py-neuromodulation 0.0.4__py3-none-any.whl → 0.0.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- py_neuromodulation/ConnectivityDecoding/_get_grid_hull.m +34 -34
- py_neuromodulation/ConnectivityDecoding/_get_grid_whole_brain.py +95 -106
- py_neuromodulation/ConnectivityDecoding/_helper_write_connectome.py +107 -119
- py_neuromodulation/__init__.py +80 -13
- py_neuromodulation/{nm_RMAP.py → analysis/RMAP.py} +496 -531
- py_neuromodulation/analysis/__init__.py +4 -0
- py_neuromodulation/{nm_decode.py → analysis/decode.py} +918 -992
- py_neuromodulation/{nm_analysis.py → analysis/feature_reader.py} +994 -1074
- py_neuromodulation/{nm_plots.py → analysis/plots.py} +627 -612
- py_neuromodulation/{nm_stats.py → analysis/stats.py} +458 -480
- py_neuromodulation/data/README +6 -6
- py_neuromodulation/data/dataset_description.json +8 -8
- py_neuromodulation/data/participants.json +32 -32
- py_neuromodulation/data/participants.tsv +2 -2
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_coordsystem.json +5 -5
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_electrodes.tsv +11 -11
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_channels.tsv +11 -11
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.json +18 -18
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vhdr +35 -35
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vmrk +13 -13
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/sub-testsub_ses-EphysMedOff_scans.tsv +2 -2
- py_neuromodulation/default_settings.yaml +241 -0
- py_neuromodulation/features/__init__.py +31 -0
- py_neuromodulation/features/bandpower.py +165 -0
- py_neuromodulation/features/bispectra.py +157 -0
- py_neuromodulation/features/bursts.py +297 -0
- py_neuromodulation/features/coherence.py +255 -0
- py_neuromodulation/features/feature_processor.py +121 -0
- py_neuromodulation/features/fooof.py +142 -0
- py_neuromodulation/features/hjorth_raw.py +57 -0
- py_neuromodulation/features/linelength.py +21 -0
- py_neuromodulation/features/mne_connectivity.py +148 -0
- py_neuromodulation/features/nolds.py +94 -0
- py_neuromodulation/features/oscillatory.py +249 -0
- py_neuromodulation/features/sharpwaves.py +432 -0
- py_neuromodulation/filter/__init__.py +3 -0
- py_neuromodulation/filter/kalman_filter.py +67 -0
- py_neuromodulation/filter/kalman_filter_external.py +1890 -0
- py_neuromodulation/filter/mne_filter.py +128 -0
- py_neuromodulation/filter/notch_filter.py +93 -0
- py_neuromodulation/grid_cortex.tsv +40 -40
- py_neuromodulation/liblsl/libpugixml.so.1.12 +0 -0
- py_neuromodulation/liblsl/linux/bionic_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/bookworm_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/focal_amd46/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/jammy_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/jammy_x86/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/noble_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/macos/amd64/liblsl.1.16.2.dylib +0 -0
- py_neuromodulation/liblsl/macos/arm64/liblsl.1.16.0.dylib +0 -0
- py_neuromodulation/liblsl/windows/amd64/liblsl.1.16.2.dll +0 -0
- py_neuromodulation/liblsl/windows/x86/liblsl.1.16.2.dll +0 -0
- py_neuromodulation/processing/__init__.py +10 -0
- py_neuromodulation/{nm_artifacts.py → processing/artifacts.py} +29 -25
- py_neuromodulation/processing/data_preprocessor.py +77 -0
- py_neuromodulation/processing/filter_preprocessing.py +78 -0
- py_neuromodulation/processing/normalization.py +175 -0
- py_neuromodulation/{nm_projection.py → processing/projection.py} +370 -394
- py_neuromodulation/{nm_rereference.py → processing/rereference.py} +97 -95
- py_neuromodulation/{nm_resample.py → processing/resample.py} +56 -50
