pyTEMlib 0.2023.8.0__py2.py3-none-any.whl → 0.2024.2.0__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pyTEMlib might be problematic. Click here for more details.
- pyTEMlib/config_dir.py +0 -1
- pyTEMlib/crystal_tools.py +22 -26
- pyTEMlib/eds_tools.py +499 -46
- pyTEMlib/eels_dialog.py +284 -899
- pyTEMlib/eels_dialog_utilities.py +218 -341
- pyTEMlib/eels_tools.py +1526 -1583
- pyTEMlib/file_tools.py +52 -48
- pyTEMlib/graph_tools.py +3 -4
- pyTEMlib/image_tools.py +171 -41
- pyTEMlib/info_widget.py +618 -276
- pyTEMlib/kinematic_scattering.py +77 -512
- pyTEMlib/peak_dialog.py +162 -288
- pyTEMlib/version.py +2 -2
- pyTEMlib/xrpa_x_sections.py +173 -97
- {pyTEMlib-0.2023.8.0.dist-info → pyTEMlib-0.2024.2.0.dist-info}/LICENSE +1 -1
- {pyTEMlib-0.2023.8.0.dist-info → pyTEMlib-0.2024.2.0.dist-info}/METADATA +2 -2
- pyTEMlib-0.2024.2.0.dist-info/RECORD +35 -0
- {pyTEMlib-0.2023.8.0.dist-info → pyTEMlib-0.2024.2.0.dist-info}/WHEEL +1 -1
- pyTEMlib/eels_dlg.py +0 -252
- pyTEMlib/info_dialog.py +0 -665
- pyTEMlib/info_dlg.py +0 -239
- pyTEMlib/interactive_eels.py +0 -35
- pyTEMlib/viz.py +0 -481
- pyTEMlib-0.2023.8.0.dist-info/RECORD +0 -40
- {pyTEMlib-0.2023.8.0.dist-info → pyTEMlib-0.2024.2.0.dist-info}/entry_points.txt +0 -0
- {pyTEMlib-0.2023.8.0.dist-info → pyTEMlib-0.2024.2.0.dist-info}/top_level.txt +0 -0
pyTEMlib/info_dialog.py
DELETED
|
@@ -1,665 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
Input Dialog for EELS Analysis
|
|
3
|
-
|
|
4
|
-
Author: Gerd Duscher
|
|
5
|
-
|
|
6
|
-
"""
|
|
7
|
-
import numpy as np
|
|
8
|
-
import sidpy
|
|
9
|
-
|
|
10
|
-
Qt_available = True
|
|
11
|
-
try:
|
|
12
|
-
from PyQt5 import QtCore, QtWidgets
|
|
13
|
-
except:
|
|
14
|
-
Qt_available = False
|
|
15
|
-
# print('Qt dialogs are not available')
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
import pyTEMlib.eels_dialog_utilities as ieels
|
|
19
|
-
from pyTEMlib.microscope import microscope
|
|
20
|
-
import ipywidgets
|
|
21
|
-
import matplotlib.pylab as plt
|
|
22
|
-
import matplotlib
|
|
23
|
-
from IPython.display import display
|
|
24
|
-
from pyTEMlib import file_tools as ft
|
|
25
|
-
_version = 000
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
if Qt_available:
|
|
29
|
-
from pyTEMlib import info_dlg
|
|
30
|
-
class InfoDialog(QtWidgets.QDialog):
|
|
31
|
-
"""
|
|
32
|
-
Input Dialog for EELS Analysis
|
|
33
|
-
|
|
34
|
-
Opens a PyQt5 GUi Dialog that allows to set the experimental parameter necessary for a Quantification.
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
The dialog operates on a sidpy dataset
|
|
38
|
-
"""
|
|
39
|
-
|
|
40
|
-
def __init__(self, datasets=None, key=None):
|
|
41
|
-
super().__init__(None, QtCore.Qt.WindowStaysOnTopHint)
|
|
42
|
-
# Create an instance of the GUI
|
|
43
|
-
self.ui = info_dlg.UiDialog(self)
|
|
44
|
-
self.set_action()
|
|
45
|
-
self.datasets = datasets
|
|
46
|
-
|
|
47
|
-
self.spec_dim = []
|
|
48
|
-
self.energy_scale = np.array([])
|
|
49
|
-
self.experiment = {}
|
|
50
|
-
self.energy_dlg = None
|
|
51
|
-
self.axis = None
|
|
52
|
-
|
|
53
|
-
self.y_scale = 1.0
|
|
54
|
-
self.change_y_scale = 1.0
|
|
55
|
-
self.show()
|
|
56
|
-
|
|
57
|
-
if self.datasets is None:
|
|
58
|
-
# make a dummy dataset for testing
|
|
59
|
-
key = 'Channel_000'
|
|
60
|
-
self.datasets={key: ft.make_dummy_dataset(sidpy.DataType.SPECTRUM)}
|
|
61
|
-
if key is None:
|
|
62
|
-
key = list(self.datasets.keys())[0]
|
|
