
if len(self.spec_dim) != 1:
|
|
227
|
-
raise TypeError('We need exactly one SPECTRAL dimension')
|
|
228
|
-
self.spec_dim = self.spec_dim[0]
|
|
229
|
-
self.energy_scale = self.spec_dim[1]
|
|
230
|
-
|
|
231
|
-
self.y_scale = 1.0
|
|
232
|
-
self.change_y_scale = 1.0
|
|
233
|
-
|
|
234
|
-
if 'peak_fit' not in self.dataset.metadata:
|
|
235
|
-
self.dataset.metadata['peak_fit'] = {}
|
|
236
|
-
if 'edges' in self.dataset.metadata:
|
|
237
|
-
if 'fit_area' in self.dataset.metadata['edges']:
|
|
238
|
-
self.dataset.metadata['peak_fit']['fit_start'] = self.dataset.metadata['edges']['fit_area']['fit_start']
|
|
239
|
-
self.dataset.metadata['peak_fit']['fit_end'] = self.dataset.metadata['edges']['fit_area']['fit_end']
|
|
240
|
-
self.dataset.metadata['peak_fit']['peaks'] = {'0': {'position': self.energy_scale[1],
|
|
241
|
-
'amplitude': 1000.0, 'width': 1.0,
|
|
242
|
-
'type': 'Gauss', 'asymmetry': 0}}
|
|
243
|
-
|
|
244
|
-
self.peaks = self.dataset.metadata['peak_fit']
|
|
245
|
-
if 'fit_start' not in self.peaks:
|
|
246
|
-
self.peaks['fit_start'] = self.energy_scale[1]
|
|
247
|
-
if 'fit_end' not in self.peaks:
|
|
248
|
-
self.peaks['fit_end'] = self.energy_scale[-2]
|
|
249
|
-
|
|
250
|
-
if 'peak_model' in self.peaks:
|
|
251
|
-
self.peak_model = self.peaks['peak_model']
|
|
252
|
-
self.model = self.peak_model
|
|
253
|
-
if 'edge_model' in self.peaks:
|
|
254
|
-
self.model = self.model + self.peaks['edge_model']
|
|
255
|
-
else:
|
|
256
|
-
self.model = np.array([])
|
|
257
|
-
self.peak_model = np.array([])
|
|
258
|
-
if 'peak_out_list' in self.peaks:
|
|
259
|
-
self.peak_out_list = self.peaks['peak_out_list']
|
|
260
|
-
self.set_peak_list()
|
|
261
|
-
|
|
262
|
-
# check whether a core loss analysis has been done previously
|
|
263
|
-
if not hasattr(self, 'core_loss') and 'edges' in self.dataset.metadata:
|
|
264
|
-
self.core_loss = True
|
|
265
|
-
else:
|
|
266
|
-
self.core_loss = False
|
|
267
|
-
|
|
268
|
-
self.update()
|
|
269
|
-
if self.dataset.data_type.name =='SPECTRAL_IMAGE':
|
|
270
|
-
self.view = eels_dialog_utilities.SIPlot(self.dataset)
|
|
271
|
-
else:
|
|
272
|
-
self.view = eels_dialog_utilities.SpectrumPlot(self.dataset)
|
|
273
|
-
self.dataset.view = self.view
|
|
274
|
-
#self.view.legend(loc='Upper Right')
|
|
275
|
-
self.y_scale = 1.0
|
|
276
|
-
self.change_y_scale = 1.0
|
|
277
|
-
|
|
278
|
-
def set_fit_area(self, value):
|
|
279
|
-
|
|
280
|
-
self.peaks['fit_start'] = self.sidebar[1, 0].value
|
|
281
|
-
self.peaks['fit_end'] = self.sidebar[2, 0].value
|
|
282
|
-
|
|
283
|
-
self.plot()
|
|
284
|
-
|
|
285
|
-
def set_y_scale(self, value):
|
|
286
|
-
self.change_y_scale = 1/self.y_scale
|
|
287
|
-
if self.sidebar[12, 0].value:
|
|
288
|
-
dispersion = self.energy_scale[1] - self.energy_scale[0]
|
|
289
|
-
self.y_scale = 1/self.dataset.metadata['experiment']['flux_ppm'] * dispersion
|
|
290
|
-
else:
|
|
291
|
-
self.y_scale = 1.0
|
|
292
|
-
|
|
293
|
-
self.change_y_scale *= self.y_scale
|
|
294
|
-
self.update()
|
|
295
|
-
self.plot()
|
|
296
|
-
|
|
297
|
-
def update(self, index=0):
|
|
298
|
-
|
|
299
|
-
# self.setWindowTitle('update')
|
|
300
|
-
self.sidebar[1, 0].value = self.peaks['fit_start']
|
|
301
|
-
self.sidebar[2, 0].value = self.peaks['fit_end']
|
|
302
|
-
|
|
303
|
-
peak_index = self.sidebar[7, 0].value
|
|
304
|
-
self.peak_index = self.sidebar[7, 0].value
|
|
305
|
-
if str(peak_index) not in self.peaks['peaks']:
|
|
306
|
-
self.peaks['peaks'][str(peak_index)] = {'position': self.energy_scale[1], 'amplitude': 1000.0,
|
|
307
|
-
'width': 1.0, 'type': 'Gauss', 'asymmetry': 0}
|
|
308
|
-
self.sidebar[8, 0].value = self.peaks['peaks'][str(peak_index)]['type']
|
|
309
|
-
if 'associated_edge' in self.peaks['peaks'][str(peak_index)]:
|
|
310
|
-
self.sidebar[7, 2].value = (self.peaks['peaks'][str(peak_index)]['associated_edge'])
|
|
311
|
-
else:
|
|
312
|
-
self.sidebar[7, 2].value = ''
|
|
313
|
-
self.sidebar[9, 0].value = self.peaks['peaks'][str(peak_index)]['position']
|
|
314
|
-
self.sidebar[10, 0].value = self.peaks['peaks'][str(peak_index)]['amplitude']
|
|
315
|
-
self.sidebar[11, 0].value = self.peaks['peaks'][str(peak_index)]['width']
|
|
316
|
-
if 'asymmetry' not in self.peaks['peaks'][str(peak_index)]:
|
|
317
|
-
self.peaks['peaks'][str(peak_index)]['asymmetry'] = 0.
|
|
318
|
-
self.sidebar[12, 0].value = self.peaks['peaks'][str(peak_index)]['asymmetry']
|
|
319
|
-
|
|
320
|
-
|
|
321
|
-
def get_input(self):
|
|
322
|
-
p_in = []
|
|
323
|
-
for key, peak in self.peaks['peaks'].items():
|
|
324
|
-
if key.isdigit():
|
|
325
|
-
p_in.append(peak['position'])
|
|
326
|
-
p_in.append(peak['amplitude'])
|
|
327
|
-
p_in.append(peak['width'])
|
|
328
|
-
return p_in
|
|
329
|
-
|
|
330
|
-
|
|
331
|
-
def fit_peaks(self, value=0):
|
|
332
|
-
"""Fit spectrum with peaks given in peaks dictionary"""