- py_neuromodulation/stream/__init__.py +3 -0
- py_neuromodulation/stream/data_processor.py +325 -0
- py_neuromodulation/stream/generator.py +53 -0
- py_neuromodulation/stream/mnelsl_player.py +94 -0
- py_neuromodulation/stream/mnelsl_stream.py +120 -0
- py_neuromodulation/stream/settings.py +292 -0
- py_neuromodulation/stream/stream.py +427 -0
- py_neuromodulation/utils/__init__.py +2 -0
- py_neuromodulation/{nm_define_nmchannels.py → utils/channels.py} +305 -302
- py_neuromodulation/utils/database.py +149 -0
- py_neuromodulation/utils/io.py +378 -0
- py_neuromodulation/utils/keyboard.py +52 -0
- py_neuromodulation/utils/logging.py +66 -0
- py_neuromodulation/utils/types.py +251 -0
- {py_neuromodulation-0.0.4.dist-info → py_neuromodulation-0.0.6.dist-info}/METADATA +28 -33
- py_neuromodulation-0.0.6.dist-info/RECORD +89 -0
- {py_neuromodulation-0.0.4.dist-info → py_neuromodulation-0.0.6.dist-info}/WHEEL +1 -1
- {py_neuromodulation-0.0.4.dist-info → py_neuromodulation-0.0.6.dist-info}/licenses/LICENSE +21 -21
- py_neuromodulation/FieldTrip.py +0 -589
- py_neuromodulation/_write_example_dataset_helper.py +0 -65
- py_neuromodulation/nm_EpochStream.py +0 -92
- py_neuromodulation/nm_IO.py +0 -417
- py_neuromodulation/nm_across_patient_decoding.py +0 -927
- py_neuromodulation/nm_bispectra.py +0 -168
- py_neuromodulation/nm_bursts.py +0 -198
- py_neuromodulation/nm_coherence.py +0 -205
- py_neuromodulation/nm_cohortwrapper.py +0 -435
- py_neuromodulation/nm_eval_timing.py +0 -239
- py_neuromodulation/nm_features.py +0 -116
- py_neuromodulation/nm_features_abc.py +0 -39
- py_neuromodulation/nm_filter.py +0 -219
- py_neuromodulation/nm_filter_preprocessing.py +0 -91
- py_neuromodulation/nm_fooof.py +0 -159
- py_neuromodulation/nm_generator.py +0 -37
- py_neuromodulation/nm_hjorth_raw.py +0 -73
- py_neuromodulation/nm_kalmanfilter.py +0 -58
- py_neuromodulation/nm_linelength.py +0 -33
- py_neuromodulation/nm_mne_connectivity.py +0 -112
- py_neuromodulation/nm_nolds.py +0 -93
- py_neuromodulation/nm_normalization.py +0 -214
- py_neuromodulation/nm_oscillatory.py +0 -448
- py_neuromodulation/nm_run_analysis.py +0 -435
- py_neuromodulation/nm_settings.json +0 -338
- py_neuromodulation/nm_settings.py +0 -68
- py_neuromodulation/nm_sharpwaves.py +0 -401
- py_neuromodulation/nm_stream_abc.py +0 -218
- py_neuromodulation/nm_stream_offline.py +0 -359
- py_neuromodulation/utils/_logging.py +0 -24
- py_neuromodulation-0.0.4.dist-info/RECORD +0 -72
|
@@ -1,435 +0,0 @@
|
|
|
1
|
-
from re import VERBOSE
|
|
2
|
-
import sys
|
|
3
|
-
import os
|
|
4
|
-
import numpy as np
|
|
5
|
-
from pathlib import Path
|
|
6
|
-
from scipy import stats
|
|
7
|
-
import pandas as pd
|
|
8
|
-
from multiprocessing import Pool
|
|
9
|
-
from sklearn import linear_model, discriminant_analysis, ensemble, svm
|
|
10
|
-
from sklearn import metrics
|
|
11
|
-
from sklearn.base import clone
|
|
12
|
-
from sklearn import model_selection
|
|
13
|
-
from sklearn.utils import class_weight
|
|
14
|
-
from scipy.ndimage import binary_dilation, binary_erosion, label
|
|
15
|
-
import _pickle as cPickle
|
|
16
|
-
from scipy import io
|
|
17
|
-
from matplotlib import pyplot as plt
|
|
18
|
-
import matplotlib
|
|
19
|
-
import bids
|
|
20
|
-
from bids import BIDSLayout
|
|
21
|
-
from itertools import product
|
|
22
|
-
import nibabel as nib
|
|
23
|
-
|
|
24
|
-
import py_neuromodulation
|
|
25
|
-
from py_neuromodulation import nm_decode, nm_analysis, nm_IO
|
|
26
|
-
from py_neuromodulation import nm_stream_offline
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
class CohortRunner:
|
|
30
|
-
def __init__(
|
|
31
|
-
self,
|
|
32
|
-
cohorts: dict = None,
|
|
33
|
-
ML_model_name="LM",
|
|
34
|
-
model=linear_model.LogisticRegression(class_weight="balanced"),
