py2ls 0.2.4.23__py3-none-any.whl → 0.2.4.25__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
py2ls/plot.py CHANGED
@@ -2475,7 +2475,8 @@ def get_color(
2475
2475
  "#B25E9D",
2476
2476
  "#4B8C3B",
2477
2477
  "#EF8632",
2478
- "#24578E" "#FF2C00",
2478
+ "#24578E",
2479
+ "#FF2C00",
2479
2480
  ]
2480
2481
  elif n == 8:
2481
2482
  # colorlist = ['#1f77b4','#ff7f0e','#367B7F','#51B34F','#d62728','#aa40fc','#e377c2','#17becf']
@@ -3199,9 +3200,12 @@ def plotxy(
3199
3200
  zorder = 0
3200
3201
  for k in kind_:
3201
3202
  # preprocess data
3202
- data=df_preprocessing_(data, kind=k)
3203
- if 'variable' in data.columns and 'value' in data.columns:
3204
- x,y='variable','value'
3203
+ try:
3204
+ data=df_preprocessing_(data, kind=k)
3205
+ if 'variable' in data.columns and 'value' in data.columns:
3206
+ x,y='variable','value'
3207
+ except Exception as e:
3208
+ print(e)
3205
3209
  zorder += 1
3206
3210
  # indicate 'col' features
3207
3211
  col = kwargs.get("col", None)
@@ -4496,18 +4500,19 @@ def subplot(
4496
4500
  #! radar chart
4497
4501
  def radar(
4498
4502
  data: pd.DataFrame,
4499
- title="Radar Chart",
4503
+ columns=None,
4500
4504
  ylim=(0, 100),
4501
- color=get_color(5),
4505
+ facecolor=get_color(5),
4506
+ edgecolor="none",
4507
+ edge_linewidth=0.5,
4502
4508
  fontsize=10,
4503
4509
  fontcolor="k",
4504
4510
  size=6,
4505
4511
  linewidth=1,
4506
4512
  linestyle="-",
4507
- alpha=0.5,
4513
+ alpha=0.3,
4514
+ fmt=".1f",
4508
4515
  marker="o",
4509
- edgecolor="none",
4510
- edge_linewidth=0.5,
4511
4516
  bg_color="0.8",
4512
4517
  bg_alpha=None,
4513
4518
  grid_interval_ratio=0.2,
@@ -4527,19 +4532,34 @@ def radar(
4527
4532
  ax=None,
4528
4533
  sp=2,
4529
4534
  verbose=True,
4535
+ axis=0,
4530
4536
  **kwargs,
4531
4537
  ):
4532
4538
  """
4533
4539
  Example DATA:
4534
4540
  df = pd.DataFrame(
4535
- data=[
4536
- [80, 80, 80, 80, 80, 80, 80],
4537
- [90, 20, 95, 95, 30, 30, 80],
4538
- [60, 90, 20, 20, 100, 90, 50],
4539
- ],
4540
- index=["Hero", "Warrior", "Wizard"],
4541
- columns=["HP", "MP", "ATK", "DEF", "SP.ATK", "SP.DEF", "SPD"])
4542
-
4541
+ data=[
4542
+ [80, 90, 60],
4543
+ [80, 20, 90],
4544
+ [80, 95, 20],
4545
+ [80, 95, 20],
4546
+ [80, 30, 100],
4547
+ [80, 30, 90],
4548
+ [80, 80, 50],
4549
+ ],
4550
+ index=["HP", "MP", "ATK", "DEF", "SP.ATK", "SP.DEF", "SPD"],
4551
+ columns=["Hero", "Warrior", "Wizard"],
4552
+ )
4553
+ usage 1:
4554
+ radar(data=df)
4555
+ usage 2:
4556
+ radar(data=df["Wizard"])
4557
+ usage 3:
4558
+ radar(data=df, columns="Wizard")
4559
+ usage 4:
4560
+ nexttile = subplot(1, 2)
4561
+ radar(data=df, columns="Wizard", ax=nexttile(projection="polar"))
4562
+ pie(data=df, columns="Wizard", ax=nexttile(), width=0.5, pctdistance=0.7)
4543
4563
  Parameters:
4544
4564
  - data (pd.DataFrame): The data to plot. Each column corresponds to a variable, and each row represents a data point.
4545
4565
  - ylim (tuple): The limits of the radial axis (y-axis). Default is (0, 100).
@@ -4556,7 +4576,6 @@ def radar(
4556
4576
  - edge_linewidth (int): Line width for the marker edges.
4557
4577
  - bg_color (str): Background color for the radar chart.