|
|
333
|
-
# print('Fitting peaks...')
|
|
334
|
-
|
|
335
|
-
if self.dataset.data_type.name == 'SPECTRUM':
|
|
336
|
-
spectrum = np.array(self.dataset)
|
|
337
|
-
else:
|
|
338
|
-
spectrum = self.dataset.view.get_spectrum()
|
|
339
|
-
spectrum -= spectrum.min() - 1
|
|
340
|
-
# set the energy scale and fit start and end points
|
|
341
|
-
energy_scale = np.array(self.energy_scale)
|
|
342
|
-
start_channel = np.searchsorted(energy_scale, self.peaks['fit_start'])
|
|
343
|
-
end_channel = np.searchsorted(energy_scale, self.peaks['fit_end'])
|
|
344
|
-
|
|
345
|
-
energy_scale = self.energy_scale[start_channel:end_channel]
|
|
346
|
-
# select the core loss model if it exists. Otherwise, we will fit to the full spectrum.
|
|
347
|
-
if 'model' in self.dataset.metadata:
|
|
348
|
-
model = self.dataset.metadata['model'][start_channel:end_channel]
|
|
349
|
-
elif self.core_loss:
|
|
350
|
-
# print('Core loss model found. Fitting on top of the model.')
|
|
351
|
-
model = self.dataset.metadata['edges']['model']['spectrum'][start_channel:end_channel]
|
|
352
|
-
else:
|
|
353
|
-
|
|
354
|
-
# print('No core loss model found. Fitting to the full spectrum.')
|
|
355
|
-
model = np.zeros(end_channel - start_channel)
|
|
356
|
-
|
|
357
|
-
# if we have a core loss model we will only fit the difference between the model and the data.
|
|
358
|
-
difference = np.array(spectrum[start_channel:end_channel] - model)
|
|
359
|
-
p_in = self.get_input()
|
|
360
|
-
# find the optimum fitting parameters
|
|
361
|
-
#[self.p_out, _] = scipy.optimize.leastsq(eels_tools.residuals_smooth, np.array(p_in), ftol=1e-3,
|
|
362
|
-
# args=(energy_scale, difference, False))
|
|
363
|
-
|
|
364
|
-
[self.p_out, _] = scipy.optimize.leastsq(eels_tools.residuals3, np.array(p_in, dtype=np.float64),
|
|
365
|
-
args=(energy_scale, difference) ) # , False))
|
|
366
|
-
# construct the fit data from the optimized parameters
|
|
367
|
-
#self.peak_model = np.zeros(len(self.energy_scale))
|
|
368
|
-
#self.model = np.zeros(len(self.energy_scale))
|
|
369
|
-
#self.model[start_channel:end_channel] = model
|
|
370
|
-
#fit = eels_tools.model_smooth(energy_scale, self.p_out, False)
|
|
371
|
-
fit = eels_tools.gmm(energy_scale, self.p_out) # , False)
|
|
372
|
-
self.peak_model = fit
|
|
373
|
-
|
|
374
|
-
#self.peak_model[start_channel:end_channel] = fit
|
|
375
|
-
#self.dataset.metadata['peak_fit']['edge_model'] = self.model
|
|
376
|
-
#self.model = self.model + self.peak_model
|
|
377
|
-
#self.dataset.metadata['peak_fit']['peak_model'] = self.peak_model
|
|
378
|
-
|
|
379
|
-
for key, peak in self.peaks['peaks'].items():
|
|
380
|
-
if key.isdigit():
|
|
381
|
-
p_index = int(key)*3
|
|
382
|
-
self.peaks['peaks'][key] = {'position': self.p_out[p_index],
|
|
383
|
-
'amplitude': self.p_out[p_index+1],
|
|
384
|
-
'width': self.p_out[p_index+2],
|
|
385
|
-
'type': 'Gauss',
|
|
386
|
-
'associated_edge': ''}
|
|
387
|
-
|
|
388
|
-
eels_tools.find_associated_edges(self.dataset)
|
|
389
|
-
self.find_white_lines()
|
|
390
|
-
self.update()
|
|
391
|
-
self.plot()
|
|
392
|
-
|
|
393
|
-
|
|
394
|
-
|
|
395
|
-
def find_white_lines(self):
|
|
396
|
-
eels_tools.find_white_lines(self.dataset)
|
|
397
|
-
self.wl_list = []
|
|
398
|
-
self.wls_list = []
|
|
399
|
-
if 'white_line_ratios' in self.dataset.metadata['peak_fit']:
|
|
400
|
-
if len(self.dataset.metadata['peak_fit']['white_line_ratios']) > 0:
|
|
401
|
-
for key in self.dataset.metadata['peak_fit']['white_line_ratios']:
|
|
402
|
-
self.wl_list.append(key)
|
|
403
|
-
for key in self.dataset.metadata['peak_fit']['white_line_sums']:
|
|
404
|
-
self.wls_list.append(key)
|
|
405
|
-
|
|
406
|
-
self.sidebar[14, 0].options = self.wl_list
|
|
407
|
-
self.sidebar[14, 0].value = self.wl_list[0]
|
|
408
|
-
self.sidebar[14, 2].value = f"{self.dataset.metadata['peak_fit']['white_line_ratios'][self.wl_list[0]]:.2f}"
|
|
409
|
-
|
|
410
|
-
self.sidebar[15, 0].options = self.wls_list
|
|
411
|
-
self.sidebar[15, 0].value = self.wls_list[0]
|
|
412
|
-
self.sidebar[15, 2].value = f"{self.dataset.metadata['peak_fit']['white_line_sums'][self.wls_list[0]]*1e6:.4f} ppm"
|
|
413
|
-
|
|
414
|
-
else:
|
|
415
|
-
self.wl_list.append('Ratio')
|
|
416
|
-
self.wls_list.append('Sum')
|
|
417
|
-
|
|
418
|
-
self.sidebar[14, 0].options = ['None']
|
|
419
|
-
self.sidebar[14, 0].value = 'None'
|
|
420
|
-
self.sidebar[14, 2].value = ' '
|
|
421
|
-
|
|
422
|
-
self.sidebar[15, 0].options = ['None']
|
|
423
|
-
self.sidebar[15, 0].value = 'None'
|
|
424
|
-
self.sidebar[15, 2].value = ' '
|
|
425
|
-
|
|
426
|
-
def find_peaks(self, value=0):
|
|
427
|
-
number_of_peaks = int(self.sidebar[5, 0].value)
|
|
428
|
-
if number_of_peaks > len(self.peak_out_list):
|
|
429
|
-
number_of_peaks = len(self.peak_out_list)
|
|
430
|
-
self.sidebar[5, 0].value = str(len(self.peak_out_list))
|
|
431
|
-
self.peak_list = []
|
|
432
|
-
self.peaks['peaks'] = {}
|
|
433
|
-
new_number_of_peaks = 0
|
|
434
|
-
|
|
435
|
-
peaks, prop = scipy.signal.find_peaks(self.peak_model, width=5)
|
|
436
|
-
print(len(peaks), number_of_peaks, len(peaks)>= number_of_peaks)
|
|
437
|
-
if len(peaks) >= number_of_peaks:
|
|
438
|
-
if self.dataset.data_type.name == 'SPECTRUM':
|
|
439
|
-
spectrum = np.array(self.dataset)
|
|
440
|
-
else:
|
|
441
|
-
spectrum = self.dataset.view.get_spectrum()
|
|
442
|
-
for i in range(number_of_peaks):
|
|
443
|
-
self.peak_list.append((f'Peak {i+1}', i))
|
|
444
|
-
p = [self.energy_scale[peaks[i]], np.float32(spectrum[peaks[i]]), np.sqrt(prop['widths'][i])]
|
|
445
|
-
if p[1]>0:
|
|
446
|
-
self.peaks['peaks'][str(new_number_of_peaks)] = {'position': p[0], 'amplitude': p[1], 'width': p[2], 'type': 'Gauss',
|
|
447
|
-
'asymmetry': 0}
|
|
448
|
-
new_number_of_peaks += 1
|
|
449
|
-
else:
|
|
450
|
-
for i in range(number_of_peaks):
|
|
451
|
-
self.peak_list.append((f'Peak {i+1}', i))
|
|
452
|
-
p = self.peak_out_list[i]
|
|
453
|
-
if p[1]>0:
|
|
454
|
-
self.peaks['peaks'][str(new_number_of_peaks)] = {'position': p[0], 'amplitude': p[1], 'width': p[2], 'type': 'Gauss',
|
|
455
|
-
'asymmetry': 0}
|
|
456
|
-
new_number_of_peaks += 1
|
|
457
|
-
self.sidebar[5, 0].value = str(new_number_of_peaks)
|
|
458
|
-
self.peak_list.append((f'add peak', -1))
|
|
459
|
-
|
|
460
|
-
self.sidebar[7, 0].options = self.peak_list
|
|
461
|
-
self.sidebar[7, 0].value = 0
|
|
462
|
-
|
|
463
|
-
#eels_tools.find_associated_edges(self.dataset)
|
|
464
|
-
#self.find_white_lines()
|
|
465
|
-
|
|
466
|
-
self.update()
|
|
467
|
-
self.plot()
|
|
468
|
-
|
|
469
|
-
def smooth(self, value=0):
|
|
470
|
-
"""Fit lots of Gaussian to spectrum and let the program sort it out
|
|
471
|
-
|
|
472
|
-
We sort the peaks by area under the Gaussians, assuming that small areas mean noise.