|
|
35
|
-
eval_method=metrics.balanced_accuracy_score,
|
|
36
|
-
estimate_gridpoints=False,
|
|
37
|
-
estimate_channels=True,
|
|
38
|
-
estimate_all_channels_combined=False,
|
|
39
|
-
save_coef=False,
|
|
40
|
-
TRAIN_VAL_SPLIT=False,
|
|
41
|
-
plot_features=False,
|
|
42
|
-
plot_grid_performances=False,
|
|
43
|
-
run_ML_model=True,
|
|
44
|
-
run_bids=True,
|
|
45
|
-
binarize_label=True,
|
|
46
|
-
used_types=("ecog", "dbs", "seeg"),
|
|
47
|
-
target_keywords=("mov", "squared", "label"),
|
|
48
|
-
get_movement_detection_rate=False,
|
|
49
|
-
run_pool=True,
|
|
50
|
-
VERBOSE=False,
|
|
51
|
-
LIMIT_DATA=False,
|
|
52
|
-
RUN_BAY_OPT=False,
|
|
53
|
-
STACK_FEATURES_N_SAMPLES=True,
|
|
54
|
-
cv_method=model_selection.KFold(n_splits=3, shuffle=False),
|
|
55
|
-
use_nested_cv=True,
|
|
56
|
-
outpath=r"C:\Users\ICN_admin\Documents\Decoding_Toolbox\write_out\0209_SharpWaveLimFeaturesSTFT_with_Grid",
|
|
57
|
-
PATH_SETTINGS=r"C:\Users\ICN_admin\Documents\py_neuromodulation\pyneuromodulation\nm_settings.json",
|
|
58
|
-
) -> None:
|
|
59
|
-
|
|
60
|
-
self.ML_model_name = ML_model_name
|
|
61
|
-
self.model = model
|
|
62
|
-
self.outpath = outpath
|
|
63
|
-
self.PATH_SETTINGS = PATH_SETTINGS
|
|
64
|
-
self.estimate_gridpoints = estimate_gridpoints
|
|
65
|
-
self.estimate_channels = estimate_channels
|
|
66
|
-
self.estimate_all_channels_combined = estimate_all_channels_combined
|
|
67
|
-
self.save_coef = save_coef
|
|
68
|
-
self.plot_features = plot_features
|
|
69
|
-
self.plot_grid_performances = plot_grid_performances
|
|
70
|
-
self.run_ML_model = run_ML_model
|
|
71
|
-
self.run_bids = run_bids
|
|
72
|
-
self.run_pool = run_pool
|
|
73
|
-
self.TRAIN_VAL_SPLIT = TRAIN_VAL_SPLIT
|
|
74
|
-
self.cohorts = cohorts
|
|
75
|
-
self.VERBOSE = VERBOSE
|
|
76
|
-
self.LIMIT_DATA = LIMIT_DATA
|
|
77
|
-
self.eval_method = eval_method
|
|
78
|
-
self.cv_method = cv_method
|
|
79
|
-
self.use_nested_cv = use_nested_cv
|
|
80
|
-
self.RUN_BAY_OPT = RUN_BAY_OPT
|
|
81
|
-
self.TRAIN_VAL_SPLIT = TRAIN_VAL_SPLIT
|
|
82
|
-
self.STACK_FEATURES_N_SAMPLES = STACK_FEATURES_N_SAMPLES
|
|
83
|
-
self.model = model
|
|
84
|
-
self.binarize_label = binarize_label
|
|
85
|
-
self.used_types = used_types
|
|
86
|
-
self.target_keywords = target_keywords
|
|
87
|
-
self.get_movement_detection_rate = get_movement_detection_rate
|
|
88
|
-
self.grid_cortex = pd.read_csv(
|
|
89
|
-
os.path.join(py_neuromodulation.__path__[0], "grid_cortex.tsv"),
|
|
90
|
-
sep="\t",
|
|
91
|
-
).to_numpy()
|
|
92
|
-
|
|
93
|
-
def init_decoder(self) -> nm_decode.Decoder:
|
|
94
|
-
return nm_decode.Decoder(
|
|
95
|
-
model=self.model,
|
|
96
|
-
TRAIN_VAL_SPLIT=self.TRAIN_VAL_SPLIT,
|
|
97
|
-
STACK_FEATURES_N_SAMPLES=self.STACK_FEATURES_N_SAMPLES,
|
|
98
|
-
get_movement_detection_rate=self.get_movement_detection_rate,
|
|
99
|
-
eval_method=self.eval_method,
|
|
100
|
-
VERBOSE=self.VERBOSE,
|
|
101
|
-
cv_method=self.cv_method,
|
|
102
|
-
use_nested_cv=self.use_nested_cv,
|
|
103
|
-
RUN_BAY_OPT=self.RUN_BAY_OPT,
|
|
104
|
-
)
|
|
105
|
-
|
|
106
|
-
def multiprocess_pipeline_run_wrapper(self, PATH_RUN):
|
|
107
|
-
|
|
108
|
-
if type(PATH_RUN) is bids.layout.models.BIDSFile:
|
|
109
|
-
PATH_RUN = PATH_RUN.path
|
|
110
|
-
|
|
111
|
-
# set BIDS PATH and out path
|
|
112
|
-
# better option: feed the output and bids path as well as a param through the pool
|
|
113
|
-
|
|
114
|
-
for cohort, PATH_COHORT in self.cohorts.items():
|
|
115
|
-
if cohort in PATH_RUN:
|
|
116
|
-
PATH_BIDS = PATH_COHORT
|
|
117
|
-
PATH_OUT = os.path.join(self.outpath, cohort)
|
|
118
|
-
break
|
|
119
|
-
|
|
120
|
-
if self.run_bids:
|
|
121
|
-
stream = nm_stream_offline.Stream(