4558
4578
  - grid_interval_ratio (float): Determines the intervals for the grid lines as a fraction of the y-limit.
4559
- - title (str): The title of the radar chart.
4560
4579
  - cmap (str): The colormap to use if `color` is a list.
4561
4580
  - legend_loc (str): The location of the legend.
4562
4581
  - legend_fontsize (int): Font size for the legend.
@@ -4573,22 +4592,22 @@ def radar(
4573
4592
  - sp (int): Padding for the ticks from the plot area.
4574
4593
  - **kwargs: Additional arguments for customization.
4575
4594
  """
4576
- if run_once_within() and verbose:
4595
+ if run_once_within(20,reverse=True) and verbose:
4577
4596
  usage_="""usage:
4578
4597
  radar(
4579
4598
  data: pd.DataFrame, #The data to plot. Each column corresponds to a variable, and each row represents a data point.
4580
- title="Radar Chart",
4581
4599
  ylim=(0, 100),# ylim (tuple): The limits of the radial axis (y-axis). Default is (0, 100).
4582
- color=get_color(5),#The color(s) for the plot. Can be a single color or a list of colors.
4600
+ facecolor=get_color(5),#The color(s) for the plot. Can be a single color or a list of colors.
4601
+ edgecolor="none",#for the marker edges.
4602
+ edge_linewidth=0.5,#for the marker edges.
4583
4603
  fontsize=10,# Font size for the angular labels (x-axis).
4584
4604
  fontcolor="k",# Color for the angular labels.
4585
4605
  size=6,#The size of the markers for each data point.
4586
4606
  linewidth=1,
4587
4607
  linestyle="-",
4588
4608
  alpha=0.5,#for the filled area.
4609
+ fmt=".1f",
4589
4610
  marker="o",# for the data points.
4590
- edgecolor="none",#for the marker edges.
4591
- edge_linewidth=0.5,#for the marker edges.
4592
4611
  bg_color="0.8",
4593
4612
  bg_alpha=None,
4594
4613
  grid_interval_ratio=0.2,#Determines the intervals for the grid lines as a fraction of the y-limit.
@@ -4618,9 +4637,25 @@ def radar(
4618
4637
  kws_figsets = v_arg
4619
4638
  kwargs.pop(k_arg, None)
4620
4639
  break
4621
- categories = list(data.columns)
4640
+ if axis==1:
4641
+ data=data.T
4642
+ if isinstance(data, dict):
4643
+ data = pd.DataFrame(pd.Series(data))
4644
+ if ~isinstance(data, pd.DataFrame):
4645
+ data=pd.DataFrame(data)
4646
+ if isinstance(data, pd.DataFrame):
4647
+ data=data.select_dtypes(include=np.number)
4648
+ if isinstance(columns,str):
4649
+ columns=[columns]
4650
+ if columns is None:
4651
+ columns = list(data.columns)
4652
+ data=data[columns]
4653
+ categories = list(data.index)
4622
4654
  num_vars = len(categories)
4623
4655
 
4656
+ # Set y-axis limits and grid intervals
4657
+ vmin, vmax = ylim
4658
+
4624
4659
  # Set up angle for each category on radar chart
4625
4660
  angles = np.linspace(0, 2 * np.pi, num_vars, endpoint=False).tolist()
4626
4661
  angles += angles[:1] # Complete the loop to ensure straight-line connections
@@ -4644,9 +4679,6 @@ def radar(
4644
4679
  # Draw one axis per variable and add labels
4645
4680
  ax.set_xticks(angles[:-1])
4646
4681
  ax.set_xticklabels(categories)
4647
-