|
|
473
|
-
|
|
474
|
-
"""
|
|
475
|
-
iterations = self.sidebar[4, 0].value
|
|
476
|
-
self.sidebar[5, 0].value = 0
|
|
477
|
-
|
|
478
|
-
if self.key == self.datasets['_relationship']['low_loss']:
|
|
479
|
-
if 'resolution_function' in self.datasets['_relationship'].keys():
|
|
480
|
-
self.model = np.array(self.datasets['resolution_function'])
|
|
481
|
-
|
|
482
|
-
|
|
483
|
-
self.peak_model, self.peak_out_list, number_of_peaks = smooth(self.dataset-self.model, iterations, advanced_present)
|
|
484
|
-
|
|
485
|
-
spec_dim = ft.get_dimensions_by_type('SPECTRAL', self.dataset)[0]
|
|
486
|
-
if spec_dim[1][0] > 0:
|
|
487
|
-
self.model = self.dataset.metadata['edges']['model']['spectrum']
|
|
488
|
-
elif 'model' in self.dataset.metadata:
|
|
489
|
-
self.model = self.dataset.metadata['model']
|
|
490
|
-
else:
|
|
491
|
-
self.model = np.zeros(len(spec_dim[1]))
|
|
492
|
-
|
|
493
|
-
self.dataset.metadata['peak_fit']['edge_model'] = self.model
|
|
494
|
-
self.model = self.model + self.peak_model
|
|
495
|
-
self.dataset.metadata['peak_fit']['peak_model'] = self.peak_model
|
|
496
|
-
self.dataset.metadata['peak_fit']['peak_out_list'] = self.peak_out_list
|
|
497
|
-
|
|
498
|
-
peaks, prop = scipy.signal.find_peaks(self.peak_model, width=5)
|
|
499
|
-
|
|
500
|
-
self.sidebar[5, 0].value = str(len(peaks))
|
|
501
|
-
self.update()
|
|
502
|
-
self.plot()
|
|
503
|
-
|
|
504
|
-
def make_model(self):
|
|
505
|
-
p_peaks = []
|
|
506
|
-
for key, peak in self.peaks['peaks'].items():
|
|
507
|
-
if key.isdigit():
|
|
508
|
-
p_peaks.append(peak['position'])
|
|
509
|
-
p_peaks.append(peak['amplitude'])
|
|
510
|
-
p_peaks.append(peak['width'])
|
|
511
|
-
|
|
512
|
-
|
|
513
|
-
# set the energy scale and fit start and end points
|
|
514
|
-
energy_scale = np.array(self.energy_scale)
|
|
515
|
-
start_channel = np.searchsorted(energy_scale, self.peaks['fit_start'])
|
|
516
|
-
end_channel = np.searchsorted(energy_scale, self.peaks['fit_end'])
|
|
517
|
-
energy_scale = self.energy_scale # [start_channel:end_channel]
|
|
518
|
-
# select the core loss model if it exists. Otherwise, we will fit to the full spectrum.
|
|
519
|
-
|
|
520
|
-
p_peaks = np.array(p_peaks, dtype=np.float64)
|
|
521
|
-
|
|
522
|
-
fit = eels_tools.gmm(energy_scale, p_peaks) # , False)
|
|
523
|
-
self.peak_model = fit
|
|
524
|
-
#self.peak_model[start_channel:end_channel] = fit
|
|
525
|
-
"""if 'edge_model' in self.dataset.metadata['peak_fit']:
|
|
526
|
-
self.model = self.dataset.metadata['peak_fit']['edge_model'] + self.peak_model
|
|
527
|
-
else:
|
|
528
|
-
self.model = np.zeros(self.dataset.shape)
|
|
529
|
-
"""
|
|
530
|
-
self.model = fit
|
|
531
|
-
|
|
532
|
-
def modify_peak_position(self, value=-1):
|
|
533
|
-
peak_index = self.sidebar[7, 0].value
|
|
534
|
-
self.peaks['peaks'][str(peak_index)]['position'] = self.sidebar[9,0].value
|
|
535
|
-
self.make_model()
|
|
536
|
-
self.plot()
|
|
537
|
-
|
|
538
|
-
def modify_peak_amplitude(self, value=-1):
|
|
539
|
-
peak_index = self.sidebar[7, 0].value
|
|
540
|
-
self.peaks['peaks'][str(peak_index)]['amplitude'] = self.sidebar[10,0].value
|
|
541
|
-
self.make_model()
|
|
542
|
-
self.plot()
|
|
543
|
-
|
|
544
|
-
def modify_peak_width(self, value=-1):
|
|
545
|
-
peak_index = self.sidebar[7, 0].value
|
|
546
|
-
self.peaks['peaks'][str(peak_index)]['width'] = self.sidebar[11,0].value
|
|
547
|
-
self.make_model()
|
|
548
|
-
self.plot()
|
|
549
|
-
|
|
550
|
-
def peak_selection(self, change=None):
|
|
551
|
-
options = list(self.sidebar[7,0].options)
|
|
552
|
-
|
|
553
|
-
if self.sidebar[7, 0].value < 0:
|
|
554
|
-
options.insert(-1, (f'Peak {len(options)}', len(options)-1))
|
|
555
|
-
self.sidebar[7, 0].value = 0
|
|
556
|
-
self.sidebar[7,0].options = options
|
|
557
|
-
self.sidebar[7, 0].value = int(len(options)-2)
|
|
558
|
-
|
|
559
|
-
self.update()
|
|
560
|
-
|
|
561
|
-
def set_action(self):
|
|
562
|
-
self.sidebar[1, 0].observe(self.set_fit_area, names='value')
|
|
563
|
-
self.sidebar[2, 0].observe(self.set_fit_area, names='value')
|
|
564
|
-
|
|
565
|
-
self.sidebar[4, 2].on_click(self.smooth)
|
|
566
|
-
self.sidebar[7,0].observe(self.peak_selection)
|
|
567
|
-
self.sidebar[5,2].on_click(self.find_peaks)
|
|
568
|
-
|
|
569
|
-
self.sidebar[6, 0].on_click(self.fit_peaks)
|
|
570
|
-
self.sidebar[9, 0].observe(self.modify_peak_position, names='value')
|
|
571
|
-
self.sidebar[10, 0].observe(self.modify_peak_amplitude, names='value')
|
|
572
|
-
self.sidebar[11, 0].observe(self.modify_peak_width, names='value')
|
|
573
|
-
|
|
574
|
-
|
|
575
|
-
|
|
576
|
-
|
|
577
|
-
if Qt_available:
|
|
578
|
-
class PeakFitDialog(QtWidgets.QDialog):
|
|
579
|
-
"""
|
|
580
|
-
EELS Input Dialog for ELNES Analysis
|
|
581
|
-
"""
|
|
582
|
-
|
|
583
|
-
def __init__(self, datasets=None):
|
|
584
|
-
super().__init__(None, QtCore.Qt.WindowStaysOnTopHint)
|
|
585
|
-
|
|
586
|
-
if datasets is None:
|
|
587
|
-
# make a dummy dataset
|
|
588
|
-
datasets = ft.make_dummy_dataset('spectrum')
|
|
589
|
-
if not isinstance(datasets, dict):
|
|
590
|
-
datasets= {'Channel_000': datasets}
|
|
591
|
-
|
|
592
|
-
self.dataset = datasets[list(datasets.keys())[0]]