|
|
122
|
-
PATH_RUN=PATH_RUN,
|
|
123
|
-
PATH_BIDS=PATH_BIDS,
|
|
124
|
-
PATH_OUT=PATH_OUT,
|
|
125
|
-
LIMIT_DATA=self.LIMIT_DATA,
|
|
126
|
-
LIMIT_HIGH=200000,
|
|
127
|
-
LIMIT_LOW=0,
|
|
128
|
-
target_keywords=self.target_keywords,
|
|
129
|
-
used_types=self.used_types,
|
|
130
|
-
PATH_SETTINGS=self.PATH_SETTINGS,
|
|
131
|
-
VERBOSE=self.VERBOSE,
|
|
132
|
-
)
|
|
133
|
-
stream.run()
|
|
134
|
-
|
|
135
|
-
feature_file = os.path.basename(PATH_RUN)[:-5] # cut off ".vhdr"
|
|
136
|
-
|
|
137
|
-
feature_reader = nm_analysis.Feature_Reader(
|
|
138
|
-
feature_dir=PATH_OUT,
|
|
139
|
-
feature_file=feature_file,
|
|
140
|
-
binarize_label=self.binarize_label,
|
|
141
|
-
)
|
|
142
|
-
|
|
143
|
-
if self.plot_grid_performances:
|
|
144
|
-
feature_reader.plot_cort_projection()
|
|
145
|
-
|
|
146
|
-
if self.plot_features:
|
|
147
|
-
|
|
148
|
-
ch_to_plot = feature_reader.nm_channels.query(
|
|
149
|
-
'(type=="ecog") and (used == 1)'
|
|
150
|
-
)["name"]
|
|
151
|
-
|
|
152
|
-
feature_used = "stft"
|
|
153
|
-
|
|
154
|
-
for ch_used in ch_to_plot:
|
|
155
|
-
feature_reader.plot_target_averaged_channel(
|
|
156
|
-
ch=ch_used,
|
|
157
|
-
list_feature_keywords=[feature_used],
|
|
158
|
-
epoch_len=4,
|
|
159
|
-
threshold=0.5,
|
|
160
|
-
)
|
|
161
|
-
|
|
162
|
-
# model = discriminant_analysis.LinearDiscriminantAnalysis()
|
|
163
|
-
# model = xgboost.XGBClassifier(scale_pos_weight=10) # balanced class weights
|
|
164
|
-
# model = ensemble.RandomForestClassifier(n_estimators=6, max_depth=6, class_weight='balanced')
|
|
165
|
-
# model = svm.SVC(class_weight="balanced")
|
|
166
|
-
|
|
167
|
-
if self.run_ML_model:
|
|
168
|
-
# set decoder for this specific run (using the feature_reader features)
|
|
169
|
-
feature_reader.decoder = self.init_decoder()
|
|
170
|
-
|
|
171
|
-
feature_reader.decoder.set_data(
|
|
172
|
-
features=feature_reader.feature_arr,
|
|
173
|
-
label=feature_reader.label,
|
|
174
|
-
label_name=feature_reader.label_name,
|
|
175
|
-
used_chs=feature_reader.used_chs,
|
|
176
|
-
)
|
|
177
|
-
|
|
178
|
-
performances = feature_reader.run_ML_model(
|
|
179
|
-
estimate_channels=self.estimate_channels,
|
|
180
|
-
estimate_gridpoints=self.estimate_gridpoints,
|
|
181
|
-
estimate_all_channels_combined=self.estimate_all_channels_combined,
|
|
182
|
-
save_results=True,
|
|
183
|
-
output_name="XGBNOMP",
|
|
184
|
-
)
|
|
185
|
-
|
|
186
|
-
if self.plot_grid_performances:
|
|
187
|
-
feature_reader.plot_subject_grid_ch_performance(
|
|
188
|
-
performance_dict=performances, plt_grid=True
|
|
189
|
-
)
|
|
190
|
-
|
|
191
|
-
def run_cohorts(self):
|
|
192
|
-
|
|
193
|
-
run_files_all = []
|
|
194
|
-
for _, PATH_COHORT in self.cohorts.items():
|
|
195
|
-
layout = BIDSLayout(PATH_COHORT)
|
|
196
|
-
run_files_all.append(layout.get(extension=".vhdr"))
|
|
197
|
-
|
|
198
|
-
run_files_all = list(np.concatenate(run_files_all))
|
|
199
|
-
|
|
200
|
-
if self.run_pool:
|
|
201
|
-
pool = Pool(processes=50)
|
|
202
|
-
pool.map(self.multiprocess_pipeline_run_wrapper, run_files_all)
|
|
203
|
-
else:
|
|
204
|
-
# self.multiprocess_pipeline_run_wrapper(run_files_all[11])
|
|
205
|
-
for run_file in run_files_all[:12]:
|
|
206
|
-
self.multiprocess_pipeline_run_wrapper(run_file)
|
|
207
|
-
|
|
208
|
-
def read_cohort_results(self, feature_path, cohort):
|
|
209
|
-
"""Read for a given path (of potentially multiple estimated runs) performance results
|
|
210
|
-
Parameters
|
|
211
|
-
----------
|
|
212
|
-
feature_path : string
|
|
213
|
-
path where estimated runs are saved
|
|
214
|
-
cohort : string
|
|
215
|
-
used for saving output npy dictionary
|
|
216
|
-
ML_model_name : string
|
|
217
|
-
model name, by default "LM"
|
|
218
|
-
"""