63
|
-
self.dataset = self.datasets[key]
|
|
64
|
-
self.key = key
|
|
65
|
-
if not isinstance(self.dataset, sidpy.Dataset):
|
|
66
|
-
raise TypeError('dataset has to be a sidpy dataset')
|
|
67
|
-
|
|
68
|
-
self.set_dataset(self.dataset)
|
|
69
|
-
|
|
70
|
-
view = self.dataset.plot()
|
|
71
|
-
if hasattr(self.dataset.view, 'axes'):
|
|
72
|
-
self.axis = self.dataset.view.axes[-1]
|
|
73
|
-
elif hasattr(self.dataset.view, 'axis'):
|
|
74
|
-
self.axis = self.dataset.view.axis
|
|
75
|
-
self.figure = self.axis.figure
|
|
76
|
-
self.plot()
|
|
77
|
-
self.update()
|
|
78
|
-
|
|
79
|
-
def set_dataset(self, dataset):
|
|
80
|
-
self.dataset = dataset
|
|
81
|
-
if not hasattr(self.dataset, '_axes'):
|
|
82
|
-
self.dataset._axes = self.dataset.axes
|
|
83
|
-
if not hasattr(self.dataset, 'meta_data'):
|
|
84
|
-
self.dataset.meta_data = {}
|
|
85
|
-
|
|
86
|
-
spec_dim = dataset.get_dimensions_by_type(sidpy.DimensionType.SPECTRAL)
|
|
87
|
-
if len(spec_dim) != 1:
|
|
88
|
-
raise TypeError('We need exactly one SPECTRAL dimension')
|
|
89
|
-
self.spec_dim = self.dataset._axes[spec_dim[0]]
|
|
90
|
-
self.energy_scale = self.spec_dim.values.copy()
|
|
91
|
-
|
|
92
|
-
minimum_info = {'offset': self.energy_scale[0],
|
|
93
|
-
'dispersion': self.energy_scale[1] - self.energy_scale[0],
|
|
94
|
-
'exposure_time': 0.0,
|
|
95
|
-
'convergence_angle': 0.0, 'collection_angle': 0.0,
|
|
96
|
-
'acceleration_voltage': 100.0, 'binning': 1, 'conversion': 1.0,
|
|
97
|
-
'flux_ppm': -1.0, 'flux_unit': 'counts', 'current': 1.0, 'SI_bin_x': 1, 'SI_bin_y': 1}
|
|
98
|
-
if 'experiment' not in self.dataset.metadata:
|
|
99
|
-
self.dataset.metadata['experiment'] = minimum_info
|
|
100
|
-
self.experiment = self.dataset.metadata['experiment']
|
|
101
|
-
|
|
102
|
-
for key, item in minimum_info.items():
|
|
103
|
-
if key not in self.experiment:
|
|
104
|
-
self.experiment[key] = item
|
|
105
|
-
self.set_flux_list()
|
|
106
|
-
|
|
107
|
-
def set_dimension(self):
|
|
108
|
-
spec_dim = self.dataset.get_dimensions_by_type(sidpy.DimensionType.SPECTRAL)
|
|
109
|
-
self.spec_dim = self.dataset._axes[spec_dim[0]]
|
|
110
|
-
old_energy_scale = self.spec_dim
|
|
111
|
-
self.dataset.set_dimension(spec_dim[0], sidpy.Dimension(np.array(self.energy_scale),
|
|
112
|
-
name=old_energy_scale.name,
|
|
113
|
-
dimension_type=sidpy.DimensionType.SPECTRAL,
|
|
114
|
-
units='eV',
|
|
115
|
-
quantity='energy loss'))
|
|
116
|
-
|
|
117
|
-
def update(self):
|
|
118
|
-
|
|
119
|
-
self.ui.offsetEdit.setText(f"{self.experiment['offset']:.3f}")
|
|
120
|
-
self.ui.dispersionEdit.setText(f"{self.experiment['dispersion']:.3f}")
|
|
121
|
-
self.ui.timeEdit.setText(f"{self.experiment['exposure_time']:.6f}")
|
|
122
|
-
|
|
123
|
-
self.ui.convEdit.setText(f"{self.experiment['convergence_angle']:.2f}")
|
|
124
|
-
self.ui.collEdit.setText(f"{self.experiment['collection_angle']:.2f}")
|
|
125
|
-
self.ui.E0Edit.setText(f"{self.experiment['acceleration_voltage']/1000.:.2f}")
|
|
126
|
-
|
|
127
|
-
self.ui.binningEdit.setText(f"{self.experiment['binning']}")
|
|
128
|
-
self.ui.conversionEdit.setText(f"{self.experiment['conversion']:.2f}")
|
|
129
|
-
self.ui.fluxEdit.setText(f"{self.experiment['flux_ppm']:.2f}")
|
|
130
|
-
self.ui.fluxUnit.setText(f"{self.experiment['flux_unit']}")
|
|
131
|
-
self.ui.VOAEdit.setText(f"{self.experiment['current']:.2f}")
|
|
132
|
-
self.ui.statusBar.showMessage('Message in statusbar.')