|
|
593
|
-
self.datasets = datasets
|
|
594
|
-
# Create an instance of the GUI
|
|
595
|
-
if 'low_loss' in self.dataset.metadata:
|
|
596
|
-
mode = 'low_loss'
|
|
597
|
-
else:
|
|
598
|
-
mode = 'core_loss'
|
|
599
|
-
|
|
600
|
-
self.ui = peak_dlg.UiDialog(self, mode=mode)
|
|
601
|
-
|
|
602
|
-
self.set_action()
|
|
603
|
-
|
|
604
|
-
self.energy_scale = np.array([])
|
|
605
|
-
self.peak_out_list = []
|
|
606
|
-
self.p_out = []
|
|
607
|
-
self.axis = None
|
|
608
|
-
self.show_regions = False
|
|
609
|
-
self.show()
|
|
610
|
-
|
|
611
|
-
|
|
612
|
-
|
|
613
|
-
if not isinstance(self.dataset, sidpy.Dataset):
|
|
614
|
-
raise TypeError('dataset has to be a sidpy dataset')
|
|
615
|
-
self.spec_dim = ft.get_dimensions_by_type('spectral', self.dataset)
|
|
616
|
-
if len(self.spec_dim) != 1:
|
|
617
|
-
raise TypeError('We need exactly one SPECTRAL dimension')
|
|
618
|
-
self.spec_dim = self.spec_dim[0]
|
|
619
|
-
self.energy_scale = self.spec_dim[1].values.copy()
|
|
620
|
-
|
|
621
|
-
if 'peak_fit' not in self.dataset.metadata:
|
|
622
|
-
self.dataset.metadata['peak_fit'] = {}
|
|
623
|
-
if 'edges' in self.dataset.metadata:
|
|
624
|
-
if 'fit_area' in self.dataset.metadata['edges']:
|
|
625
|
-
self.dataset.metadata['peak_fit']['fit_start'] = \
|
|
626
|
-
self.dataset.metadata['edges']['fit_area']['fit_start']
|
|
627
|
-
self.dataset.metadata['peak_fit']['fit_end'] = self.dataset.metadata['edges']['fit_area']['fit_end']
|
|
628
|
-
self.dataset.metadata['peak_fit']['peaks'] = {'0': {'position': self.energy_scale[1],
|
|
629
|
-
'amplitude': 1000.0, 'width': 1.0,
|
|
630
|
-
'type': 'Gauss', 'asymmetry': 0}}
|
|
631
|
-
|
|
632
|
-
|
|
633
|
-
self.peaks = self.dataset.metadata['peak_fit']
|
|
634
|
-
if 'fit_start' not in self.peaks:
|
|
635
|
-
self.peaks['fit_start'] = self.energy_scale[1]
|
|
636
|
-
self.peaks['fit_end'] = self.energy_scale[-2]
|
|
637
|
-
|
|
638
|
-
if 'peak_model' in self.peaks:
|
|
639
|
-
self.peak_model = self.peaks['peak_model']
|
|
640
|
-
self.model = self.peak_model
|
|
641
|
-
if 'edge_model' in self.peaks:
|
|
642
|
-
self.model = self.model + self.peaks['edge_model']
|
|
643
|
-
else:
|
|
644
|
-
self.model = np.array([])
|
|
645
|
-
self.peak_model = np.array([])
|
|
646
|
-
if 'peak_out_list' in self.peaks:
|
|
647
|
-
self.peak_out_list = self.peaks['peak_out_list']
|
|
648
|
-
self.set_peak_list()
|
|
649
|
-
|
|
650
|
-
# check whether a core loss analysis has been done previously
|
|
651
|
-
if not hasattr(self, 'core_loss') and 'edges' in self.dataset.metadata:
|
|
652
|
-
self.core_loss = True
|
|
653
|
-
else:
|
|
654
|
-
self.core_loss = False
|
|
655
|
-
|
|
656
|
-
self.update()
|
|
657
|
-
self.dataset.plot()
|
|
658
|
-
|
|
659
|
-
if self.dataset.data_type.name == 'SPECTRAL_IMAGE':
|
|
660
|
-
if 'SI_bin_x' not in self.dataset.metadata['experiment']:
|
|
661
|
-
self.dataset.metadata['experiment']['SI_bin_x'] = 1
|
|
662
|
-
self.dataset.metadata['experiment']['SI_bin_y'] = 1
|
|
663
|
-
bin_x = self.dataset.metadata['experiment']['SI_bin_x']
|
|
664
|
-
bin_y = self.dataset.metadata['experiment']['SI_bin_y']
|
|
665
|
-
|
|
666
|
-
self.dataset.view.set_bin([bin_x, bin_y])
|
|
667
|
-
|
|
668
|
-
if hasattr(self.dataset.view, 'axes'):
|
|
669
|
-
self.axis = self.dataset.view.axes[-1]
|
|
670
|
-
elif hasattr(self.dataset.view, 'axis'):
|
|
671
|
-
self.axis = self.dataset.view.axis
|
|
672
|
-
self.figure = self.axis.figure
|
|
673
|
-
|
|
674
|
-
if not advanced_present:
|
|
675
|
-
self.ui.iteration_list = ['0']
|
|
676
|
-
self.ui.smooth_list.clear()
|
|
677
|
-
self.ui.smooth_list.addItems(self.ui.iteration_list)
|
|
678
|
-
self.ui.smooth_list.setCurrentIndex(0)
|
|
679
|
-
|
|
680
|
-
if 'low_loss' in self.dataset.metadata:
|
|
681
|
-
self.ui.iteration_list = ['0']
|
|
682
|
-
|
|
683
|
-
|
|
684
|
-
self.figure.canvas.mpl_connect('button_press_event', self.plot)
|
|
685
|
-
|
|
686
|
-
|
|
687
|
-
self.plot()
|
|
688
|
-
|
|
689
|
-
def update(self):
|
|
690
|
-
# self.setWindowTitle('update')
|
|
691
|
-
self.ui.edit1.setText(f"{self.peaks['fit_start']:.2f}")
|
|
692
|
-
self.ui.edit2.setText(f"{self.peaks['fit_end']:.2f}")
|
|
693
|
-
|
|
694
|
-
peak_index = self.ui.list3.currentIndex()
|
|
695
|
-
if str(peak_index) not in self.peaks['peaks']:
|
|
696
|
-
self.peaks['peaks'][str(peak_index)] = {'position': self.energy_scale[1], 'amplitude': 1000.0,
|
|
697
|
-
'width': 1.0, 'type': 'Gauss', 'asymmetry': 0}
|
|
698
|
-
self.ui.list4.setCurrentText(self.peaks['peaks'][str(peak_index)]['type'])
|
|
699
|
-
if 'associated_edge' in self.peaks['peaks'][str(peak_index)]:
|
|
700
|
-
self.ui.unit3.setText(self.peaks['peaks'][str(peak_index)]['associated_edge'])
|
|
701
|
-
else:
|
|
702
|
-
self.ui.unit3.setText('')
|
|
703
|
-
self.ui.edit5.setText(f"{self.peaks['peaks'][str(peak_index)]['position']:.2f}")
|
|
704
|
-
self.ui.edit6.setText(f"{self.peaks['peaks'][str(peak_index)]['amplitude']:.2f}")
|
|
705
|
-
self.ui.edit7.setText(f"{self.peaks['peaks'][str(peak_index)]['width']:.2f}")
|
|
706
|
-
if 'asymmetry' not in self.peaks['peaks'][str(peak_index)]:
|
|
707
|
-
self.peaks['peaks'][str(peak_index)]['asymmetry'] = 0.