|
|
219
|
-
|
|
220
|
-
# Here the runs are overwritten!
|
|
221
|
-
folders_path = [x[0] for x in os.walk(feature_path)]
|
|
222
|
-
feature_paths = [os.path.basename(x) for x in folders_path[1:]]
|
|
223
|
-
performance_out = {}
|
|
224
|
-
|
|
225
|
-
for feature_file in feature_paths:
|
|
226
|
-
feature_reader = nm_analysis.Feature_Reader(
|
|
227
|
-
feature_dir=feature_path, feature_file=feature_file
|
|
228
|
-
)
|
|
229
|
-
|
|
230
|
-
performance_run = feature_reader.read_results(
|
|
231
|
-
read_grid_points=self.estimate_gridpoints,
|
|
232
|
-
read_channels=self.estimate_channels,
|
|
233
|
-
read_all_combined=self.estimate_all_channels_combined,
|
|
234
|
-
read_mov_detection_rates=True,
|
|
235
|
-
)
|
|
236
|
-
|
|
237
|
-
sub = feature_file[
|
|
238
|
-
feature_file.find("sub-") : feature_file.find("_ses")
|
|
239
|
-
][4:]
|
|
240
|
-
if sub not in performance_out:
|
|
241
|
-
performance_out[sub] = {}
|
|
242
|
-
performance_out[sub][feature_file] = performance_run[
|
|
243
|
-
sub
|
|
244
|
-
] # get saved in performance_run
|
|
245
|
-
|
|
246
|
-
np.save(
|
|
247
|
-
os.path.join(
|
|
248
|
-
self.outpath, self.ML_model_name + "_cohort_" + cohort + ".npy"
|
|
249
|
-
),
|
|
250
|
-
performance_out,
|
|
251
|
-
)
|
|
252
|
-
|
|
253
|
-
def cohort_wrapper_read_cohort(self):
|
|
254
|
-
"""Read results for multiple cohorts"""
|
|
255
|
-
|
|
256
|
-
for cohort in self.cohorts.keys():
|
|
257
|
-
self.read_cohort_results(
|
|
258
|
-
os.path.join(self.outpath, cohort), cohort
|
|
259
|
-
)
|
|
260
|
-
|
|
261
|
-
def read_all_channels(
|
|
262
|
-
self,
|
|
263
|
-
channel_all,
|
|
264
|
-
feature_path,
|
|
265
|
-
feature_file,
|
|
266
|
-
cohort,
|
|
267
|
-
read_channels: bool = True,
|
|
268
|
-
):
|
|
269
|
-
"""Save for a given feature path all used grid point data. Necessary to run across patient and cohort analysis.