|
|
133
|
-
|
|
134
|
-
def on_enter(self):
|
|
135
|
-
sender = self.sender()
|
|
136
|
-
|
|
137
|
-
if sender == self.ui.offsetEdit:
|
|
138
|
-
value = float(str(sender.displayText()).strip())
|
|
139
|
-
self.experiment['offset'] = value
|
|
140
|
-
sender.setText(f"{value:.2f}")
|
|
141
|
-
self.energy_scale = self.energy_scale - self.energy_scale[0] + value
|
|
142
|
-
self.set_dimension()
|
|
143
|
-
self.plot()
|
|
144
|
-
elif sender == self.ui.dispersionEdit:
|
|
145
|
-
value = float(str(sender.displayText()).strip())
|
|
146
|
-
self.experiment['dispersion'] = value
|
|
147
|
-
self.energy_scale = np.arange(len(self.energy_scale)) * value + self.energy_scale[0]
|
|
148
|
-
self.set_dimension()
|
|
149
|
-
self.plot()
|
|
150
|
-
sender.setText(f"{value:.3f}")
|
|
151
|
-
elif sender == self.ui.timeEdit:
|
|
152
|
-
value = float(str(sender.displayText()).strip())
|
|
153
|
-
self.experiment['exposure_time'] = value
|
|
154
|
-
sender.setText(f"{value:.2f}")
|
|
155
|
-
elif sender == self.ui.convEdit:
|
|
156
|
-
value = float(str(sender.displayText()).strip())
|
|
157
|
-
self.experiment['convergence_angle'] = value
|
|
158
|
-
sender.setText(f"{value:.2f}")
|
|
159
|
-
elif sender == self.ui.collEdit:
|
|
160
|
-
value = float(str(sender.displayText()).strip())
|
|
161
|
-
self.experiment['collection_angle'] = value
|
|
162
|
-
sender.setText(f"{value:.2f}")
|
|
163
|
-
elif sender == self.ui.E0Edit:
|
|
164
|
-
value = float(str(sender.displayText()).strip())
|
|
165
|
-
self.experiment['acceleration_voltage'] = value*1000.0
|
|
166
|
-
sender.setText(f"{value:.2f}")
|
|
167
|
-
elif sender == self.ui.fluxEdit:
|
|
168
|
-
value = float(str(sender.displayText()).strip())
|
|
169
|
-
if value == 0:
|
|
170
|
-
self.set_flux()
|
|
171
|
-
else:
|
|
172
|
-
self.experiment['flux_ppm'] = value
|
|
173
|
-
sender.setText(f"{value:.2f}")
|
|
174
|
-
elif sender == self.ui.binXEdit or sender == self.ui.binYEdit:
|
|
175
|
-
if self.dataset.data_type == sidpy.DataType.SPECTRAL_IMAGE:
|
|
176
|
-
bin_x = int(self.ui.binXEdit.displayText())
|
|
177
|
-
bin_y = int(self.ui.binYEdit.displayText())
|
|
178
|
-
self.experiment['SI_bin_x'] = bin_x
|
|
179
|
-
self.experiment['SI_bin_y'] = bin_y
|
|
180
|
-
self.dataset.view.set_bin([bin_x, bin_y])
|
|
181
|
-
self.ui.binXEdit.setText(str(self.dataset.view.bin_x))
|
|
182
|
-
self.ui.binYEdit.setText(str(self.dataset.view.bin_y))
|
|
183
|
-
else:
|
|
184
|
-
print('not supported yet')
|
|
185
|
-
|
|
186
|
-
def plot(self):
|
|
187
|
-
if self.dataset.data_type == sidpy.DataType.SPECTRAL_IMAGE:
|
|
188
|
-
spectrum = self.dataset.view.get_spectrum()
|
|
189
|
-
self.axis = self.dataset.view.axes[1]
|
|
190
|
-
else:
|
|
191
|
-
spectrum = np.array(self.dataset)
|
|
192
|
-
self.axis = self.dataset.view.axis
|
|
193
|
-
|
|
194
|
-
spectrum *= self.y_scale
|
|
195
|
-
|
|
196
|
-
x_limit = self.axis.get_xlim()
|
|
197
|
-
y_limit = np.array(self.axis.get_ylim())
|
|
198
|
-
self.axis.clear()
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
self.axis.plot(self.energy_scale, spectrum, label='spectrum')
|
|
202
|
-
self.axis.set_xlim(x_limit)
|
|
203
|
-
if self.change_y_scale !=1.0:
|
|
204
|
-
y_limit *= self.change_y_scale
|
|
205
|
-
self.change_y_scale = 1.0
|
|
206
|
-
self.axis.set_ylim(y_limit)
|
|
207
|
-
|
|
208
|
-
if self.y_scale != 1.:
|
|
209
|
-
self.axis.set_ylabel('scattering intensity (ppm)')
|
|
210
|
-
|
|
211
|
-
self.axis.set_xlabel('energy_loss (eV)')
|
|
212
|
-
|
|
213
|
-
self.figure.canvas.draw_idle()
|
|
214
|
-
|
|
215
|
-
def on_list_enter(self):
|
|
216
|
-
sender = self.sender()
|
|
217
|
-
if sender == self.ui.TEMList:
|
|
218
|
-
microscope.set_microscope(self.ui.TEMList.currentText())
|
|
219
|
-
self.experiment['microscope'] = microscope.name
|
|
220
|
-
self.experiment['convergence_angle'] = microscope.alpha
|
|
221
|
-
self.experiment['collection_angle'] = microscope.beta
|
|
222
|
-
self.experiment['acceleration_voltage'] = microscope.E0
|
|
223
|
-
self.update()
|
|
224
|
-
|
|
225
|
-
def set_energy_scale(self):
|
|
226
|
-
self.energy_dlg = ieels.EnergySelector(self.dataset)
|
|
227
|
-
|
|
228
|
-
self.energy_dlg.signal_selected[bool].connect(self.set_energy)
|
|
229
|
-
self.energy_dlg.show()
|
|
230
|
-
|
|
231
|
-
def set_energy(self, k):
|
|
232
|
-
spec_dim = self.dataset.get_dimensions_by_type(sidpy.DimensionType.SPECTRAL)
|
|
233
|
-
self.spec_dim = self.dataset._axes[spec_dim[0]]
|
|
234
|
-
|
|
235
|
-
self.energy_scale = self.spec_dim.values
|
|
236
|
-
