py2ls 0.2.5.9__py3-none-any.whl → 0.2.5.10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
py2ls/ips.py CHANGED
@@ -3589,6 +3589,7 @@ def fload(fpath, kind=None, **kwargs):
3589
3589
 
3590
3590
  # https://github.com/eyurtsev/fcsparser
3591
3591
  meta, data = fcsparser.parse(fpath, reformat_meta=True)
3592
+ print("meta, data = fload(*.fcs)")
3592
3593
  return meta, data
3593
3594
 
3594
3595
  elif kind == "mplstyle":
@@ -10378,11 +10379,19 @@ def get_df_format(data, threshold_unique=0.5, verbose=False):
10378
10379
  from sklearn.cluster import AgglomerativeClustering
10379
10380
  from sklearn.preprocessing import StandardScaler
10380
10381
 
10381
- long_score = 0
10382
- wide_score = 0
10383
-
10382
+ long_score,wide_score,fs = 0,0,500
10384
10383
  n_rows, n_cols = data.shape
10385
-
10384
+ # -----to reduce memory, only check 500 rows/columns----
10385
+ if n_rows > fs:
10386
+ if verbose:
10387
+ print(f"Sampling {fs} rows from {n_rows} rows.")
10388
+ data = data.sample(n=fs, random_state=1)
10389
+ if n_cols > fs:
10390
+ if verbose:
10391
+ print(f"Using first {fs} columns out of {n_cols} columns.")
10392
+ data = data.iloc[:, :fs]
10393
+ n_rows, n_cols = data.shape
10394
+
10386
10395
  # Step 1: Row-Column Ratio Heuristic
10387
10396
  if n_rows > 3 * n_cols:
10388
10397
  long_score += 2
py2ls/plot.py CHANGED
@@ -407,7 +407,7 @@ def heatmap(
407
407
  for k_, v_ in kwargs.items():
408
408
  if "agg" in k_.lower():
409
409
  aggfunc = v_
410
- kwargs.pop(k_, None)
410
+ kwargs.pop(k_, None)
411
411
  data4heatmap = data.pivot_table(
412
412
  index=index, columns=columns, values=values, aggfunc=aggfunc
413
413
  )
@@ -3307,11 +3307,15 @@ def plotxy(
3307
3307
  sns_info = pd.DataFrame(fload(current_directory / "data" / "sns_info.json"))
3308
3308
 
3309
3309
  valid_kinds = list(default_settings.keys())
3310
- # print(valid_kinds)
3311
- if kind_ is not None:
3312
- if isinstance(kind_, str):
3313
- kind_ = [kind_]
3314
- kind_ = [strcmp(i, valid_kinds)[0] for i in kind_]
3310
+
3311
+ # if kind_ is not None:
3312
+ # if isinstance(kind_, str):
3313
+ # kind_ = [kind_]
3314
+ # kind_ = [strcmp(i, valid_kinds)[0] for i in kind_]
3315
+ # else:
3316
+ # verbose = True
3317
+ if kind_:
3318
+ kind_ = [strcmp(i, valid_kinds)[0] for i in ([kind_] if isinstance(kind_, str) else kind_)]
3315
3319
  else:
3316
3320
  verbose = True
3317
3321
 
@@ -3332,31 +3336,30 @@ def plotxy(
3332
3336
  print(f"currently support to plot:\n{valid_kinds}\n\nusage:\n{usage_str}")
3333
3337
  return # Do not plot, just print the usage
3334
3338
 
