py2ls 0.2.5.9__py3-none-any.whl → 0.2.5.10__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
py2ls/ips.py
CHANGED
@@ -3589,6 +3589,7 @@ def fload(fpath, kind=None, **kwargs):
|
|
3589
3589
|
|
3590
3590
|
# https://github.com/eyurtsev/fcsparser
|
3591
3591
|
meta, data = fcsparser.parse(fpath, reformat_meta=True)
|
3592
|
+
print("meta, data = fload(*.fcs)")
|
3592
3593
|
return meta, data
|
3593
3594
|
|
3594
3595
|
elif kind == "mplstyle":
|
@@ -10378,11 +10379,19 @@ def get_df_format(data, threshold_unique=0.5, verbose=False):
|
|
10378
10379
|
from sklearn.cluster import AgglomerativeClustering
|
10379
10380
|
from sklearn.preprocessing import StandardScaler
|
10380
10381
|
|
10381
|
-
long_score = 0
|
10382
|
-
wide_score = 0
|
10383
|
-
|
10382
|
+
long_score,wide_score,fs = 0,0,500
|
10384
10383
|
n_rows, n_cols = data.shape
|
10385
|
-
|
10384
|
+
# -----to reduce memory, only check 500 rows/columns----
|
10385
|
+
if n_rows > fs:
|
10386
|
+
if verbose:
|
10387
|
+
print(f"Sampling {fs} rows from {n_rows} rows.")
|
10388
|
+
data = data.sample(n=fs, random_state=1)
|
10389
|
+
if n_cols > fs:
|
10390
|
+
if verbose:
|
10391
|
+
print(f"Using first {fs} columns out of {n_cols} columns.")
|
10392
|
+
data = data.iloc[:, :fs]
|
10393
|
+
n_rows, n_cols = data.shape
|
10394
|
+
|
10386
10395
|
# Step 1: Row-Column Ratio Heuristic
|
10387
10396
|
if n_rows > 3 * n_cols:
|
10388
10397
|
long_score += 2
|
py2ls/plot.py
CHANGED
@@ -407,7 +407,7 @@ def heatmap(
|
|
407
407
|
for k_, v_ in kwargs.items():
|
408
408
|
if "agg" in k_.lower():
|
409
409
|
aggfunc = v_
|
410
|
-
|
410
|
+
kwargs.pop(k_, None)
|
411
411
|
data4heatmap = data.pivot_table(
|
412
412
|
index=index, columns=columns, values=values, aggfunc=aggfunc
|
413
413
|
)
|
@@ -3307,11 +3307,15 @@ def plotxy(
|
|
3307
3307
|
sns_info = pd.DataFrame(fload(current_directory / "data" / "sns_info.json"))
|
3308
3308
|
|
3309
3309
|
valid_kinds = list(default_settings.keys())
|
3310
|
-
|
3311
|
-
if kind_ is not None:
|
3312
|
-
|
3313
|
-
|
3314
|
-
|
3310
|
+
|
3311
|
+
# if kind_ is not None:
|
3312
|
+
# if isinstance(kind_, str):
|
3313
|
+
# kind_ = [kind_]
|
3314
|
+
# kind_ = [strcmp(i, valid_kinds)[0] for i in kind_]
|
3315
|
+
# else:
|
3316
|
+
# verbose = True
|
3317
|
+
if kind_:
|
3318
|
+
kind_ = [strcmp(i, valid_kinds)[0] for i in ([kind_] if isinstance(kind_, str) else kind_)]
|
3315
3319
|
else:
|
3316
3320
|
verbose = True
|
3317
3321
|
|
@@ -3332,31 +3336,30 @@ def plotxy(
|
|
3332
3336
|
print(f"currently support to plot:\n{valid_kinds}\n\nusage:\n{usage_str}")
|
3333
3337
|
return # Do not plot, just print the usage
|
3334
3338
|
|
3335
|
-
kws_figsets = {}
|
3336
|
-
for k_arg, v_arg in kwargs.items():
|
3337
|
-
|
3338
|
-
|
3339
|
-
|
3340
|
-
|
3341
|
-
kws_add_text = {}
|
3342
|
-
for k_arg, v_arg in kwargs.items():
|
3343
|
-
|
3344
|
-
|
3345
|
-
|
3346
|
-
|
3347
|
-
|
3348
|
-
|
3349
|
-
|
3350
|
-
|
3351
|
-
|
3352
|
-
|
3353
|
-
|
3354
|
-
|
3355
|
-
|
3356
|
-
|
3357
|
-
|
3358
|
-
|
3359
|
-
sns_with_col = [
|
3339
|
+
# kws_figsets = {}
|
3340
|
+
# for k_arg, v_arg in kwargs.items():
|
3341