self.experiment['offset'] = self.energy_scale[0]
|
|
237
|
-
self.experiment['dispersion'] = self.energy_scale[1] - self.energy_scale[0]
|
|
238
|
-
self.update()
|
|
239
|
-
|
|
240
|
-
def set_flux(self, key):
|
|
241
|
-
self.ui.statusBar.showMessage('on_set_flux')
|
|
242
|
-
new_flux = 1.0
|
|
243
|
-
title = key
|
|
244
|
-
metadata = {}
|
|
245
|
-
if key in self.datasets.keys():
|
|
246
|
-
flux_dataset = self.datasets[key]
|
|
247
|
-
if isinstance(flux_dataset, sidpy.Dataset):
|
|
248
|
-
exposure_time = -1.0
|
|
249
|
-
flux_dataset = self.datasets[key]
|
|
250
|
-
if flux_dataset.data_type.name == 'IMAGE' or 'SPECTRUM' in flux_dataset.data_type.name:
|
|
251
|
-
if 'exposure_time' in flux_dataset.metadata['experiment']:
|
|
252
|
-
if 'number_of_frames' in flux_dataset.metadata['experiment']:
|
|
253
|
-
exposure_time = flux_dataset.metadata['experiment']['single_exposure_time'] * flux_dataset.metadata['experiment']['number_of_frames']
|
|
254
|
-
else:
|
|
255
|
-
exposure_time = flux_dataset.metadata['experiment']['exposure_time']
|
|
256
|
-
else:
|
|
257
|
-
exposure_time = -1.0
|
|
258
|
-
flux_dataset.metadata['experiment']['exposure_time'] = -1
|
|
259
|
-
print('Did not find exposure time assume 1s')
|
|
260
|
-
if exposure_time > 0:
|
|
261
|
-
new_flux = np.sum(np.array(flux_dataset*1e-6))/exposure_time*self.dataset.metadata['experiment']['exposure_time']
|
|
262
|
-
title = flux_dataset.title
|
|
263
|
-
metadata = flux_dataset.metadata
|
|
264
|
-
self.experiment['flux_ppm'] = new_flux
|
|
265
|
-
self.experiment['flux_units'] = 'Mcounts '
|
|
266
|
-
self.experiment['flux_source'] = title
|
|
267
|
-
self.experiment['flux_metadata'] = metadata
|
|
268
|
-
|
|
269
|
-
self.update()
|
|
270
|
-
|
|
271
|
-
def on_check(self):
|
|
272
|
-
sender = self.sender()
|
|
273
|
-
|
|
274
|
-
if sender.objectName() == 'probability':
|
|
275
|
-
dispersion = self.energy_scale[1]-self.energy_scale[0]
|
|
276
|
-
if sender.isChecked():
|
|
277
|
-
self.y_scale = 1/self.experiment['flux_ppm']*dispersion
|
|
278
|
-
self.change_y_scale = 1/self.experiment['flux_ppm']*dispersion
|
|
279
|
-
else:
|
|
280
|
-
self.y_scale = 1.
|
|
281
|
-
self.change_y_scale = self.experiment['flux_ppm']/dispersion
|
|
282
|
-
self.plot()
|
|
283
|
-
|
|
284
|
-
def set_flux_list(self):
|
|
285
|
-
length_list = self.ui.select_flux.count()+1
|
|
286
|
-
for i in range(2, length_list):
|
|
287
|
-
self.ui.select_flux.removeItem(i)
|
|
288
|
-
for key in self.datasets.keys():
|
|
289
|
-
if isinstance(self.datasets[key], sidpy.Dataset):
|
|
290
|
-
if self.datasets[key].title != self.dataset.title:
|
|
291
|
-
self.ui.select_flux.addItem(key+': '+self.datasets[key].title)
|
|
292
|
-
|
|
293
|
-
def on_list_enter(self):
|
|
294
|
-
self.ui.statusBar.showMessage('on_list')
|
|
295
|
-
sender = self.sender()
|
|
296
|
-
if sender.objectName() == 'select_flux_list':
|
|
297
|
-
self.ui.statusBar.showMessage('list')
|
|
298
|
-
index = self.ui.select_flux.currentIndex()
|
|
299
|
-
self.ui.statusBar.showMessage('list'+str(index))
|
|
300
|
-
if index == 1:
|
|
301
|
-
ft.add_dataset_from_file(self.datasets, key_name='Reference')
|
|
302
|
-
self.set_flux_list()
|
|
303
|
-
else:
|
|
304
|
-
key = str(self.ui.select_flux.currentText()).split(':')[0]
|
|
305
|
-
self.set_flux(key)
|
|
306
|
-
|
|
307
|
-
self.update()
|
|
308
|
-
|
|
309
|
-
def set_action(self):
|
|
310
|
-
self.ui.statusBar.showMessage('action')
|
|
311
|
-
self.ui.offsetEdit.editingFinished.connect(self.on_enter)
|
|
312
|
-
self.ui.dispersionEdit.editingFinished.connect(self.on_enter)
|
|
313
|
-
self.ui.timeEdit.editingFinished.connect(self.on_enter)
|
|
314
|
-
|
|
315
|
-
self.ui.TEMList.activated[str].connect(self.on_list_enter)
|
|
316
|
-
|
|
317
|
-
self.ui.convEdit.editingFinished.connect(self.on_enter)
|
|
318
|
-
self.ui.collEdit.editingFinished.connect(self.on_enter)
|
|
319
|
-
self.ui.E0Edit.editingFinished.connect(self.on_enter)
|
|
320
|
-
self.ui.binningEdit.editingFinished.connect(self.on_enter)
|
|
321
|
-
self.ui.conversionEdit.editingFinished.connect(self.on_enter)
|
|
322
|
-
self.ui.fluxEdit.editingFinished.connect(self.on_enter)
|
|
323
|
-
self.ui.VOAEdit.editingFinished.connect(self.on_enter)
|
|
324
|
-
self.ui.energy_button.clicked.connect(self.set_energy_scale)
|
|
325
|
-
self.ui.select_flux.activated[str].connect(self.on_list_enter)
|
|
326
|
-
|
|
327
|
-
self.ui.check_probability.clicked.connect(self.on_check)
|
|
328
|
-
|
|
329
|
-
self.ui.binXEdit.editingFinished.connect(self.on_enter)