3335
- kws_figsets = {}
3336
- for k_arg, v_arg in kwargs.items():
3337
- if "figset" in k_arg:
3338
- kws_figsets = v_arg
3339
- kwargs.pop(k_arg, None)
3340
- break
3341
- kws_add_text = {}
3342
- for k_arg, v_arg in kwargs.items():
3343
- if "add" in k_arg and "text" in k_arg: # add_text
3344
- kws_add_text = v_arg
3345
- kwargs.pop(k_arg, None)
3346
- break
3347
- zorder = 0
3348
- for k in kind_:
3349
- # preprocess data
3350
- try:
3351
- data = df_preprocessing_(data, kind=k)
3352
- if "variable" in data.columns and "value" in data.columns:
3353
- x, y = "variable", "value"
3354
- except Exception as e:
3355
- print(e)
3356
- zorder += 1
3357
- # indicate 'col' features
3358
- col = kwargs.get("col", None)
3359
- sns_with_col = [
3339
+ # kws_figsets = {}
3340
+ # for k_arg, v_arg in kwargs.items():
3341
+ # if "figset" in k_arg:
3342
+ # kws_figsets = v_arg
3343
+ # kwargs.pop(k_arg, None)
3344
+ # break
3345
+ # kws_add_text = {}
3346
+ # for k_arg, v_arg in kwargs.items():
3347
+ # if "add" in k_arg and "text" in k_arg: # add_text
3348
+ # kws_add_text = v_arg
3349
+ # kwargs.pop(k_arg, None)
3350
+ # break
3351
+ kws_figsets = kwargs.pop("figset", {})
3352
+ kws_add_text = kwargs.pop("add_text", {})
3353
+
3354
+ # ============ preprocess data ============
3355
+ try:
3356
+ data = df_preprocessing_(data, kind=kind_[0])
3357
+ if "variable" in data.columns and "value" in data.columns:
3358
+ x, y = "variable", "value"
3359
+ except Exception as e:
3360
+ print(e)
3361
+
3362
+ sns_with_col = [
3360
3363
  "catplot",
3361
3364
  "histplot",
3362
3365
  "relplot",
@@ -3365,11 +3368,17 @@ def plotxy(
3365
3368
  "displot",
3366
3369
  "kdeplot",
3367
3370
  ]
3368
- if col is not None:
3369
- if not k in sns_with_col:
3370
- print(
3371
- f"tips:\n'{k}' has no 'col' param, you could try with {sns_with_col}"
3372
- )
3371
+
3372
+ # indicate 'col' features
3373
+ col = kwargs.get("col", None)
3374
+ if col and not any(k in sns_with_col for k in kind_):
3375
+ print(f"Warning: '{kind_}' has no 'col' param, try using {sns_with_col}")
3376
+
3377
+ if ax is None:
3378
+ ax = plt.gca()
3379
+ zorder = 0
3380
+ for k in kind_:
3381
+ zorder += 1
3373
3382
  # (1) return FcetGrid
3374
3383
  if k == "jointplot":
3375
3384
  kws_joint = kwargs.pop("kws_joint", kwargs)
@@ -3610,9 +3619,6 @@ def plotxy(
3610
3619
  # displot creates a new figure and returns a FacetGrid
3611
3620
  g = sns.displot(data=data, x=x, y=y, **kws_dis)
3612
3621
 
3613
- # (2) return axis
3614
- if ax is None:
3615
- ax = plt.gca()
3616
3622
  if k == "catplot":
3617
3623
  kws_cat = kwargs.pop("kws_cat", kwargs)
3618
3624
  g = catplot(data=data, x=x, y=y, ax=ax, **kws_cat)
@@ -3799,7 +3805,7 @@ def plotxy(
3799
3805
  kws_line = {k: v for k, v in kws_line.items() if not k.startswith("kws_")}
3800
3806
  ax = sns.lineplot(ax=ax, data=data, x=x, y=y, zorder=zorder, **kws_line)
3801
3807
 