|
|
270
|
-
Parameters
|
|
271
|
-
----------
|
|
272
|
-
channel_all : dictionary
|
|
273
|
-
dictionary with data, label, label_name and feature_names for each channel
|
|
274
|
-
feature_path : string
|
|
275
|
-
path to feature files
|
|
276
|
-
feature_file : string
|
|
277
|
-
feature file
|
|
278
|
-
cohort : string
|
|
279
|
-
used for indecing of grid_point_all
|
|
280
|
-
read_ch : bool
|
|
281
|
-
if True read channels, else read grid_points
|
|
282
|
-
Returns
|
|
283
|
-
-------
|
|
284
|
-
dictionary
|
|
285
|
-
ch_all
|
|
286
|
-
"""
|
|
287
|
-
feature_reader = nm_analysis.Feature_Reader(
|
|
288
|
-
feature_dir=feature_path, feature_file=feature_file
|
|
289
|
-
)
|
|
290
|
-
if "Washington" in feature_path:
|
|
291
|
-
mov_starts = np.where(np.diff(feature_reader.feature_arr["mov"])>0)[0]
|
|
292
|
-
seg_cut = []
|
|
293
|
-
for mov_start in mov_starts:
|
|
294
|
-
for i in range(5):
|
|
295
|
-
seg_cut.append(mov_start+i)
|
|
296
|
-
|
|
297
|
-
ind_cut = np.concatenate((np.where(feature_reader.feature_arr["mov"] == 11)[0], seg_cut))
|
|
298
|
-
idx_select = set(np.arange(feature_reader.feature_arr["mov"].shape[0])) - set(ind_cut)
|
|
299
|
-
feature_reader.feature_arr = feature_reader.feature_arr.iloc[list(idx_select), :].reset_index(drop=True)
|
|
300
|
-
#analyzer.feature_arr["mov"] = analyzer.feature_arr["mov"] > 0
|
|
301
|
-
feature_reader.label = np.array(feature_reader.feature_arr["mov"] > 0, dtype=int)
|
|
302
|
-
subject_name = feature_file[:2]
|
|
303
|
-
task_name = "hand_movement"
|
|
304
|
-
run_number = 1
|
|
305
|
-
else:
|
|
306
|
-
subject_name = feature_file[
|
|
307
|
-
feature_file.find("sub-") + 4 : feature_file.find("_ses")
|
|
308
|
-
]
|
|
309
|
-
sess_name = feature_file[
|
|
310
|
-
feature_file.find("ses-") + 4 : feature_file.find("_task")
|
|
311
|
-
]
|
|
312
|
-
task_name = feature_file[
|
|
313
|
-
feature_file.find("task-") + 5 : feature_file.find("_run")
|
|
314
|
-
]
|
|
315
|
-
run_number = feature_file[
|
|
316
|
-
feature_file.find("run-") + 4 : feature_file.find("_ieeg")
|
|
317
|
-
]
|
|
318
|
-
print(feature_reader.label_name)
|
|
319
|
-
decoder = nm_decode.Decoder(
|
|
320
|
-
features=feature_reader.feature_arr,
|
|
321
|
-
label=feature_reader.label,
|
|
322
|
-
label_name=feature_reader.label_name,
|
|
323
|
-
used_chs=feature_reader.used_chs,
|
|
324
|
-
)
|
|
325
|
-
|
|
326
|
-
if read_channels is True:
|
|
327
|
-
decoder.set_data_ind_channels()
|
|
328
|
-
data_to_read = decoder.ch_ind_data
|
|
329
|
-
else:
|
|
330
|
-
decoder.set_data_grid_points()
|
|
331
|
-
data_to_read = decoder.grid_point_ind_data
|
|
332
|
-
|
|
333
|
-
for ch in list(data_to_read.keys()):
|
|
334
|
-
if cohort not in channel_all:
|
|
335
|
-
channel_all[cohort] = {}
|
|
336
|
-
if subject_name not in channel_all[cohort]:
|
|
337
|
-
channel_all[cohort][subject_name] = {}
|
|
338
|
-
if ch not in channel_all[cohort][subject_name]:
|
|
339
|
-
channel_all[cohort][subject_name][ch] = {}
|
|
340
|
-
channel_all[cohort][subject_name][ch][feature_file] = {}
|
|
341
|
-
|
|
342
|
-
channel_all[cohort][subject_name][ch][feature_file][
|
|
343
|
-
"data"
|
|
344
|
-
] = data_to_read[ch]
|
|
345
|
-
channel_all[cohort][subject_name][ch][feature_file][
|
|
346
|
-
"feature_names"
|
|
347
|
-
] = [
|
|
348
|
-
ch_[len(ch) + 1 :]
|
|
349
|
-
for ch_ in decoder.features.columns
|
|
350
|
-
if ch in ch_
|
|
351
|
-
]
|
|
352
|
-
channel_all[cohort][subject_name][ch][feature_file][
|
|
353
|
-
"label"
|
|
354