|
|
330
|
-
self.ui.binYEdit.editingFinished.connect(self.on_enter)
|
|
331
|
-
|
|
332
|
-
|
|
333
|
-
def get_sidebar():
|
|
334
|
-
side_bar = ipywidgets.GridspecLayout(17, 3,width='auto', grid_gap="0px")
|
|
335
|
-
|
|
336
|
-
side_bar[0, :2] = ipywidgets.Dropdown(
|
|
337
|
-
options=[('None', 0)],
|
|
338
|
-
value=0,
|
|
339
|
-
description='Main Dataset:',
|
|
340
|
-
disabled=False)
|
|
341
|
-
|
|
342
|
-
row = 1
|
|
343
|
-
side_bar[row, :3] = ipywidgets.Button(description='Energy Scale',
|
|
344
|
-
layout=ipywidgets.Layout(width='auto', grid_area='header'),
|
|
345
|
-
style=ipywidgets.ButtonStyle(button_color='lightblue'))
|
|
346
|
-
row += 1
|
|
347
|
-
side_bar[row, :2] = ipywidgets.FloatText(value=7.5,description='Offset:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
348
|
-
side_bar[row, 2] = ipywidgets.widgets.Label(value="eV", layout=ipywidgets.Layout(width='20px'))
|
|
349
|
-
row += 1
|
|
350
|
-
side_bar[row, :2] = ipywidgets.FloatText(value=0.1, description='Dispersion:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
351
|
-
side_bar[row, 2] = ipywidgets.widgets.Label(value="eV", layout=ipywidgets.Layout(width='20px'))
|
|
352
|
-
|
|
353
|
-
row += 1
|
|
354
|
-
side_bar[row, :3] = ipywidgets.Button(description='Microscope',
|
|
355
|
-
layout=ipywidgets.Layout(width='auto', grid_area='header'),
|
|
356
|
-
style=ipywidgets.ButtonStyle(button_color='lightblue'))
|
|
357
|
-
row += 1
|
|
358
|
-
side_bar[row, :2] = ipywidgets.FloatText(value=7.5,description='Conv.Angle:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
359
|
-
side_bar[row, 2] = ipywidgets.widgets.Label(value="mrad", layout=ipywidgets.Layout(width='100px'))
|
|
360
|
-
row += 1
|
|
361
|
-
side_bar[row, :2] = ipywidgets.FloatText(value=0.1, description='Coll.Angle:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
362
|
-
side_bar[row, 2] = ipywidgets.widgets.Label(value="mrad", layout=ipywidgets.Layout(width='100px'))
|
|
363
|
-
row += 1
|
|
364
|
-
side_bar[row, :2] = ipywidgets.FloatText(value=0.1, description='Acc Voltage:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
365
|
-
side_bar[row, 2] = ipywidgets.widgets.Label(value="keV", layout=ipywidgets.Layout(width='100px'))
|
|
366
|
-
row += 1
|
|
367
|
-
|
|
368
|
-
side_bar[row, :3] = ipywidgets.Button(description='Quantification',
|
|
369
|
-
layout=ipywidgets.Layout(width='auto', grid_area='header'),
|
|
370
|
-
style=ipywidgets.ButtonStyle(button_color='lightblue'))
|
|
371
|
-
row+=1
|
|
372
|
-
side_bar[row, :2] = ipywidgets.Dropdown(
|
|
373
|
-
options=[('None', 0)],
|
|
374
|
-
value=0,
|
|
375
|
-
description='Reference:',
|
|
376
|
-
disabled=False)
|
|
377
|
-
side_bar[row,2] = ipywidgets.ToggleButton(
|
|
378
|
-
description='Probability',
|
|
379
|
-
disabled=False,
|
|
380
|
-
button_style='', # 'success', 'info', 'warning', 'danger' or ''
|
|
381
|
-
tooltip='Changes y-axis to probability if flux is given',
|
|
382
|
-
layout=ipywidgets.Layout(width='100px'))
|
|
383
|
-
row += 1
|
|
384
|
-
side_bar[row, :2] = ipywidgets.FloatText(value=0.1, description='Exp_Time:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
385
|
-
side_bar[row, 2] = ipywidgets.widgets.Label(value="s", layout=ipywidgets.Layout(width='100px'))
|
|
386
|
-
row += 1
|
|
387
|
-
side_bar[row, :2] = ipywidgets.FloatText(value=7.5,description='Flux:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
388
|
-
side_bar[row, 2] = ipywidgets.widgets.Label(value="Mcounts", layout=ipywidgets.Layout(width='100px'))
|
|
389
|
-
row += 1
|
|
390
|
-
side_bar[row, :2] = ipywidgets.FloatText(value=0.1, description='Conversion:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
391
|
-
side_bar[row, 2] = ipywidgets.widgets.Label(value=r"e$^-$/counts", layout=ipywidgets.Layout(width='100px'))
|
|
392
|
-
row += 1
|
|
393
|
-
side_bar[row, :2] = ipywidgets.FloatText(value=0.1, description='Current:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
394
|
-
side_bar[row, 2] = ipywidgets.widgets.Label(value="pA", layout=ipywidgets.Layout(width='100px') )
|
|
395
|
-
|
|
396
|
-
row += 1
|
|
397
|
-
|
|
398
|
-
side_bar[row, :3] = ipywidgets.Button(description='Spectrum Image',
|
|
399
|
-
layout=ipywidgets.Layout(width='auto', grid_area='header'),
|
|
400
|
-
style=ipywidgets.ButtonStyle(button_color='lightblue'))
|
|
401
|
-
|
|
402
|
-
row += 1
|
|
403
|
-
side_bar[row, :2] = ipywidgets.IntText(value=1, description='bin X:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
404
|
-
row += 1
|
|
405
|
-