|
+
# if "figset" in k_arg:
|
3342
|
+
# kws_figsets = v_arg
|
3343
|
+
# kwargs.pop(k_arg, None)
|
3344
|
+
# break
|
3345
|
+
# kws_add_text = {}
|
3346
|
+
# for k_arg, v_arg in kwargs.items():
|
3347
|
+
# if "add" in k_arg and "text" in k_arg: # add_text
|
3348
|
+
# kws_add_text = v_arg
|
3349
|
+
# kwargs.pop(k_arg, None)
|
3350
|
+
# break
|
3351
|
+
kws_figsets = kwargs.pop("figset", {})
|
3352
|
+
kws_add_text = kwargs.pop("add_text", {})
|
3353
|
+
|
3354
|
+
# ============ preprocess data ============
|
3355
|
+
try:
|
3356
|
+
data = df_preprocessing_(data, kind=kind_[0])
|
3357
|
+
if "variable" in data.columns and "value" in data.columns:
|
3358
|
+
x, y = "variable", "value"
|
3359
|
+
except Exception as e:
|
3360
|
+
print(e)
|
3361
|
+
|
3362
|
+
sns_with_col = [
|
3360
3363
|
"catplot",
|
3361
3364
|
"histplot",
|
3362
3365
|
"relplot",
|
@@ -3365,11 +3368,17 @@ def plotxy(
|
|
3365
3368
|
"displot",
|
3366
3369
|
"kdeplot",
|
3367
3370
|
]
|
3368
|
-
|
3369
|
-
|
3370
|
-
|
3371
|
-
|
3372
|
-
|
3371
|
+
|
3372
|
+
# indicate 'col' features
|
3373
|
+
col = kwargs.get("col", None)
|
3374
|
+
if col and not any(k in sns_with_col for k in kind_):
|
3375
|
+
print(f"Warning: '{kind_}' has no 'col' param, try using {sns_with_col}")
|
3376
|
+
|
3377
|
+
if ax is None:
|
3378
|
+
ax = plt.gca()
|
3379
|
+
zorder = 0
|
3380
|
+
for k in kind_:
|
3381
|
+
zorder += 1
|
3373
3382
|
# (1) return FcetGrid
|
3374
3383
|
if k == "jointplot":
|
3375
3384
|
kws_joint = kwargs.pop("kws_joint", kwargs)
|
@@ -3610,9 +3619,6 @@ def plotxy(
|
|
3610
3619
|
# displot creates a new figure and returns a FacetGrid
|
3611
3620
|
g = sns.displot(data=data, x=x, y=y, **kws_dis)
|
3612
3621
|
|
3613
|
-
# (2) return axis
|
3614
|
-
if ax is None:
|
3615
|
-
ax = plt.gca()
|
3616
3622
|
if k == "catplot":
|
3617
3623
|
kws_cat = kwargs.pop("kws_cat", kwargs)
|
3618
3624
|
g = catplot(data=data, x=x, y=y, ax=ax, **kws_cat)
|
@@ -3799,7 +3805,7 @@ def plotxy(
|
|
3799
3805
|
kws_line = {k: v for k, v in kws_line.items() if not k.startswith("kws_")}
|
3800
3806
|
ax = sns.lineplot(ax=ax, data=data, x=x, y=y, zorder=zorder, **kws_line)
|
3801
3807
|
|
3802
|
-
figsets(ax=ax, **kws_figsets)
|
3808
|
+
figsets(ax=ax, **kws_figsets) if kws_figsets else None
|
3803
3809
|
if kws_add_text:
|
3804
3810
|
add_text(ax=ax, **kws_add_text) if kws_add_text else None
|
3805
3811
|
if run_once_within(10):
|
@@ -4388,29 +4394,32 @@ def venn(
|
|
4388
4394
|
if ax is None:
|
4389
4395
|
ax = plt.gca()
|
4390
4396
|
if isinstance(lists, dict):
|
4391
|
-
labels = list(lists.keys())
|
4392
|
-
lists = list(lists.values())
|
4397
|
+
labels,lists = list(lists.keys()),list(lists.values())
|
4393
4398
|
if isinstance(lists[0], set):
|
4394
4399
|
lists = [list(i) for i in lists]
|
4400
|
+
|
4395
4401
|
lists = [set(flatten(i, verbose=False)) for i in lists]
|
4396
4402
|
# Function to apply text styles to labels
|
4397
4403
|
if colors is None:
|
4398
4404
|
colors = ["r", "b"] if len(lists) == 2 else ["r", "g", "b"]
|
4405
|
+
# if labels is None:
|
4406
|
+
# if len(lists) == 2:
|
4407
|
+
# labels = ["set1", "set2"]
|