|
-
] = decoder.label
|
|
355
|
-
channel_all[cohort][subject_name][ch][feature_file][
|
|
356
|
-
"label_name"
|
|
357
|
-
] = decoder.label_name
|
|
358
|
-
|
|
359
|
-
# check laterality
|
|
360
|
-
lat = "CON" # Beijing is always contralateral
|
|
361
|
-
# Pittsburgh Subjects
|
|
362
|
-
if (
|
|
363
|
-
"LEFT" in decoder.label_name
|
|
364
|
-
and "LEFT" in decoder.features.columns[1]
|
|
365
|
-
) or (
|
|
366
|
-
"RIGHT" in decoder.label_name
|
|
367
|
-
and "RIGHT" in decoder.features.columns[1]
|
|
368
|
-
):
|
|
369
|
-
lat = "IPS"
|
|
370
|
-
|
|
371
|
-
# Berlin subjects
|
|
372
|
-
if (
|
|
373
|
-
"_L_" in decoder.features.columns[1]
|
|
374
|
-
and task_name == "SelfpacedRotationL"
|
|
375
|
-
) or (
|
|
376
|
-
"_R_" in decoder.features.columns[1]
|
|
377
|
-
and task_name == "SelfpacedRotationR"
|
|
378
|
-
):
|
|
379
|
-
lat = "IPS"
|
|
380
|
-
channel_all[cohort][subject_name][ch][feature_file]["lat"] = lat
|
|
381
|
-
return channel_all
|
|
382
|
-
|
|
383
|
-
def cohort_wrapper_read_all_grid_points(self, read_channels=True):
|
|
384
|
-
cohorts = self.cohorts.keys()
|
|
385
|
-
grid_point_all = {}
|
|
386
|
-
for cohort in cohorts:
|
|
387
|
-
print("COHORT: " + cohort)
|
|
388
|
-
feature_path = os.path.join(self.outpath, cohort)
|
|
389
|
-
feature_list = nm_IO.get_run_list_indir(feature_path)
|
|
390
|
-
for feature_file in feature_list:
|
|
391
|
-
print(feature_file)
|
|
392
|
-
grid_point_all = self.read_all_channels(
|
|
393
|
-
grid_point_all,
|
|
394
|
-
feature_path,
|
|
395
|
-
feature_file,
|
|
396
|
-
cohort,
|
|
397
|
-
read_channels=read_channels,
|
|
398
|
-
)
|
|
399
|
-
|
|
400
|
-
if read_channels is True:
|
|
401
|
-
np.save(
|
|
402
|
-
os.path.join(self.outpath, "channel_all.npy"), grid_point_all
|
|
403
|
-
)
|
|
404
|
-
else:
|
|
405
|
-
np.save(
|
|
406
|
-
os.path.join(self.outpath, "grid_point_all.npy"),
|
|
407
|
-
grid_point_all,
|
|
408
|
-
)
|
|
409
|
-
|
|
410
|
-
@staticmethod
|
|
411
|
-
def rewrite_grid_point_all(d, outpath):
|
|
412
|
-
|
|
413
|
-
# from channel_all[cohort][subject_name][ch][feature_file]
|
|
414
|
-
|
|
415
|
-
# to grid_point_all[grid_point][cohort][subject_test][run]
|
|
416
|
-
|
|
417
|
-
p = {}
|
|
418
|
-
for cohort in d.keys():
|
|
419
|
-
for sub in d[cohort].keys():
|
|
420
|
-
for gp in d[cohort][sub].keys():
|
|
421
|
-
for f in d[cohort][sub][gp].keys():
|
|
422
|
-
if gp not in p.keys():
|
|
423
|
-
p[gp] = {}
|
|
424
|
-
if cohort not in p[gp].keys():
|
|
425
|
-
p[gp][cohort] = {}
|
|
426
|
-
if sub not in p[gp][cohort].keys():
|
|
427
|
-
p[gp][cohort][sub] = {}
|
|
428
|
-
if f not in p[gp][cohort][sub].keys():
|
|
429
|
-
p[gp][cohort][sub][f] = {}
|
|
430
|
-
for key_ in d[cohort][sub][gp][f].keys():
|
|
431
|
-
p[gp][cohort][sub][f][key_] = d[cohort][sub][gp][
|
|
432
|
-
f
|
|
433
|
-
][key_]
|
|
434
|
-
|
|
435
|
-
np.save(os.path.join(outpath, "grid_point_all_re.npy"), p)
|
|
@@ -1,239 +0,0 @@
|
|
|
1
|
-
import timeit
|
|
2
|
-
from . import nm_oscillatory
|
|
3
|
-
import numpy as np
|
|
4
|
-
from py_neuromodulation import (
|
|
5
|
-
nm_normalization,
|
|
6
|
-
nm_stft,
|
|
7
|
-
nm_bandpower,
|
|
8
|
-
nm_filter,
|
|
9
|
-
)
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
class NM_Timer:
|
|
13
|
-
def __init__(self, analyzer) -> None:
|
|
14
|
-
self.analyzer = analyzer
|
|
15
|
-
|
|
16
|
-
self.get_timings()
|
|
17
|
-
|
|
18
|
-
def get_timings(self, number_repeat=1000):
|
|
19
|
-
|
|
20
|
-
features_ = {}
|
|
21
|
-
ch_idx = 0