side_bar[row, :2] = ipywidgets.IntText(value=1, description='bin X:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
406
|
-
|
|
407
|
-
for i in range(14, 17):
|
|
408
|
-
side_bar[i, 0].layout.display = "none"
|
|
409
|
-
return side_bar
|
|
410
|
-
|
|
411
|
-
|
|
412
|
-
class SpectrumPlot(sidpy.viz.dataset_viz.CurveVisualizer):
|
|
413
|
-
def __init__(self, dset, spectrum_number=0, figure=None, **kwargs):
|
|
414
|
-
with plt.ioff():
|
|
415
|
-
self.figure = plt.figure()
|
|
416
|
-
self.figure.canvas.toolbar_position = 'right'
|
|
417
|
-
self.figure.canvas.toolbar_visible = True
|
|
418
|
-
|
|
419
|
-
super().__init__(dset, spectrum_number=spectrum_number, figure=self.figure, **kwargs)
|
|
420
|
-
|
|
421
|
-
self.start_cursor = ipywidgets.FloatText(value=0, description='Start:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
422
|
-
self.end_cursor = ipywidgets.FloatText(value=0, description='End:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
423
|
-
self.panel = ipywidgets.VBox([ipywidgets.HBox([ipywidgets.Label('',layout=ipywidgets.Layout(width='100px')), ipywidgets.Label('Cursor:'),
|
|
424
|
-
self.start_cursor,ipywidgets.Label('eV'),
|
|
425
|
-
self.end_cursor, ipywidgets.Label('eV')]),
|
|
426
|
-
self.figure.canvas])
|
|
427
|
-
|
|
428
|
-
self.selector = matplotlib.widgets.SpanSelector(self.axis, self.line_select_callback,
|
|
429
|
-
direction="horizontal",
|
|
430
|
-
interactive=True,
|
|
431
|
-
props=dict(facecolor='blue', alpha=0.2))
|
|
432
|
-
#self.axis.legend()
|
|
433
|
-
display(self.panel)
|
|
434
|
-
|
|
435
|
-
def line_select_callback(self, x_min, x_max):
|
|
436
|
-
self.start_cursor.value = np.round(x_min, 3)
|
|
437
|
-
self.end_cursor.value = np.round(x_max, 3)
|
|
438
|
-
self.start_channel = np.searchsorted(self.datasets[self.key].energy_loss, self.start_cursor.value)
|
|
439
|
-
self.end_channel = np.searchsorted(self.datasets[self.key].energy_loss, self.end_cursor.value)
|
|
440
|
-
|
|
441
|
-
|
|
442
|
-
class SIPlot(sidpy.viz.dataset_viz.SpectralImageVisualizer):
|
|
443
|
-
def __init__(self, dset, figure=None, horizontal=True, **kwargs):
|
|
444
|
-
if figure is None:
|
|
445
|
-
with plt.ioff():
|
|
446
|
-
self.figure = plt.figure()
|
|
447
|
-
else:
|
|
448
|
-
self.figure = figure
|
|
449
|
-
self.figure.canvas.toolbar_position = 'right'
|
|
450
|
-
self.figure.canvas.toolbar_visible = True
|
|
451
|
-
|
|
452
|
-
super().__init__(dset, figure= self.figure, horizontal=horizontal, **kwargs)
|
|
453
|
-
|
|
454
|
-
self.start_cursor = ipywidgets.FloatText(value=0, description='Start:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
455
|
-
self.end_cursor = ipywidgets.FloatText(value=0, description='End:', disabled=False, color='black', layout=ipywidgets.Layout(width='200px'))
|
|
456
|
-
self.panel = ipywidgets.VBox([ipywidgets.HBox([ipywidgets.Label('',layout=ipywidgets.Layout(width='100px')), ipywidgets.Label('Cursor:'),
|
|
457
|
-
self.start_cursor,ipywidgets.Label('eV'),
|
|
458
|
-
self.end_cursor, ipywidgets.Label('eV')]),
|
|
459
|
-
self.figure.canvas])
|
|
460
|
-
self.axis = self.axes[-1]
|
|
461
|
-
self.selector = matplotlib.widgets.SpanSelector(self.axis, self.line_select_callback,
|
|
462
|
-
direction="horizontal",
|
|
463
|
-
interactive=True,
|
|
464
|
-
props=dict(facecolor='blue', alpha=0.2))
|
|
465
|
-
|
|
466
|
-
def line_select_callback(self, x_min, x_max):
|
|
467
|
-
self.start_cursor.value = np.round(x_min, 3)
|
|
468
|
-
self.end_cursor.value = np.round(x_max, 3)
|
|
469
|
-
self.start_channel = np.searchsorted(self.datasets[self.key].energy_loss, self.start_cursor.value)
|
|
470
|
-
self.end_channel = np.searchsorted(self.datasets[self.key].energy_loss, self.end_cursor.value)
|
|
471
|
-
|
|
472
|
-
def _update(self, ev=None):
|
|
473
|
-
|
|
474
|
-
xlim = self.axes[1].get_xlim()
|
|
475
|
-
ylim = self.axes[1].get_ylim()
|
|
476
|
-
self.axes[1].clear()
|
|
477
|
-
self.get_spectrum()
|
|
478
|
-
if len(self.energy_scale)!=self.spectrum.shape[0]:
|
|
479
|
-
self.spectrum = self.spectrum.T
|
|
480
|
-
self.axes[1].plot(self.energy_scale, self.spectrum.compute(), label='experiment')
|
|
481
|
-
|
|
482
|
-
if self.set_title:
|
|
483
|
-
self.axes[1].set_title('spectrum {}, {}'.format(self.x, self.y))
|
|
484
|
-
self.fig.tight_layout()
|
|
485
|
-
self.selector = matplotlib.widgets.SpanSelector(self.axes[1], self.line_select_callback,
|
|
486
|
-
direction="horizontal",
|
|
487
|
-
interactive=True,
|
|
488
|
-
props=dict(facecolor='blue', alpha=0.2))
|
|
489