3802
- figsets(ax=ax, **kws_figsets)
3808
+ figsets(ax=ax, **kws_figsets) if kws_figsets else None
3803
3809
  if kws_add_text:
3804
3810
  add_text(ax=ax, **kws_add_text) if kws_add_text else None
3805
3811
  if run_once_within(10):
@@ -4388,29 +4394,32 @@ def venn(
4388
4394
  if ax is None:
4389
4395
  ax = plt.gca()
4390
4396
  if isinstance(lists, dict):
4391
- labels = list(lists.keys())
4392
- lists = list(lists.values())
4397
+ labels,lists = list(lists.keys()),list(lists.values())
4393
4398
  if isinstance(lists[0], set):
4394
4399
  lists = [list(i) for i in lists]
4400
+
4395
4401
  lists = [set(flatten(i, verbose=False)) for i in lists]
4396
4402
  # Function to apply text styles to labels
4397
4403
  if colors is None:
4398
4404
  colors = ["r", "b"] if len(lists) == 2 else ["r", "g", "b"]
4405
+ # if labels is None:
4406
+ # if len(lists) == 2:
4407
+ # labels = ["set1", "set2"]
4408
+ # elif len(lists) == 3:
4409
+ # labels = ["set1", "set2", "set3"]
4410
+ # elif len(lists) == 4:
4411
+ # labels = ["set1", "set2", "set3", "set4"]
4412
+ # elif len(lists) == 5:
4413
+ # labels = ["set1", "set2", "set3", "set4", "set55"]
4414
+ # elif len(lists) == 6:
4415
+ # labels = ["set1", "set2", "set3", "set4", "set5", "set6"]
4416
+ # elif len(lists) == 7:
4417
+ # labels = ["set1", "set2", "set3", "set4", "set5", "set6", "set7"]
4399
4418
  if labels is None:
4400
- if len(lists) == 2:
4401
- labels = ["set1", "set2"]
4402
- elif len(lists) == 3:
4403
- labels = ["set1", "set2", "set3"]
4404
- elif len(lists) == 4:
4405
- labels = ["set1", "set2", "set3", "set4"]
4406
- elif len(lists) == 5:
4407
- labels = ["set1", "set2", "set3", "set4", "set55"]
4408
- elif len(lists) == 6:
4409
- labels = ["set1", "set2", "set3", "set4", "set5", "set6"]
4410
- elif len(lists) == 7:
4411
- labels = ["set1", "set2", "set3", "set4", "set5", "set6", "set7"]
4412
- if edgecolor is None:
4413
- edgecolor = colors
4419
+ labels = [f"set{i+1}" for i in range(len(lists))]
4420
+ # if edgecolor is None:
4421
+ # edgecolor = colors
4422
+ edgecolor = edgecolor or colors
4414
4423
  colors = [desaturate_color(color, saturation) for color in colors]
4415
4424
  universe = len(set.union(*lists))
4416
4425
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: py2ls
3
- Version: 0.2.5.9
3
+ Version: 0.2.5.10
4
4
  Summary: py(thon)2(too)ls
5
5
  Author: Jianfeng
6
6
  Author-email: Jianfeng.Liu0413@gmail.com
@@ -242,18 +242,18 @@ py2ls/export_requirements.py,sha256=x2WgUF0jYKz9GfA1MVKN-MdsM-oQ8yUeC6Ua8oCymio,
242
242
  py2ls/fetch_update.py,sha256=9LXj661GpCEFII2wx_99aINYctDiHni6DOruDs_fdt8,4752
243
243
  py2ls/freqanalysis.py,sha256=F4218VSPbgL5tnngh6xNCYuNnfR-F_QjECUUxrPYZss,32594
244
244
  py2ls/ich2ls.py,sha256=3E9R8oVpyYZXH5PiIQgT3CN5NxLe4Dwtm2LwaeacE6I,21381
245
- py2ls/ips.py,sha256=QUqANJy_nas-td4GQIuPG2ZEe6cN8maJS-IEM07nBKA,486582
245
+ py2ls/ips.py,sha256=FJdNHEvDLHmmGeRCq1NlNlgumik-Gv5796pw8wfJAG8,487017
246
246
  py2ls/ml2ls.py,sha256=I-JFPdikgEtfQjhv5gBz-QSeorpTJI_Pda_JwkTioBY,209732
247
247
  py2ls/mol.py,sha256=AZnHzarIk_MjueKdChqn1V6e4tUle3X1NnHSFA6n3Nw,10645
248
248
  py2ls/netfinder.py,sha256=OhqD3S9PuwweL2013D-q4GNP1WvJjuYfZzq5BZgGddE,68980
249
249
  py2ls/nl2ls.py,sha256=UEIdok-OamFZFIvvz_PdZenu085zteMdaJd9mLu3F-s,11485
250
250
  py2ls/ocr.py,sha256=WDFvx1oVxXjlyyFs2a6pizdu4-jEL5pTFLP960-HbyM,33939
251
- py2ls/plot.py,sha256=7C1x6KX0Fvmbll4IStIzlNjxLnrRBNSPaLJRgGjF3Ok,239172
251
+ py2ls/plot.py,sha256=iE_T8G4Yv7QdnxVJH_zUsFOHL4zi9mga6FZhXpFb2XA,239505
252
252
  py2ls/setuptools-70.1.0-py3-none-any.whl,sha256=2bi3cUVal8ip86s0SOvgspteEF8SKLukECi-EWmFomc,882588
253
253
  py2ls/sleep_events_detectors.py,sha256=bQA3HJqv5qnYKJJEIhCyhlDtkXQfIzqksnD0YRXso68,52145
254
254
  py2ls/stats.py,sha256=qBn2rJmNa_QLLUqjwYqXUlGzqmW94sgA1bxJU2FC3r0,39175
255
255
  py2ls/translator.py,sha256=77Tp_GjmiiwFbEIJD_q3VYpQ43XL9ZeJo6Mhl44mvh8,34284
256
256
  py2ls/wb_detector.py,sha256=7y6TmBUj9exCZeIgBAJ_9hwuhkDh1x_-yg4dvNY1_GQ,6284
257
- py2ls-0.2.5.9.dist-info/METADATA,sha256=7S4dUiXu_5zRLjp2geOMZ629Tt1SmIiYDN-qUdutFec,20631
258
- py2ls-0.2.5.9.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
259
- py2ls-0.2.5.9.dist-info/RECORD,,
257
+ py2ls-0.2.5.10.dist-info/METADATA,sha256=H8N6X7SCqvk7cgK2N7ZFXTnKqNMFZsmlfmaQ17wrTfk,20632
258
+ py2ls-0.2.5.10.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
259
+ py2ls-0.2.5.10.dist-info/RECORD,,