4648
- # Set y-axis limits and grid intervals
4649
- vmin, vmax = ylim
4650
4682
  if circular:
4651
4683
  # * cicular style
4652
4684
  ax.yaxis.set_ticks(np.arange(vmin, vmax + 1, vmax * grid_interval_ratio))
@@ -4669,7 +4701,7 @@ def radar(
4669
4701
  else:
4670
4702
  # * spider style: spider-style grid (straight lines, not circles)
4671
4703
  # Create the spider-style grid (straight lines, not circles)
4672
- for i in range(1, int(vmax * grid_interval_ratio) + 1):
4704
+ for i in range(1, int((vmax-vmin)/ ((vmax-vmin)*grid_interval_ratio))):#int(vmax * grid_interval_ratio) + 1):
4673
4705
  ax.plot(
4674
4706
  angles + [angles[0]], # Closing the loop
4675
4707
  [i * vmax * grid_interval_ratio] * (num_vars + 1)
@@ -4680,7 +4712,7 @@ def radar(
4680
4712
  linewidth=grid_linewidth,
4681
4713
  )
4682
4714
  # set bg_color
4683
- ax.fill(angles, [vmax] * (data.shape[1] + 1), color=bg_color, alpha=bg_alpha)
4715
+ ax.fill(angles, [vmax] * (data.shape[0] + 1), color=bg_color, alpha=bg_alpha)
4684
4716
  ax.yaxis.grid(False)
4685
4717
  # Move radial labels away from plotted line
4686
4718
  if tick_loc is None:
@@ -4702,14 +4734,20 @@ def radar(
4702
4734
  ax.tick_params(axis="x", pad=sp) # move spines outward
4703
4735
  ax.tick_params(axis="y", pad=sp) # move spines outward
4704
4736
  # colors
4705
- colors = (
4706
- get_color(data.shape[0])
4707
- if cmap is None
4708
- else plt.get_cmap(cmap)(np.linspace(0, 1, data.shape[0]))
4709
- )
4737
+ if facecolor is not None:
4738
+ if not isinstance(facecolor,list):
4739
+ facecolor=[facecolor]
4740
+ colors = facecolor
4741
+ else:
4742
+ colors = (
4743
+ get_color(data.shape[0])
4744
+ if cmap is None
4745
+ else plt.get_cmap(cmap)(np.linspace(0, 1, data.shape[0]))
4746
+ )
4747
+
4710
4748
  # Plot each row with straight lines
4711
- for i, (index, row) in enumerate(data.iterrows()):
4712
- values = row.tolist()
4749
+ for i, (col, val) in enumerate(data.items()):
4750
+ values = val.tolist()
4713
4751
  values += values[:1] # Close the loop
4714
4752
  ax.plot(
4715
4753
  angles,
@@ -4717,7 +4755,7 @@ def radar(
4717
4755
  color=colors[i],
4718
4756
  linewidth=linewidth,
4719
4757
  linestyle=linestyle,
4720
- label=index,
4758
+ label=col,
4721
4759
  clip_on=False,
4722
4760
  )
4723
4761
  ax.fill(angles, values, color=colors[i], alpha=alpha)
@@ -4748,7 +4786,7 @@ def radar(
4748
4786
  ax.text(
4749
4787
  angle,
4750
4788
  offset_radius,
4751
- str(value),
4789
+ f"{value:{fmt}}",
4752
4790
  ha="center",
4753
4791
  va="center",
4754
4792
  fontsize=fontsize,
@@ -4759,10 +4797,10 @@ def radar(
4759
4797
 
4760
4798
  ax.set_ylim(ylim)
4761
4799
  # Add markers for each data point
4762
- for i, row in enumerate(data.values):
4800
+ for i, (col, val) in enumerate(data.items()):
4763
4801
  ax.plot(
4764
4802
  angles,
4765
- list(row) + [row[0]], # Close the loop for markers
4803
+ list(val) + [val[0]], # Close the loop for markers
4766
4804
  color=colors[i],
4767
4805
  marker=marker,
4768
4806