|
-
|
|
490
|
-
self.axes[1].set_xlim(xlim)
|
|
491
|
-
self.axes[1].set_ylim(ylim)
|
|
492
|
-
self.axes[1].set_xlabel(self.xlabel)
|
|
493
|
-
self.axes[1].set_ylabel(self.ylabel)
|
|
494
|
-
|
|
495
|
-
self.fig.canvas.draw_idle()
|
|
496
|
-
|
|
497
|
-
class InfoWidget(object):
|
|
498
|
-
def __init__(self, datasets=None):
|
|
499
|
-
self.datasets = datasets
|
|
500
|
-
self.dataset = None
|
|
501
|
-
|
|
502
|
-
self.sidebar = get_sidebar()
|
|
503
|
-
|
|
504
|
-
self.set_dataset()
|
|
505
|
-
self.set_action()
|
|
506
|
-
|
|
507
|
-
|
|
508
|
-
self.app_layout = ipywidgets.AppLayout(
|
|
509
|
-
left_sidebar=self.sidebar,
|
|
510
|
-
center=self.view.panel,
|
|
511
|
-
footer=None,#message_bar,
|
|
512
|
-
pane_heights=[0, 10, 0],
|
|
513
|
-
pane_widths=[4, 10, 0],
|
|
514
|
-
)
|
|
515
|
-
|
|
516
|
-
display(self.app_layout)
|
|
517
|
-
|
|
518
|
-
|
|
519
|
-
def get_spectrum(self):
|
|
520
|
-
if self.dataset.data_type == sidpy.DataType.SPECTRAL_IMAGE:
|
|
521
|
-
spectrum = self.dataset.view.get_spectrum()
|
|
522
|
-
self.axis = self.dataset.view.axes[1]
|
|
523
|
-
else:
|
|
524
|
-
spectrum = np.array(self.dataset)
|
|
525
|
-
self.axis = self.dataset.view.axis
|
|
526
|
-
|
|
527
|
-
spectrum *= self.y_scale
|
|
528
|
-
return spectrum
|
|
529
|
-
|
|
530
|
-
def plot(self, scale=True):
|
|
531
|
-
spectrum = self.get_spectrum()
|
|
532
|
-
self.energy_scale = self.dataset.energy_loss.values
|
|
533
|
-
x_limit = self.axis.get_xlim()
|
|
534
|
-
y_limit = np.array(self.axis.get_ylim())
|
|
535
|
-
"""
|
|
536
|
-
self.axis.clear()
|
|
537
|
-
|
|
538
|
-
self.axis.plot(self.energy_scale, spectrum, label='spectrum')
|
|
539
|
-
|
|
540
|
-
|
|
541
|
-
self.axis.set_xlabel(self.datasets[self.key].labels[0])
|
|
542
|
-
self.axis.set_ylabel(self.datasets[self.key].data_descriptor)
|
|
543
|
-
self.axis.ticklabel_format(style='sci', scilimits=(-2, 3))
|
|
544
|
-
if scale:
|
|
545
|
-
self.axis.set_ylim(np.array(y_limit)*self.change_y_scale)
|
|
546
|
-
self.change_y_scale = 1.0
|
|
547
|
-
if self.y_scale != 1.:
|
|
548
|
-
self.axis.set_ylabel('scattering probability (ppm/eV)')
|
|
549
|
-
self.selector = matplotlib.widgets.SpanSelector(self.axis, self.line_select_callback,
|
|
550
|
-
direction="horizontal",
|
|
551
|
-
interactive=True,
|
|
552
|
-
props=dict(facecolor='blue', alpha=0.2))
|
|
553
|
-
self.axis.legend()
|
|
554
|
-
self.figure.canvas.draw_idle()
|
|
555
|
-
"""
|
|
556
|
-
|
|
557
|
-
def set_dataset(self, index=0):
|
|
558
|
-
|
|
559
|
-
spectrum_list = []
|
|
560
|
-
reference_list =[('None', -1)]
|
|
561
|
-
dataset_index = self.sidebar[0, 0].value
|
|
562
|
-
for index, key in enumerate(self.datasets.keys()):
|
|
563
|
-
if 'Reference' not in key:
|
|
564
|
-
if 'SPECTR' in self.datasets[key].data_type.name:
|
|
565
|
-
spectrum_list.append((f'{key}: {self.datasets[key].title}', index))
|
|
566
|
-
reference_list.append((f'{key}: {self.datasets[key].title}', index))
|
|
567
|
-
|
|
568
|
-
self.sidebar[0,0].options = spectrum_list
|
|
569
|
-
self.sidebar[9,0].options = reference_list
|
|
570
|
-
self.key = list(self.datasets)[dataset_index]
|
|
571
|
-
self.dataset = self.datasets[self.key]
|
|
572
|
-
if 'SPECTRUM' in self.dataset.data_type.name:
|
|
573
|
-
for i in range(14, 17):
|
|
574
|
-
self.sidebar[i, 0].layout.display = "none"
|
|
575
|
-
else:
|
|
576
|
-
for i in range(14, 17):
|
|
577
|
-
self.sidebar[i, 0].layout.display = "flex"
|
|
578
|
-
#self.sidebar[0,0].value = dataset_index #f'{self.key}: {self.datasets[self.key].title}'
|
|
579
|
-
self.sidebar[2,0].value = np.round(self.datasets[self.key].energy_loss[0], 3)
|
|
580
|
-
self.sidebar[3,0].value = np.round(self.datasets[self.key].energy_loss[1] - self.datasets[self.key].energy_loss[0], 4)
|
|
581
|
-
self.sidebar[5,0].value = np.round(self.datasets[self.key].metadata['experiment']['convergence_angle'], 1)
|
|
582
|
-
self.sidebar[6,0].value = np.round(self.datasets[self.key].metadata['experiment']['collection_angle'], 1)
|
|
583
|
-
self.sidebar[7,0].value = np.round(self.datasets[self.key].metadata['experiment']['acceleration_voltage']/1000, 1)
|
|
584
|
-
self.sidebar[10,0].value = np.round(self.datasets[self.key].metadata['experiment']['exposure_time'], 4)
|
|
585
|
-
if 'flux_ppm' not in self.datasets[self.key].metadata['experiment']:
|
|
586
|
-
self.datasets[self.key].metadata['experiment']['flux_ppm'] = 0
|
|
587
|
-
self.sidebar[11,0].value = self.datasets[self.key].metadata['experiment']['flux_ppm']
|
|
588
|
-