|
|
708
|
-
self.ui.edit8.setText(f"{self.peaks['peaks'][str(peak_index)]['asymmetry']:.2f}")
|
|
709
|
-
|
|
710
|
-
def plot(self):
|
|
711
|
-
|
|
712
|
-
spec_dim = ft.get_dimensions_by_type(sidpy.DimensionType.SPECTRAL, self.dataset)
|
|
713
|
-
spec_dim = spec_dim[0]
|
|
714
|
-
self.energy_scale = spec_dim[1].values
|
|
715
|
-
if self.dataset.data_type == sidpy.DataType.SPECTRAL_IMAGE:
|
|
716
|
-
spectrum = self.dataset.view.get_spectrum()
|
|
717
|
-
self.axis = self.dataset.view.axes[1]
|
|
718
|
-
name = 's'
|
|
719
|
-
if 'zero_loss' in self.dataset.metadata:
|
|
720
|
-
x = self.dataset.view.x
|
|
721
|
-
y = self.dataset.view.y
|
|
722
|
-
self.energy_scale -= self.dataset.metadata['zero_loss']['shifts'][x, y]
|
|
723
|
-
name = f"shift { self.dataset.metadata['zero_loss']['shifts'][x, y]:.3f}"
|
|
724
|
-
self.setWindowTitle(f'plot {x}')
|
|
725
|
-
else:
|
|
726
|
-
spectrum = np.array(self.dataset)
|
|
727
|
-
self.axis = self.dataset.view.axis
|
|
728
|
-
|
|
729
|
-
x_limit = self.axis.get_xlim()
|
|
730
|
-
y_limit = self.axis.get_ylim()
|
|
731
|
-
self.axis.clear()
|
|
732
|
-
|
|
733
|
-
self.axis.plot(self.energy_scale, spectrum, label='spectrum')
|
|
734
|
-
#if 'features' in self.peaks:
|
|
735
|
-
zl = self.datasets[self.peaks['features']]
|
|
736
|
-
self.axis.plot(self.energy_scale, zl, label='zero_loss')
|
|
737
|
-
|
|
738
|
-
if len(self.model) > 1:
|
|
739
|
-
self.axis.plot(self.energy_scale, self.model, label='model')
|
|
740
|
-
self.axis.plot(self.energy_scale, spectrum - self.model, label='difference')
|
|
741
|
-
#self.axis.plot(self.energy_scale, (spectrum - self.model) / np.sqrt(spectrum), label='Poisson')
|
|
742
|
-
|
|
743
|
-
self.axis.set_xlim(x_limit)
|
|
744
|
-
self.axis.set_ylim(y_limit)
|
|
745
|
-
|
|
746
|
-
for index, peak in self.peaks['peaks'].items():
|
|
747
|
-
p = [peak['position'], peak['amplitude'], peak['width']]
|
|
748
|
-
self.axis.plot(self.energy_scale, eels_tools.gauss(self.energy_scale, p))
|
|
749
|
-
self.axis.legend(loc="upper right")
|
|
750
|
-
self.axis.figure.canvas.draw_idle()
|
|
751
|
-
|
|
752
|
-
def fit_peaks(self):
|
|
753
|
-
"""Fit spectrum with peaks given in peaks dictionary"""
|
|
754
|
-
print('Fitting peaks...')
|
|
755
|
-
p_in = []
|
|
756
|
-
for key, peak in self.peaks['peaks'].items():
|
|
757
|
-
if key.isdigit():
|
|
758
|
-
p_in.append(peak['position'])
|
|
759
|
-
p_in.append(peak['amplitude'])
|
|
760
|
-
p_in.append(peak['width'])
|
|
761
|
-
|
|
762
|
-
# check whether we have a spectral image or just a single spectrum
|
|
763
|
-
if self.dataset.data_type == sidpy.DataType.SPECTRAL_IMAGE:
|
|
764
|
-
spectrum = self.dataset.view.get_spectrum()
|
|
765
|
-
else:
|
|
766
|
-
spectrum = np.array(self.dataset)
|
|
767
|
-
spectrum -= spectrum.min()-1
|
|
768
|
-
# set the energy scale and fit start and end points
|
|
769
|
-
energy_scale = np.array(self.energy_scale)
|
|
770
|
-
"""start_channel = np.searchsorted(energy_scale, self.peaks['fit_start'])
|
|
771
|
-
end_channel = np.searchsorted(energy_scale, self.peaks['fit_end'])
|
|
772
|
-
|
|
773
|
-
energy_scale = self.energy_scale[start_channel:end_channel]
|
|
774
|
-
# select the core loss model if it exists. Otherwise, we will fit to the full spectrum.
|
|
775
|
-
if 'model' in self.dataset.metadata:
|
|
776
|
-
model = self.dataset.metadata['model'][start_channel:end_channel]
|
|
777
|
-
elif self.core_loss:
|
|
778
|
-
print('Core loss model found. Fitting on top of the model.')
|
|
779
|
-
model = self.dataset.metadata['edges']['model']['spectrum'][start_channel:end_channel]
|
|
780
|
-
else:
|
|
781
|
-
print('No core loss model found. Fitting to the full spectrum.')
|
|
782
|
-
model = np.zeros(end_channel - start_channel)