  markersize=size,
@@ -4787,3 +4825,276 @@ def radar(
4787
4825
  **kws_figsets,
4788
4826
  )
4789
4827
  return ax
4828
+
4829
+
4830
+ def pie(
4831
+ data:pd.Series,
4832
+ columns:list = None,
4833
+ facecolor=None,
4834
+ explode=[0.1],
4835
+ startangle=90,
4836
+ shadow=True,
4837
+ fontcolor="k",
4838
+ fmt=".2f",
4839
+ width=None,# the center blank
4840
+ pctdistance=0.85,
4841
+ labeldistance=1.1,
4842
+ kws_wedge={},
4843
+ kws_text={},
4844
+ center=(0, 0),
4845
+ radius=1,
4846
+ frame=False,
4847
+ fontsize=10,
4848
+ edgecolor="white",
4849
+ edgewidth=1,
4850
+ cmap=None,
4851
+ show_value=False,
4852
+ show_label=True,# False: only show the outer layer, if it is None, not show
4853
+ show_legend=True,
4854
+ legend_loc="upper right",
4855
+ bbox_to_anchor=[1.4, 1.1],
4856
+ legend_fontsize=10,
4857
+ rotation_correction=0,
4858
+ verbose=True,
4859
+ ax=None,
4860
+ **kwargs
4861
+ ):
4862
+
4863
+ if run_once_within(20,reverse=True) and verbose:
4864
+ usage_="""usage:
4865
+ pie(
4866
+ data:pd.Series,
4867
+ columns:list = None,
4868
+ facecolor=None,
4869
+ explode=[0.1],
4870
+ startangle=90,
4871
+ shadow=True,
4872
+ fontcolor="k",
4873
+ fmt=".2f",
4874
+ width=None,# the center blank
4875
+ pctdistance=0.85,
4876
+ labeldistance=1.1,
4877
+ kws_wedge={},
4878
+ kws_text={},
4879
+ center=(0, 0),
4880
+ radius=1,
4881
+ frame=False,
4882
+ fontsize=10,
4883
+ edgecolor="white",
4884
+ edgewidth=1,
4885
+ cmap=None,
4886
+ show_value=False,
4887
+ show_label=True,# False: only show the outer layer, if it is None, not show
4888
+ show_legend=True,
4889
+ legend_loc="upper right",
4890
+ bbox_to_anchor=[1.4, 1.1],
4891
+ legend_fontsize=10,
4892
+ rotation_correction=0,
4893
+ verbose=True,
4894
+ ax=None,
4895
+ **kwargs
4896
+ )
4897
+
4898
+ usage 1:
4899
+ data = {"Segment A": 30, "Segment B": 50, "Segment C": 20}
4900
+
4901
+ ax = pie(
4902
+ data=data,
4903
+ # columns="Segment A",
4904
+ explode=[0, 0.2, 0],
4905
+ # width=0.4,
4906
+ show_label=False,
4907
+ fontsize=10,
4908
+ # show_value=1,
4909
+ fmt=".3f",
4910
+ )
4911
+
4912
+ # prepare dataset
4913
+ df = pd.DataFrame(
4914
+ data=[
4915
+ [80, 90, 60],
4916
+ [80, 20, 90],
4917
+ [80, 95, 20],
4918
+ [80, 95, 20],
4919
+ [80, 30, 100],
4920
+ [80, 30, 90],
4921
+ [80, 80, 50],
4922
+ ],
4923
+ index=["HP", "MP", "ATK", "DEF", "SP.ATK", "SP.DEF", "SPD"],
4924
+ columns=["Hero", "Warrior", "Wizard"],
4925
+ )
4926
+ usage 1: only plot one column
4927
+ pie(
4928
+ df,
4929
+ columns="Wizard",
4930
+ width=0.6,
4931
+ show_label=False,
4932
+ fmt=".0f",
4933
+ )
4934
+ usage 2:
4935
+ pie(df,columns=["Hero", "Warrior"],show_label=False)
4936
+ usage 3: set different width
4937
+ pie(df,
4938
+ columns=["Hero", "Warrior", "Wizard"],
4939
+ width=[0.3, 0.2, 0.2],
4940
+ show_label=False,
4941
+ fmt=".0f",
4942
+ )
4943
+ usage 4: set width the same for all columns
4944
+ pie(df,
4945
+ columns=["Hero", "Warrior", "Wizard"],
4946
+ width=0.2,
4947
+ show_label=False,
4948