if 'count_conversion' not in self.datasets[self.key].metadata['experiment']:
|
|
589
|
-
self.datasets[self.key].metadata['experiment']['count_conversion'] = 1
|
|
590
|
-
self.sidebar[12,0].value = self.datasets[self.key].metadata['experiment']['count_conversion']
|
|
591
|
-
if 'beam_current' not in self.datasets[self.key].metadata['experiment']:
|
|
592
|
-
self.datasets[self.key].metadata['experiment']['beam_current'] = 0
|
|
593
|
-
self.sidebar[13,0].value = self.datasets[self.key].metadata['experiment']['beam_current']
|
|
594
|
-
|
|
595
|
-
self.view = SIPlot(self.dataset)
|
|
596
|
-
|
|
597
|
-
self.y_scale = 1.0
|
|
598
|
-
self.change_y_scale = 1.0
|
|
599
|
-
|
|
600
|
-
|
|
601
|
-
def cursor2energy_scale(self, value):
|
|
602
|
-
|
|
603
|
-
dispersion = (self.end_cursor.value - self.start_cursor.value) / (self.end_channel - self.start_channel)
|
|
604
|
-
self.datasets[self.key].energy_loss *= (self.sidebar[3, 0].value/dispersion)
|
|
605
|
-
self.sidebar[3, 0].value = dispersion
|
|
606
|
-
offset = self.start_cursor.value - self.start_channel * dispersion
|
|
607
|
-
self.datasets[self.key].energy_loss += (self.sidebar[2, 0].value-self.datasets[self.key].energy_loss[0])
|
|
608
|
-
self.sidebar[2, 0].value = offset
|
|
609
|
-
self.plot()
|
|
610
|
-
|
|
611
|
-
def set_energy_scale(self, value):
|
|
612
|
-
dispersion = self.datasets[self.key].energy_loss[1] - self.datasets[self.key].energy_loss[0]
|
|
613
|
-
self.datasets[self.key].energy_loss *= (self.sidebar[3, 0].value/dispersion)
|
|
614
|
-
self.datasets[self.key].energy_loss += (self.sidebar[2, 0].value-self.datasets[self.key].energy_loss[0])
|
|
615
|
-
self.plot()
|
|
616
|
-
|
|
617
|
-
def set_y_scale(self, value):
|
|
618
|
-
self.change_y_scale = 1/self.y_scale
|
|
619
|
-
if self.sidebar[9,2].value:
|
|
620
|
-
dispersion = self.datasets[self.key].energy_loss[1] - self.datasets[self.key].energy_loss[0]
|
|
621
|
-
self.y_scale = 1/self.datasets[self.key].metadata['experiment']['flux_ppm'] * dispersion
|
|
622
|
-
else:
|
|
623
|
-
self.y_scale = 1.0
|
|
624
|
-
|
|
625
|
-
self.change_y_scale *= self.y_scale
|
|
626
|
-
self.plot()
|
|
627
|
-
|
|
628
|
-
|
|
629
|
-
def set_flux(self, value):
|
|
630
|
-
self.datasets[self.key].metadata['experiment']['exposure_time'] = self.sidebar[10,0].value
|
|
631
|
-
if self.sidebar[9,0].value < 0:
|
|
632
|
-
self.datasets[self.key].metadata['experiment']['flux_ppm'] = 0.
|
|
633
|
-
else:
|
|
634
|
-
key = list(self.datasets.keys())[self.sidebar[9,0].value]
|
|
635
|
-
self.datasets[self.key].metadata['experiment']['flux_ppm'] = (np.array(self.datasets[key])*1e-6).sum() / self.datasets[key].metadata['experiment']['exposure_time']
|
|
636
|
-
self.datasets[self.key].metadata['experiment']['flux_ppm'] *= self.datasets[self.key].metadata['experiment']['exposure_time']
|
|
637
|
-
self.sidebar[11,0].value = np.round(self.datasets[self.key].metadata['experiment']['flux_ppm'], 2)
|
|
638
|
-
|
|
639
|
-
def set_microscope_parameter(self, value):
|
|
640
|
-
self.datasets[self.key].metadata['experiment']['convergence_angle'] = self.sidebar[5,0].value
|
|
641
|
-
self.datasets[self.key].metadata['experiment']['collection_angle'] = self.sidebar[6,0].value
|
|
642
|
-
self.datasets[self.key].metadata['experiment']['acceleration_voltage'] = self.sidebar[7,0].value*1000
|
|
643
|
-
|
|
644
|
-
def set_binning(self, value):
|
|
645
|
-
if 'SPECTRAL' in self.dataset.data_type.name:
|
|
646
|
-
bin_x = self.sidebar[15,0].value
|
|
647
|
-
bin_y = self.sidebar[16,0].value
|
|
648
|
-
self.dataset.view.set_bin([bin_x, bin_y])
|
|
649
|
-
self.datasets[self.key].metadata['experiment']['SI_bin_x'] = bin_x
|
|
650
|
-
self.datasets[self.key].metadata['experiment']['SI_bin_y'] = bin_y
|
|
651
|
-
|
|
652
|
-
def set_action(self):
|
|
653
|
-
self.sidebar[0,0].observe(self.set_dataset)
|
|
654
|
-
self.sidebar[1,0].on_click(self.cursor2energy_scale)
|
|
655
|
-
self.sidebar[2,0].observe(self.set_energy_scale, names='value')
|
|
656
|
-
self.sidebar[3,0].observe(self.set_energy_scale, names='value')
|
|
657
|
-
self.sidebar[5,0].observe(self.set_microscope_parameter)
|
|
658
|
-
self.sidebar[6,0].observe(self.set_microscope_parameter)
|
|
659
|
-
self.sidebar[7,0].observe(self.set_microscope_parameter)
|
|
660
|
-
self.sidebar[9,0].observe(self.set_flux)
|
|
661
|
-
self.sidebar[9,2].observe(self.set_y_scale)
|
|
662
|
-
self.sidebar[10,0].observe(self.set_flux)
|
|
663
|
-
self.sidebar[15,0].observe(self.set_binning)
|
|
664
|
-
self.sidebar[16,0].observe(self.set_binning)
|
|
665
|
-
|