4408
|
+
# elif len(lists) == 3:
|
4409
|
+
# labels = ["set1", "set2", "set3"]
|
4410
|
+
# elif len(lists) == 4:
|
4411
|
+
# labels = ["set1", "set2", "set3", "set4"]
|
4412
|
+
# elif len(lists) == 5:
|
4413
|
+
# labels = ["set1", "set2", "set3", "set4", "set55"]
|
4414
|
+
# elif len(lists) == 6:
|
4415
|
+
# labels = ["set1", "set2", "set3", "set4", "set5", "set6"]
|
4416
|
+
# elif len(lists) == 7:
|
4417
|
+
# labels = ["set1", "set2", "set3", "set4", "set5", "set6", "set7"]
|
4399
4418
|
if labels is None:
|
4400
|
-
|
4401
|
-
|
4402
|
-
|
4403
|
-
|
4404
|
-
elif len(lists) == 4:
|
4405
|
-
labels = ["set1", "set2", "set3", "set4"]
|
4406
|
-
elif len(lists) == 5:
|
4407
|
-
labels = ["set1", "set2", "set3", "set4", "set55"]
|
4408
|
-
elif len(lists) == 6:
|
4409
|
-
labels = ["set1", "set2", "set3", "set4", "set5", "set6"]
|
4410
|
-
elif len(lists) == 7:
|
4411
|
-
labels = ["set1", "set2", "set3", "set4", "set5", "set6", "set7"]
|
4412
|
-
if edgecolor is None:
|
4413
|
-
edgecolor = colors
|
4419
|
+
labels = [f"set{i+1}" for i in range(len(lists))]
|
4420
|
+
# if edgecolor is None:
|
4421
|
+
# edgecolor = colors
|
4422
|
+
edgecolor = edgecolor or colors
|
4414
4423
|
colors = [desaturate_color(color, saturation) for color in colors]
|
4415
4424
|
universe = len(set.union(*lists))
|
4416
4425
|
|
@@ -242,18 +242,18 @@ py2ls/export_requirements.py,sha256=x2WgUF0jYKz9GfA1MVKN-MdsM-oQ8yUeC6Ua8oCymio,
|
|
242
242
|
py2ls/fetch_update.py,sha256=9LXj661GpCEFII2wx_99aINYctDiHni6DOruDs_fdt8,4752
|
243
243
|
py2ls/freqanalysis.py,sha256=F4218VSPbgL5tnngh6xNCYuNnfR-F_QjECUUxrPYZss,32594
|
244
244
|
py2ls/ich2ls.py,sha256=3E9R8oVpyYZXH5PiIQgT3CN5NxLe4Dwtm2LwaeacE6I,21381
|
245
|
-
py2ls/ips.py,sha256=
|
245
|
+
py2ls/ips.py,sha256=FJdNHEvDLHmmGeRCq1NlNlgumik-Gv5796pw8wfJAG8,487017
|
246
246
|
py2ls/ml2ls.py,sha256=I-JFPdikgEtfQjhv5gBz-QSeorpTJI_Pda_JwkTioBY,209732
|
247
247
|
py2ls/mol.py,sha256=AZnHzarIk_MjueKdChqn1V6e4tUle3X1NnHSFA6n3Nw,10645
|
248
248
|
py2ls/netfinder.py,sha256=OhqD3S9PuwweL2013D-q4GNP1WvJjuYfZzq5BZgGddE,68980
|
249
249
|
py2ls/nl2ls.py,sha256=UEIdok-OamFZFIvvz_PdZenu085zteMdaJd9mLu3F-s,11485
|
250
250
|
py2ls/ocr.py,sha256=WDFvx1oVxXjlyyFs2a6pizdu4-jEL5pTFLP960-HbyM,33939
|
251
|
-
py2ls/plot.py,sha256=
|
251
|
+
py2ls/plot.py,sha256=iE_T8G4Yv7QdnxVJH_zUsFOHL4zi9mga6FZhXpFb2XA,239505
|
252
252
|
py2ls/setuptools-70.1.0-py3-none-any.whl,sha256=2bi3cUVal8ip86s0SOvgspteEF8SKLukECi-EWmFomc,882588
|
253
253
|
py2ls/sleep_events_detectors.py,sha256=bQA3HJqv5qnYKJJEIhCyhlDtkXQfIzqksnD0YRXso68,52145
|
254
254
|
py2ls/stats.py,sha256=qBn2rJmNa_QLLUqjwYqXUlGzqmW94sgA1bxJU2FC3r0,39175
|
255
255
|
py2ls/translator.py,sha256=77Tp_GjmiiwFbEIJD_q3VYpQ43XL9ZeJo6Mhl44mvh8,34284
|
256
256
|
py2ls/wb_detector.py,sha256=7y6TmBUj9exCZeIgBAJ_9hwuhkDh1x_-yg4dvNY1_GQ,6284
|
257
|
-
py2ls-0.2.5.
|
258
|
-
py2ls-0.2.5.
|
259
|
-
py2ls-0.2.5.
|
257
|
+
py2ls-0.2.5.10.dist-info/METADATA,sha256=H8N6X7SCqvk7cgK2N7ZFXTnKqNMFZsmlfmaQ17wrTfk,20632
|
258
|
+
py2ls-0.2.5.10.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
|
259
|
+
py2ls-0.2.5.10.dist-info/RECORD,,
|
File without changes
|