+ fmt=".0f",
4949
+ )
4950
+ usage 5: adjust the labels' offset
4951
+ pie(df, columns="Wizard", width=0.6, show_label=False, fmt=".6f", labeldistance=1.2)
4952
+
4953
+ usage 6:
4954
+ nexttile = subplot(1, 2)
4955
+ radar(data=df, columns="Wizard", ax=nexttile(projection="polar"))
4956
+ pie(data=df, columns="Wizard", ax=nexttile(), width=0.5, pctdistance=0.7)
4957
+ """
4958
+ print(usage_)
4959
+ # Convert data to a Pandas Series if needed
4960
+ if isinstance(data, dict):
4961
+ data = pd.DataFrame(pd.Series(data))
4962
+ if ~isinstance(data, pd.DataFrame):
4963
+ data=pd.DataFrame(data)
4964
+
4965
+ if isinstance(data, pd.DataFrame):
4966
+ data=data.select_dtypes(include=np.number)
4967
+ if isinstance(columns,str):
4968
+ columns=[columns]
4969
+ if columns is None:
4970
+ columns = list(data.columns)
4971
+ # data=data[columns]
4972
+ # columns = list(data.columns)
4973
+ # print(columns)
4974
+ # 选择部分数据
4975
+ df=data[columns]
4976
+
4977
+ if width is None:
4978
+ if df.shape[1]>1:
4979
+ width=1/(df.shape[1]+2)
4980
+ else:
4981
+ width=1
4982
+ if isinstance(width,(float,int)):
4983
+ width=[width]
4984
+ if len(width)<df.shape[1]:
4985
+ width=width*df.shape[1]
4986
+ if isinstance(radius,(float,int)):
4987
+ radius=[radius]
4988
+ radius_tile=[1]*df.shape[1]
4989
+ radius=radius_tile.copy()
4990
+ for i in range(1,df.shape[1]):
4991
+ radius[i]=radius_tile[i]-np.sum(width[:i])
4992
+
4993
+ # colors
4994
+ if facecolor is not None:
4995
+ if not isinstance(facecolor,list):
4996
+ facecolor=[facecolor]
4997
+ colors = facecolor
4998
+ else:
4999
+ colors = (
5000
+ get_color(data.shape[0])
5001
+ if cmap is None
5002
+ else plt.get_cmap(cmap)(np.linspace(0, 1, data.shape[0]))
5003
+ )
5004
+ # to check if facecolor is nested list or not
5005
+ is_nested = True if any(isinstance(i, list) for i in colors) else False
5006
+ inested = 0
5007
+ for column_,width_,radius_ in zip(columns, width,radius):
5008
+ if column_!=columns[0]:
5009
+ labels = data.index if show_label else None
5010
+ else:
5011
+ labels = data.index if show_label is not None else None
5012
+ data = df[column_]
5013
+ labels_legend=data.index
5014
+ sizes = data.values
5015
+
5016
+ # Set wedge and text properties if none are provided
5017
+ kws_wedge = kws_wedge or {"edgecolor": edgecolor, "linewidth": edgewidth}
5018
+ kws_wedge.update({"width":width_})
5019
+ fontcolor=kws_text.get("color",fontcolor)
5020
+ fontsize=kws_text.get("fontsize",fontsize)
5021
+ kws_text.update({"color": fontcolor, "fontsize": fontsize})
5022
+
5023
+ if ax is None:
5024
+ ax=plt.gca()
5025
+ if explode is not None:
5026
+ if len(explode)<len(labels_legend):
5027
+ explode.extend([0]*(len(labels_legend)-len(explode)))
5028
+
5029
+ if fmt:
5030
+ if not fmt.startswith("%"):
5031
+ autopct =f"%{fmt}%%"
5032
+ else:
5033
+ autopct=None
5034
+
5035
+ if show_value is None:
5036
+ result = ax.pie(
5037
+ sizes,
5038
+ labels=labels,
5039
+ autopct= None,
5040
+ startangle=startangle + rotation_correction,
5041