|
|
783
|
-
|
|
784
|
-
# if we have a core loss model we will only fit the difference between the model and the data.
|
|
785
|
-
|
|
786
|
-
|
|
787
|
-
difference = np.array(spectrum[start_channel:end_channel] - model)
|
|
788
|
-
"""
|
|
789
|
-
difference = spectrum
|
|
790
|
-
if self.key == self.datasets['_relationships']['low_loss']:
|
|
791
|
-
if 'resolution_function' in self.datasets['_relationships'].keys():
|
|
792
|
-
difference -= np.array(self.datasets['_relationships']['resolution_function'])
|
|
793
|
-
self.peaks['peaks']['features'] = 'resolution_function'
|
|
794
|
-
self.model = np.array(self.datasets['_relationships']['resolution_function'])
|
|
795
|
-
|
|
796
|
-
# find the optimum fitting parameters
|
|
797
|
-
[self.p_out, _] = scipy.optimize.leastsq(eels_tools.residuals3, np.array(p_in), ftol=1e-3,
|
|
798
|
-
args=(energy_scale, difference, False))
|
|
799
|
-
|
|
800
|
-
# construct the fit data from the optimized parameters
|
|
801
|
-
#self.peak_model = np.zeros(len(self.energy_scale))
|
|
802
|
-
#self.model = np.zeros(len(self.energy_scale))
|
|
803
|
-
#self.model[start_channel:end_channel] = model
|
|
804
|
-
fit = eels_tools.gmm(energy_scale, self.p_out, False)
|
|
805
|
-
self.peak_model = fit
|
|
806
|
-
#self.peak_model[start_channel:end_channel] = fit
|
|
807
|
-
#self.dataset.metadata['peak_fit']['edge_model'] = self.model
|
|
808
|
-
self.model = self.model + self.peak_model
|
|
809
|
-
self.dataset.metadata['peak_fit']['peak_model'] = self.peak_model
|
|
810
|
-
|
|
811
|
-
for key, peak in self.peaks['peaks'].items():
|
|
812
|
-
if key.isdigit():
|
|
813
|
-
p_index = int(key)*3
|
|
814
|
-
self.peaks['peaks'][key] = {'position': self.p_out[p_index],
|
|
815
|
-
'amplitude': self.p_out[p_index+1],
|
|
816
|
-
'width': self.p_out[p_index+2],
|
|
817
|
-
'associated_edge': ''}
|
|
818
|
-
|
|
819
|
-
self.find_associated_edges()
|
|
820
|
-
self.find_white_lines()
|
|
821
|
-
self.update()
|
|
822
|
-
self.plot()
|
|
823
|
-
|
|
824
|
-
def smooth(self):
|
|
825
|
-
"""Fit lots of Gaussian to spectrum and let the program sort it out
|
|
826
|
-
|
|
827
|
-
We sort the peaks by area under the Gaussians, assuming that small areas mean noise.
|
|
828
|
-
|
|
829
|
-
"""
|
|
830
|
-
if 'edges' in self.dataset.metadata:
|
|
831
|
-
if 'model' in self.dataset.metadata['edges']:
|
|
832
|
-
self.dataset.metadata['model'] = self.dataset.metadata['edges']['model']
|
|
833
|
-
if 'resolution_function' in self.datasets:
|
|
834
|
-
self.dataset.metadata['model'] = np.array(self.datasets['resolution_function'])
|
|
835
|
-
iterations = int(self.ui.smooth_list.currentIndex())
|
|
836
|
-
|
|
837
|
-
if self.key == self.datasets['_relationships']['low_loss']:
|
|
838
|
-
if 'resolution_function' in self.datasets['_relationships'].keys():
|
|
839
|
-
self.model = np.array(self.datasets['_relationships']['resolution_function'])
|
|
840
|
-
|
|
841
|
-
|
|
842
|
-
self.peak_model, self.peak_out_list, number_of_peaks = smooth(self.dataset-self.model, iterations, advanced_present)
|
|
843
|
-
|
|
844
|
-
spec_dim = ft.get_dimensions_by_type('SPECTRAL', self.dataset)[0]
|
|
845
|
-
if spec_dim[1][0] > 0:
|
|
846
|
-
self.model = self.dataset.metadata['edges']['model']['spectrum']
|
|
847
|
-
elif 'model' in self.dataset.metadata:
|
|
848
|
-
self.model = self.dataset.metadata['model']
|
|
849
|
-
else:
|
|
850
|
-
self.model = np.zeros(len(spec_dim[1]))
|
|
851
|
-
|
|
852
|
-
self.ui.find_edit.setText(str(number_of_peaks))
|
|
853
|
-
|
|
854
|
-
self.dataset.metadata['peak_fit']['edge_model'] = self.model
|
|
855
|
-
self.model = self.model + self.peak_model
|
|
856
|
-
self.dataset.metadata['peak_fit']['peak_model'] = self.peak_model
|
|
857
|
-
self.dataset.metadata['peak_fit']['peak_out_list'] = self.peak_out_list
|
|
858
|
-
|
|
859
|
-
self.update()
|
|
860
|
-
self.plot()
|
|
861
|
-
|
|
862
|
-
def find_associated_edges(self):
|
|
863
|
-
onsets = []
|
|
864
|
-
edges = []
|
|
865
|
-
if 'edges' in self.dataset.metadata:
|
|
866
|
-
for key, edge in self.dataset.metadata['edges'].items():
|
|
867
|
-
if key.isdigit():
|
|
868
|
-
element = edge['element']
|
|
869
|
-
for sym in edge['all_edges']: # TODO: Could be replaced with exclude
|
|
870
|
-
onsets.append(edge['all_edges'][sym]['onset'] + edge['chemical_shift'])
|
|
871
|
-
# if 'sym' == edge['symmetry']:
|
|
872
|
-
edges.append([key, f"{element}-{sym}", onsets[-1]])
|
|
873
|
-
for key, peak in self.peaks['peaks'].items():
|
|
874
|
-
if key.isdigit():
|
|
875
|
-
distance = self.energy_scale[-1]
|
|
876
|
-
index = -1
|
|
877
|
-
for ii, onset in enumerate(onsets):
|
|
878
|
-
if onset < peak['position'] < onset+50:
|
|
879
|
-
if distance > np.abs(peak['position'] - onset):
|
|
880
|
-
distance = np.abs(peak['position'] - onset) # TODO: check whether absolute is good
|
|
881
|
-
distance_onset = peak['position'] - onset
|
|
882
|
-
index = ii
|
|
883
|
-
if index >= 0:
|
|
884
|
-
peak['associated_edge'] = edges[index][1] # check if more info is necessary
|
|
885
|
-
peak['distance_to_onset'] = distance_onset
|
|
886
|
-
|
|
887
|
-
def find_white_lines(self):
|
|
888
|
-
eels_tools.find_white_lines(self.dataset)
|
|
889
|
-
|
|
890
|
-
self.ui.wl_list = []
|
|
891
|
-
self.ui.wls_list = []
|
|
892
|
-
if len(self.peaks['white_line_ratios']) > 0:
|
|
893
|
-
for key in self.peaks['white_line_ratios']:
|
|
894
|
-
self.ui.wl_list.append(key)
|
|
895
|
-
for key in self.peaks['white_line_sums']:
|
|
896
|
-
self.ui.wls_list.append(key)