+ explode=explode,
5042
+ colors=colors[inested] if is_nested else colors,
5043
+ shadow=shadow,
5044
+ pctdistance=pctdistance,
5045
+ labeldistance=labeldistance,
5046
+ wedgeprops=kws_wedge,
5047
+ textprops=kws_text,
5048
+ center=center,
5049
+ radius=radius_,
5050
+ frame=frame,
5051
+ **kwargs
5052
+ )
5053
+ else:
5054
+ result = ax.pie(
5055
+ sizes,
5056
+ labels=labels,
5057
+ autopct=autopct if autopct else None,
5058
+ startangle=startangle + rotation_correction,
5059
+ explode=explode,
5060
+ colors=colors[inested] if is_nested else colors,
5061
+ shadow=shadow,#shadow,
5062
+ pctdistance=pctdistance,
5063
+ labeldistance=labeldistance,
5064
+ wedgeprops=kws_wedge,
5065
+ textprops=kws_text,
5066
+ center=center,
5067
+ radius=radius_,
5068
+ frame=frame,
5069
+ **kwargs
5070
+ )
5071
+ if len(result) == 3:
5072
+ wedges, texts, autotexts = result
5073
+ elif len(result) == 2:
5074
+ wedges, texts = result
5075
+ autotexts = None
5076
+
5077
+ # Show exact values on wedges if show_value is True
5078
+ if show_value:
5079
+ for i, (wedge, txt) in enumerate(zip(wedges, texts)):
5080
+ angle = (wedge.theta2 - wedge.theta1) / 2 + wedge.theta1
5081
+ x = np.cos(np.radians(angle)) * (pctdistance ) * radius_
5082
+ y = np.sin(np.radians(angle)) * (pctdistance ) * radius_
5083
+ if not fmt.startswith("{"):
5084
+ value_text = f"{sizes[i]:{fmt}}"
5085
+ else:
5086
+ value_text = fmt.format(sizes[i])
5087
+ ax.text(x, y, value_text, ha="center", va="center", fontsize=fontsize,color=fontcolor)
5088
+ inested+=1
5089
+ # Customize the legend
5090
+ if show_legend:
5091
+ ax.legend(
5092
+ wedges,
5093
+ labels_legend,
5094
+ loc=legend_loc,
5095
+ bbox_to_anchor=bbox_to_anchor,
5096
+ fontsize=legend_fontsize,
5097
+ title_fontsize=legend_fontsize,
5098
+ )
5099
+ ax.set(aspect="equal")
5100
+ return ax
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: py2ls
3
- Version: 0.2.4.23
3
+ Version: 0.2.4.25
4
4
  Summary: py(thon)2(too)ls
5
5
  Author: Jianfeng
6
6
  Author-email: Jianfeng.Liu0413@gmail.com
@@ -1,4 +1,5 @@
1
- py2ls/.DS_Store,sha256=JdpMN4cmDCbGxELP0b4LUPASIOzoxopMYybGVl8zlZ0,6148
1
+ py2ls/.DS_Store,sha256=oYc2FymKt-7YrKA0lByULr7fbLJkevemm_OHjyFjAvE,6148
2
+ py2ls/.git/.DS_Store,sha256=_QMqSMvFkiuSTudJbBnYTcETf3zOthZjrcI8LJ48tDA,6148
2
3
  py2ls/.git/COMMIT_EDITMSG,sha256=AdtqRHle5Ej2EBNPJY79v-SB454v5UK4wuPCPFELiFQ,11
3
4
  py2ls/.git/FETCH_HEAD,sha256=VM-2Jiw6iPaGu0ftg9xwq76OyNPWV0iT1nL0VWiL1zI,100
4
5
  py2ls/.git/HEAD,sha256=KNJb-Cr0wOK3L1CVmyvrhZ4-YLljCl6MYD2tTdsrboA,21
@@ -17,12 +18,13 @@ py2ls/.git/hooks/pre-receive.sample,sha256=pMPSuce7P9jRRBwxvU7nGlldZrRPz0ndsxAlI
17
18
  py2ls/.git/hooks/prepare-commit-msg.sample,sha256=6d3KpBif3dJe2X_Ix4nsp7bKFjkLI5KuMnbwyOGqRhk,1492
18
19
  py2ls/.git/hooks/push-to-checkout.sample,sha256=pT0HQXmLKHxt16-mSu5HPzBeZdP0lGO7nXQI7DsSv18,2783
19
20
  py2ls/.git/hooks/update.sample,sha256=jV8vqD4QPPCLV-qmdSHfkZT0XL28s32lKtWGCXoU0QY,3650
20
- py2ls/.git/index,sha256=icdOlk1IdpGPwTdGS8m0F_bYf3XNjgzp1gMlKFKx8fU,4232
21
+ py2ls/.git/index,sha256=W0gAn4tn97ChfLYb6Wsl7Pg4WPz0MrQl9TtSf6yagGw,4232
21
22
  py2ls/.git/info/exclude,sha256=ZnH-g7egfIky7okWTR8nk7IxgFjri5jcXAbuClo7DsE,240
22
23
  py2ls/.git/logs/HEAD,sha256=8ID7WuAe_TlO9g-ARxhIJYdgdL3u3m7-1qrOanaIUlA,3535
23
24
  py2ls/.git/logs/refs/heads/main,sha256=8ID7WuAe_TlO9g-ARxhIJYdgdL3u3m7-1qrOanaIUlA,3535
24
25
  py2ls/.git/logs/refs/remotes/origin/HEAD,sha256=58xXc_oi3Gt_mWRW_ZF3IES40amGtFS1N_I8J7E85Cw,23540
25
26
  py2ls/.git/logs/refs/remotes/origin/main,sha256=9ohHV9XT1dBowBZUVo52U9205_o513hmvCvtW9rS4Fk,3192
27
+ py2ls/.git/objects/.DS_Store,sha256=p_UeT5XAI5c6cGAz23lbqMNMljXKR5ddgXEXeYDk4nk,18436
26
28
  py2ls/.git/objects/01/d5bd8065e6860c0bd23ff9fa57161806a099e1,sha256=hEQ8nqJnGsfFsuV5wc4cZas58rehXvT0v5ANx1zmMAY,584
27
29
  py2ls/.git/objects/09/08da26de58c114225ad81f484b80bf5d351b34,sha256=NOyYvrJxATpK3aDdP1_stwkqOQRDwJn7DSy6isyKImE,925
28
30
  py2ls/.git/objects/0b/409e1bc918277010f5679b402d1d1dda53e15c,sha256=y5S1XaGxJz1NXi-SPWjPC_NKIqqSbZv9oOg74MzBihY,156
@@ -164,6 +166,7 @@ py2ls/.git/objects/f7/c98ba5c2f903e603b1f5e63d49fbc8a43815cc,sha256=tYbi3A7irrIP
164
166
  py2ls/.git/objects/f9/045a08e96eb76848fc4d68e3e3e687cca39a2d,sha256=u29Cwu3SL3HlagZIal5ueGZ3miqgZAtuDbtP8-fUVvE,141
165
167
  py2ls/.git/objects/fa/147e6bb78a2e8db241d231295fd7f1ed061af8,sha256=G9pg5LXv7AdxnPIQsTm2AF3Un314dLRJQYwxmZem9rQ,574
166
168
  py2ls/.git/objects/fc/292e793ecfd42240ac43be407023bd731fa9e7,sha256=hGIYoxKWNT3IPwk3DE4l3FLBbUYF-kXcHcx7KrH9uS0,1971
169
+ py2ls/.git/refs/.DS_Store,sha256=L7IgUX7Va5Ta5UX5gavNXI5FGYpYxZ4Ie-wpMJR31fk,6148
167
170
  py2ls/.git/refs/heads/main,sha256=vaWoJWq2YOJm04yq8v-ImmaNjjqq-OEhS8SdTKUuKw8,41
168
171
  py2ls/.git/refs/remotes/origin/HEAD,sha256=K7aiSqD8bEhBAPXVGim7rYQc0sdV9dk_qiBOXbtOsrQ,30
169
172
  py2ls/.git/refs/remotes/origin/main,sha256=vaWoJWq2YOJm04yq8v-ImmaNjjqq-OEhS8SdTKUuKw8,41
@@ -177,14 +180,14 @@ py2ls/bio.py,sha256=ET2J1DsDF_g6v1LIfmAXIfKa6Q7Gprh1g2f9ETnIamo,87529
177
180
  py2ls/brain_atlas.py,sha256=w1o5EelRjq89zuFJUNSz4Da8HnTCwAwDAZ4NU4a-bAY,5486
178
181
  py2ls/chat.py,sha256=Yr22GoIvoWhpV3m4fdwV_I0Mn77La346_ymSinR-ORA,3793
179
182
  py2ls/correlators.py,sha256=RbOaJIPLCHJtUm5SFi_4dCJ7VFUPWR0PErfK3K26ad4,18243
180
- py2ls/data/.DS_Store,sha256=iH2O541jT_5mlTPavY_d5V2prS9zhNx4Pv7yhmbwaHI,6148
183
+ py2ls/data/.DS_Store,sha256=oKUet6ILEEdePWxBwhaml9DGq1V3bKz2PXqgnuo3-20,6148
181
184
  py2ls/data/db2ls_sql_chtsht.json,sha256=ls9d7Sm8TLeujanWHfHlWhU85Qz1KnAizO_9X3wUH7E,6933
182
185
  py2ls/data/docs_links.json,sha256=kXgbbWo0b8bfV4n6iuuUNLnZipIyLzokUO6Lzmf7nO4,101829
183
186
  py2ls/data/email/email_html_template.html,sha256=UIg3aixWfdNsvVx-j2dX1M5N3G-6DgrnV1Ya1cLjiUQ,2809
184
187
  py2ls/data/lang_code_iso639.json,sha256=qZiU7H2RLJjDMXK22C-jhwzLJCI5vKmampjB1ys4ek4,2157
185
188
  py2ls/data/mygenes_fields_241022.txt,sha256=-7htEdtmqbSRTUKHHVmjUFLBwZZg9u3LFpn9OZMb1qg,11348
186
189
  py2ls/data/sns_info.json,sha256=pEzdg2bhMkwQHZpXx02_7zAP7NvRoCc0Le8PN6Uv0Vk,4074
187