|
|
897
|
-
|
|
898
|
-
self.ui.listwl.clear()
|
|
899
|
-
self.ui.listwl.addItems(self.ui.wl_list)
|
|
900
|
-
self.ui.listwl.setCurrentIndex(0)
|
|
901
|
-
self.ui.unitswl.setText(f"{self.peaks['white_line_ratios'][self.ui.wl_list[0]]:.2f}")
|
|
902
|
-
|
|
903
|
-
self.ui.listwls.clear()
|
|
904
|
-
self.ui.listwls.addItems(self.ui.wls_list)
|
|
905
|
-
self.ui.listwls.setCurrentIndex(0)
|
|
906
|
-
self.ui.unitswls.setText(f"{self.peaks['white_line_sums'][self.ui.wls_list[0]]*1e6:.4f} ppm")
|
|
907
|
-
else:
|
|
908
|
-
self.ui.wl_list.append('Ratio')
|
|
909
|
-
self.ui.wls_list.append('Sum')
|
|
910
|
-
|
|
911
|
-
self.ui.listwl.clear()
|
|
912
|
-
self.ui.listwl.addItems(self.ui.wl_list)
|
|
913
|
-
self.ui.listwl.setCurrentIndex(0)
|
|
914
|
-
self.ui.unitswl.setText('')
|
|
915
|
-
|
|
916
|
-
self.ui.listwls.clear()
|
|
917
|
-
self.ui.listwls.addItems(self.ui.wls_list)
|
|
918
|
-
self.ui.listwls.setCurrentIndex(0)
|
|
919
|
-
self.ui.unitswls.setText('')
|
|
920
|
-
|
|
921
|
-
def find_peaks(self):
|
|
922
|
-
number_of_peaks = int(str(self.ui.find_edit.displayText()).strip())
|
|
923
|
-
|
|
924
|
-
# is now sorted in smooth function
|
|
925
|
-
# flat_list = [item for sublist in self.peak_out_list for item in sublist]
|
|
926
|
-
# new_list = np.reshape(flat_list, [len(flat_list) // 3, 3])
|
|
927
|
-
# arg_list = np.argsort(np.abs(new_list[:, 1]))
|
|
928
|
-
|
|
929
|
-
self.ui.peak_list = []
|
|
930
|
-
self.peaks['peaks'] = {}
|
|
931
|
-
for i in range(number_of_peaks):
|
|
932
|
-
self.ui.peak_list.append(f'Peak {i+1}')
|
|
933
|
-
p = self.peak_out_list[i]
|
|
934
|
-
self.peaks['peaks'][str(i)] = {'position': p[0], 'amplitude': p[1], 'width': p[2], 'type': 'Gauss',
|
|
935
|
-
'asymmetry': 0}
|
|
936
|
-
|
|
937
|
-
self.ui.peak_list.append(f'add peak')
|
|
938
|
-
self.ui.list3.clear()
|
|
939
|
-
self.ui.list3.addItems(self.ui.peak_list)
|
|
940
|
-
self.ui.list3.setCurrentIndex(0)
|
|
941
|
-
self.find_associated_edges()
|
|
942
|
-
self.find_white_lines()
|
|
943
|
-
|
|
944
|
-
self.update()
|
|
945
|
-
self.plot()
|
|
946
|
-
|
|
947
|
-
def set_peak_list(self):
|
|
948
|
-
self.ui.peak_list = []
|
|
949
|
-
if 'peaks' not in self.peaks:
|
|
950
|
-
self.peaks['peaks'] = {}
|
|
951
|
-
key = 0
|
|
952
|
-
for key in self.peaks['peaks']:
|
|
953
|
-
if key.isdigit():
|
|
954
|
-
self.ui.peak_list.append(f'Peak {int(key) + 1}')
|
|
955
|
-
self.ui.find_edit.setText(str(int(key) + 1))
|
|
956
|
-
self.ui.peak_list.append(f'add peak')
|
|
957
|
-
self.ui.list3.clear()
|
|
958
|
-
self.ui.list3.addItems(self.ui.peak_list)
|
|
959
|
-
self.ui.list3.setCurrentIndex(0)
|
|
960
|
-
|
|
961
|
-
def on_enter(self):
|
|
962
|
-
if self.sender() == self.ui.edit1:
|
|
963
|
-
value = float(str(self.ui.edit1.displayText()).strip())
|
|
964
|
-
if value < self.energy_scale[0]:
|
|
965
|
-
value = self.energy_scale[0]
|
|
966
|
-
if value > self.energy_scale[-5]:
|
|
967
|
-
value = self.energy_scale[-5]
|
|
968
|
-
self.peaks['fit_start'] = value
|
|
969
|
-
self.ui.edit1.setText(str(self.peaks['fit_start']))
|
|
970
|
-
elif self.sender() == self.ui.edit2:
|
|
971
|
-
value = float(str(self.ui.edit2.displayText()).strip())
|
|
972
|
-
if value < self.energy_scale[5]:
|
|
973
|
-
value = self.energy_scale[5]
|
|
974
|
-
if value > self.energy_scale[-1]:
|
|
975
|
-
value = self.energy_scale[-1]
|
|
976
|
-
self.peaks['fit_end'] = value
|
|
977
|
-
self.ui.edit2.setText(str(self.peaks['fit_end']))
|
|
978
|
-
elif self.sender() == self.ui.edit5:
|
|
979
|
-
value = float(str(self.ui.edit5.displayText()).strip())
|
|
980
|
-
peak_index = self.ui.list3.currentIndex()
|
|
981
|
-
self.peaks['peaks'][str(peak_index)]['position'] = value
|
|
982
|
-
elif self.sender() == self.ui.edit6:
|
|
983
|
-
value = float(str(self.ui.edit6.displayText()).strip())
|
|
984
|
-
peak_index = self.ui.list3.currentIndex()
|
|
985
|
-
self.peaks['peaks'][str(peak_index)]['amplitude'] = value
|
|
986
|
-
elif self.sender() == self.ui.edit7:
|
|
987
|
-
value = float(str(self.ui.edit7.displayText()).strip())
|
|
988
|
-
peak_index = self.ui.list3.currentIndex()
|
|
989
|
-
self.peaks['peaks'][str(peak_index)]['width'] = value
|
|
990
|
-
|
|
991
|
-
def on_list_enter(self):
|
|
992
|
-
self.setWindowTitle(f'list {self.sender}, {self.ui.list_model}')
|
|
993
|
-
if self.sender() == self.ui.list3:
|
|
994
|
-
if self.ui.list3.currentText().lower() == 'add peak':
|
|
995
|
-
peak_index = self.ui.list3.currentIndex()
|
|
996
|
-
self.ui.list3.insertItem(peak_index, f'Peak {peak_index+1}')
|
|
997
|
-
self.peaks['peaks'][str(peak_index+1)] = {'position': self.energy_scale[1],
|
|
998
|
-
'amplitude': 1000.0, 'width': 1.0,
|
|
999
|
-
'type': 'Gauss', 'asymmetry': 0}
|
|
1000
|
-
self.ui.list3.setCurrentIndex(peak_index)
|
|
1001
|
-
self.update()
|
|
1002
|
-
|
|
1003
|
-
elif self.sender() == self.ui.listwls or self.sender() == self.ui.listwl:
|
|
1004
|
-
wl_index = self.sender().currentIndex()
|
|
1005
|
-
|
|
1006
|
-
self.ui.listwl.setCurrentIndex(wl_index)
|
|
1007
|
-
self.ui.unitswl.setText(f"{self.peaks['white_line_ratios'][self.ui.wl_list[wl_index]]:.2f}")
|
|
1008
|
-
self.ui.listwls.setCurrentIndex(wl_index)
|
|
1009
|
-
self.ui.unitswls.setText(f"{self.peaks['white_line_sums'][self.ui.wls_list[wl_index]] * 1e6:.4f} ppm")
|
|
1010
|
-
elif self.sender() == self.ui.list_model:
|
|
1011
|
-
self.setWindowTitle('list 1')
|
|
1012
|
-
if self.sender().currentIndex() == 1:
|
|
1013
|
-
if 'resolution_function' in self.datasets:
|
|
1014
|
-
self.setWindowTitle('list 2')
|
|
1015
|
-
self.dataset.metadata['model'] = np.array(self.datasets['resolution_function'])
|
|
1016
|
-
else:
|
|
1017
|
-
self.ui.list_model.setCurrentIndex(0)
|
|
1018
|
-
else:
|
|
1019
|
-
self.ui.list_model.setCurrentIndex(0)
|
|
1020
|
-
def set_action(self):
|
|
1021
|
-
pass
|
|
1022
|
-
self.ui.edit1.editingFinished.connect(self.on_enter)
|
|
1023
|
-
self.ui.edit2.editingFinished.connect(self.on_enter)
|
|
1024
|
-
self.ui.edit5.editingFinished.connect(self.on_enter)
|
|
1025
|
-
self.ui.edit6.editingFinished.connect(self.on_enter)
|
|
1026
|
-
self.ui.edit7.editingFinished.connect(self.on_enter)
|
|
1027
|
-
self.ui.edit8.editingFinished.connect(self.on_enter)
|
|
1028
|
-
self.ui.list3.activated[str].connect(self.on_list_enter)
|
|
1029
|
-
self.ui.find_button.clicked.connect(self.find_peaks)
|
|
1030
|
-
self.ui.smooth_button.clicked.connect(self.smooth)
|
|
1031
|
-
self.ui.fit_button.clicked.connect(self.fit_peaks)
|
|
1032
|
-
if hasattr(self.ui, 'listwls'):
|
|
1033
|
-
self.ui.listwls.activated[str].connect(self.on_list_enter)
|
|
1034
|
-
self.ui.listwl.activated[str].connect(self.on_list_enter)
|
|
1035
|
-
else:
|
|
1036
|
-
self.ui.zl_button.clicked.connect(self.fit_zero_loss)
|
|
1037
|
-
self.ui.drude_button.clicked.connect(self.smooth)
|
|
1038
|
-
self.ui.list_model.activated[str].connect(self.on_list_enter)
|
|
1039
|
-
|
|
1040
|
-
def fit_zero_loss(self):
|
|
1041
|
-
"""get shift of spectrum form zero-loss peak position"""
|
|
1042
|
-
zero_loss_fit_width=0.3
|
|
1043
|
-
|
|
1044
|
-
energy_scale = self.dataset.energy_loss
|
|
1045
|
-
zl_dataset = self.dataset.copy()
|
|
1046
|
-
zl_dataset.title = 'resolution_function'
|
|
1047
|
-
shifts = np.zeros(self.dataset.shape[0:2])
|
|
1048
|
-
zero_p = np.zeros([self.dataset.shape[0],self.dataset.shape[1],6])
|
|
1049
|
-
fwhm_p = np.zeros(self.dataset.shape[0:2])
|
|
1050
|
-
bin_x = bin_y = 1
|
|
1051
|
-
total_spec = int(self.dataset.shape[0]/bin_x)*int(self.dataset.shape[1]/bin_y)
|
|
1052
|
-
self.ui.progress.setMaximum(total_spec)
|
|
1053
|
-
self.ui.progress.setValue(0)
|
|
1054
|
-
zero_loss_fit_width=0.3
|
|
1055
|
-
ind = 0
|
|
1056
|
-
for x in range(self.dataset.shape[0]):
|
|
1057
|
-
for y in range(self.dataset.shape[1]):
|
|
1058
|
-
ind += 1
|
|
1059
|
-
self.ui.progress.setValue(ind)
|
|
1060
|
-
spectrum = self.dataset[x, y, :]
|
|
1061
|
-
fwhm, delta_e = eels_tools.fix_energy_scale(spectrum, energy_scale)
|
|
1062
|
-
z_loss, p_zl = eels_tools.resolution_function(energy_scale - delta_e, spectrum, zero_loss_fit_width)
|
|
1063
|
-
fwhm2, delta_e2 = eels_tools.fix_energy_scale(z_loss, energy_scale - delta_e)
|
|
1064
|
-
shifts[x, y] = delta_e + delta_e2
|
|
1065
|
-
zero_p[x,y,:] = p_zl
|
|
1066
|
-
zl_dataset[x,y] = z_loss
|
|
1067
|
-
fwhm_p[x,y] = fwhm2
|
|
1068
|
-
|
|
1069
|
-
zl_dataset.metadata['zero_loss'] = {'parameter': zero_p,
|
|
1070
|
-
'shifts': shifts,
|
|
1071
|
-
'fwhm': fwhm_p}
|
|
1072
|
-
self.dataset.metadata['zero_loss'] = {'parameter': zero_p,
|
|
1073
|
-
'shifts': shifts,
|
|
1074
|
-
'fwhm': fwhm_p}
|
|
1075
|
-
|
|
1076
|
-
self.datasets['resolution_function'] = zl_dataset
|
|
1077
|
-
self.update()
|
|
1078
|
-
self.plot()
|
|
1079
|
-
|
|
1080
|
-
|
|
1081
|
-
|
|
1082
|
-
def smooth(dataset, iterations, advanced_present):
|
|
1083
|
-
from pyTEMlib import advanced_eels_tools
|
|
1084
|
-
|
|
1085
|
-
"""Gaussian mixture model (non-Bayesian)
|
|
1086
|
-
|
|
1087
|
-
Fit lots of Gaussian to spectrum and let the program sort it out
|
|
1088
|
-
We sort the peaks by area under the Gaussians, assuming that small areas mean noise.
|
|
1089
|
-
|
|
1090
|
-
"""
|
|
1091
|
-
|
|
1092
|
-
# TODO: add sensitivity to dialog and the two functions below
|
|
1093
|
-
#peaks = dataset.metadata['peak_fit']
|
|
1094
|
-
|
|
1095
|
-
#peak_model, peak_out_list = eels_tools.find_peaks(dataset, peaks['fit_start'], peaks['fit_end'])
|
|
1096
|
-
peak_model, peak_out_list = eels_tools.gaussian_mixture_model(dataset, p_in=None)
|
|
1097
|
-
|
|
1098
|
-
#
|
|
1099
|
-
# if advanced_present and iterations > 1:
|
|
1100
|
-
# peak_model, peak_out_list = advanced_eels_tools.smooth(dataset, peaks['fit_start'],
|
|
1101
|
-
# peaks['fit_end'], iterations=iterations)
|
|
1102
|
-
# else:
|
|
1103
|
-
# peak_model, peak_out_list = eels_tools.find_peaks(dataset, peaks['fit_start'], peaks['fit_end'])
|
|
1104
|
-
# peak_out_list = [peak_out_list]
|
|
1105
|
-
|
|
1106
|
-
new_list = np.reshape(peak_out_list, [len(peak_out_list) // 3, 3])
|
|
1107
|
-
area = np.sqrt(2 * np.pi) * np.abs(new_list[:, 1]) * np.abs(new_list[:, 2] / np.sqrt(2 * np.log(2)))
|
|
1108
|
-
arg_list = np.argsort(area)[::-1]
|
|
1109
|
-
area = area[arg_list]
|
|
1110
|
-
peak_out_list = new_list[arg_list]
|
|
1111
|
-
|
|
1112
|
-
number_of_peaks = np.searchsorted(area * -1, -np.average(area))
|
|
1113
|
-
|
|
1114
|
-
return peak_model, peak_out_list, number_of_peaks
|
|
1115
|
-
|
|
1116
|
-
|
|
1117
|
-
def gauss(x, p): # p[0]==mean, p[1]= amplitude p[2]==fwhm,
|
|
1118
|
-
"""Gaussian Function
|
|
1119
|
-
|
|
1120
|
-
p[0]==mean, p[1]= amplitude p[2]==fwhm
|
|
1121
|
-
area = np.sqrt(2* np.pi)* p[1] * np.abs(p[2] / 2.3548)
|
|
1122
|
-
FWHM = 2 * np.sqrt(2 np.log(2)) * sigma = 2.3548 * sigma
|
|
1123
|
-
sigma = FWHM/3548
|
|
1124
|
-
"""
|
|
1125
|
-
if p[2] == 0:
|
|
1126
|
-
return x * 0.
|
|
1127
|
-
else:
|
|
1128
|
-
return p[1] * np.exp(-(x - p[0]) ** 2 / (2.0 * (p[2] / 2.3548) ** 2))
|
|
1129
|
-
|