- py2ls/data/styles/.DS_Store,sha256=X5W14zd8l8fUlGw4P7mUL81WRLxAVSbel8Cua_5REPA,6148
190
+ py2ls/data/styles/.DS_Store,sha256=JaPmqeoqbAR-2kNwkD6qbnKqwrahZvQ3CL_Uq6hv-ck,6148
188
191
  py2ls/data/styles/example/style1.pdf,sha256=Pt_qQJ5kiCSIPiz3TWSwEffHUdj75kKXnZ4MPqpEx4I,29873
189
192
  py2ls/data/styles/example/style2.pdf,sha256=0xduPLPulET38LEP2V2H_q70wqlrrBEo8ttqO-FMrfQ,25449
190
193
  py2ls/data/styles/example/style3.pdf,sha256=010-Pm2BUowAt0XDkJWZTR5rAszLqmI1DO3209sIFWs,65536
@@ -230,22 +233,23 @@ py2ls/data/usages_pd.json,sha256=4DgbPahF4G5Hd6G0TQurb6dBRVey67lpKdgK6A01Tww,266
230
233
  py2ls/data/usages_sns.json,sha256=rZ2uxBFhQr0UzvuPZMIF3ngQRFRZDAjgmI-0TNRFcdU,9620
231
234
  py2ls/db2ls.py,sha256=MMfFX47aIPIyu7fU9aPvX9lbPRPYOpJ_VXwlnWk-8qo,13615
232
235
  py2ls/doc.py,sha256=xN3g1OWfoaGUhikbJ0NqbN5eKy1VZVvWwRlhHMgyVEc,4243
236
+ py2ls/ec2ls.py,sha256=PyLkiWYB8AJTIGdMn6VrEoE2vFtPYxt4WrCJfGQPFDk,2271
233
237
  py2ls/export_requirements.py,sha256=x2WgUF0jYKz9GfA1MVKN-MdsM-oQ8yUeC6Ua8oCymio,2325
234
238
  py2ls/fetch_update.py,sha256=9LXj661GpCEFII2wx_99aINYctDiHni6DOruDs_fdt8,4752
235
239
  py2ls/freqanalysis.py,sha256=F4218VSPbgL5tnngh6xNCYuNnfR-F_QjECUUxrPYZss,32594
236
240
  py2ls/ich2ls.py,sha256=3E9R8oVpyYZXH5PiIQgT3CN5NxLe4Dwtm2LwaeacE6I,21381
237
- py2ls/ips.py,sha256=2TWuOSFquwhmPdxkmmvU_pcIbE5M0S9aRPtuQgs5B7A,297706
238
- py2ls/ml2ls copy.py,sha256=iZJrFLIrdfTieAY2BDsxQFTm29smwnJh0aC4hRB9VGM,113314
239
- py2ls/ml2ls.py,sha256=1pN6nACn5XEKuipg-44EWSn5QlZ9q6Kzx6uMCdqQiBo,146129
241
+ py2ls/ips.py,sha256=6DgsZw6Z6u3_Y8FtMyO6NpddWiz90juy_ZSoY5rjtjI,303872
242
+ py2ls/ml2ls.py,sha256=fp7zIZX-SMLYIBF5q8pqM9ekJh1R8jCfyGgA8YUMJlw,184553
240
243
  py2ls/mol.py,sha256=AZnHzarIk_MjueKdChqn1V6e4tUle3X1NnHSFA6n3Nw,10645
241
244
  py2ls/netfinder.py,sha256=R70NkrnO8LlXjT1y7bf2TN-yE4yOeAYhb0jDBiNp8XA,57536
245
+ py2ls/nl2ls.py,sha256=UEIdok-OamFZFIvvz_PdZenu085zteMdaJd9mLu3F-s,11485
242
246
  py2ls/ocr.py,sha256=5lhUbJufIKRSOL6wAWVLEo8TqMYSjoI_Q-IO-_4u3DE,31419
243
- py2ls/plot.py,sha256=jFBglmV-czTxGlmhZ4VhGzN5shnYw3hFV2JoosoSW9U,190457
247
+ py2ls/plot.py,sha256=NpQDc31GyWygkDEkBMl7q6D8VSfHtXeUwDUTOUAe6Vc,200060
244
248
  py2ls/setuptools-70.1.0-py3-none-any.whl,sha256=2bi3cUVal8ip86s0SOvgspteEF8SKLukECi-EWmFomc,882588
245
249
  py2ls/sleep_events_detectors.py,sha256=bQA3HJqv5qnYKJJEIhCyhlDtkXQfIzqksnD0YRXso68,52145
246
250
  py2ls/stats.py,sha256=qBn2rJmNa_QLLUqjwYqXUlGzqmW94sgA1bxJU2FC3r0,39175
247
251
  py2ls/translator.py,sha256=77Tp_GjmiiwFbEIJD_q3VYpQ43XL9ZeJo6Mhl44mvh8,34284
248
252
  py2ls/wb_detector.py,sha256=7y6TmBUj9exCZeIgBAJ_9hwuhkDh1x_-yg4dvNY1_GQ,6284
249
- py2ls-0.2.4.23.dist-info/METADATA,sha256=qTj4hYB953DQ2bxJdW3SyIAm_jyRQGNRRlHbgFCO7MI,20078
250
- py2ls-0.2.4.23.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
251
- py2ls-0.2.4.23.dist-info/RECORD,,
253
+ py2ls-0.2.4.25.dist-info/METADATA,sha256=R29MJjrb1zGlKMcACwV_XEOGL0EBYjVADtlYo5kG0Kw,20078
254
+ py2ls-0.2.4.25.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
255
+ py2ls-0.2.4.25.dist-info/RECORD,,