|
|
22
|
-
fs = self.analyzer.fs
|
|
23
|
-
ch_name = "ECOG_L_1_SMC_AT"
|
|
24
|
-
N_CH_BEFORE_REREF = 15 # 2
|
|
25
|
-
N_CH_AFTER_REREF = 11 # 2
|
|
26
|
-
data = np.random.random([N_CH_BEFORE_REREF, fs])
|
|
27
|
-
|
|
28
|
-
dict_timings = {}
|
|
29
|
-
|
|
30
|
-
if self.analyzer.settings["methods"]["notch_filter"]:
|
|
31
|
-
dict_timings["time_rereference"] = (
|
|
32
|
-
timeit.timeit(
|
|
33
|
-
lambda: self.analyzer.reference.rereference(data),
|
|
34
|
-
number=number_repeat,
|
|
35
|
-
)
|
|
36
|
-
/ number_repeat
|
|
37
|
-
)
|
|
38
|
-
|
|
39
|
-
data = np.random.random([N_CH_AFTER_REREF, fs])
|
|
40
|
-
|
|
41
|
-
if self.analyzer.settings["methods"]["raw_resampling"]:
|
|
42
|
-
dict_timings["time_resample"] = (
|
|
43
|
-
timeit.timeit(
|
|
44
|
-
lambda: self.analyzer.resample.raw_resampling(data),
|
|
45
|
-
number=number_repeat,
|
|
46
|
-
)
|
|
47
|
-
/ number_repeat
|
|
48
|
-
)
|
|
49
|
-
|
|
50
|
-
data = np.random.random(
|
|
51
|
-
[
|
|
52
|
-
N_CH_AFTER_REREF,
|
|
53
|
-
self.analyzer.settings["raw_resampling_settings"][
|
|
54
|
-
"resample_freq"
|
|
55
|
-
],
|
|
56
|
-
]
|
|
57
|
-
)
|
|
58
|
-
|
|
59
|
-
if self.analyzer.settings["methods"]["notch_filter"]:
|
|
60
|
-
dict_timings["time_notchfilter"] = (
|
|
61
|
-
timeit.timeit(
|
|
62
|
-
lambda: self.analyzer.notch_filter.filter_data(data),
|
|
63
|
-
number=number_repeat,
|
|
64
|
-
)
|
|
65
|
-
/ number_repeat
|
|
66
|
-
)
|
|
67
|
-
|
|
68
|
-
if self.analyzer.settings["methods"]["raw_normalization"]:
|
|
69
|
-
dict_timings["time_norm_raw"] = (
|
|
70
|
-
timeit.timeit(
|
|
71
|
-
lambda: nm_normalization.normalize_raw(
|
|
72
|
-
current=data,
|
|
73
|
-
previous=data.T,
|
|
74
|
-
normalize_samples=int(
|
|
75
|
-
self.analyzer.settings[
|
|
76
|
-
"raw_normalization_settings"
|
|
77
|
-
]["normalization_time"]
|
|
78
|
-
* self.analyzer.fs
|
|
79
|
-
),
|
|
80
|
-
sample_add=int(self.analyzer.fs / self.analyzer.fs_new),
|
|
81
|
-
method=self.analyzer.settings[
|
|
82
|
-
"raw_normalization_settings"
|
|
83
|
-
]["normalization_method"],
|
|
84
|
-
clip=self.analyzer.settings[
|
|
85
|
-
"raw_normalization_settings"
|
|
86
|
-
]["clip"],
|
|
87
|
-
),
|
|
88
|
-
number=number_repeat,
|
|
89
|
-
)
|
|
90
|
-
/ number_repeat
|
|
91
|
-
)
|
|
92
|
-
|
|
93
|
-
features_previous = self.analyzer.features_previous
|
|
94
|
-
features_current = self.analyzer.features_current.iloc[
|
|
95
|
-
: features_previous.shape[1]
|
|
96
|
-
]
|
|
97
|
-
|
|
98
|
-
if self.analyzer.settings["methods"]["feature_normalization"]:
|
|
99
|
-
dict_timings["time_feature_norm"] = (
|
|
100
|
-
timeit.timeit(
|
|
101
|
-
lambda: nm_normalization.normalize_features(
|
|
102
|
-
current=features_current.to_numpy(),
|
|
103
|
-
previous=features_previous,
|
|
104
|
-
normalize_samples=self.analyzer.feat_normalize_samples,
|
|
105
|
-
method=self.analyzer.settings[
|
|
106
|
-
"feature_normalization_settings"
|
|
107
|
-
]["normalization_method"],
|
|
108
|
-
clip=self.analyzer.settings[
|
|
109
|
-
"feature_normalization_settings"
|
|
110
|
-
]["clip"],
|
|
111
|
-
),
|
|
112
|
-
number=number_repeat,
|
|
113
|
-
)
|
|
114
|
-
/ number_repeat
|
|
115
|
-
)
|
|
116
|
-
|
|
117
|
-
if self.analyzer.settings["methods"]["project_cortex"]:
|
|
118
|
-
dict_timings["time_projection"] = (
|
|
119
|
-
timeit.timeit(
|
|
120
|
-
lambda: self.analyzer.projection.project_features(
|
|
121
|
-
features_current
|
|
122
|
-
),
|
|
123
|
-
number=number_repeat,
|
|
124
|
-
)
|
|
125
|
-
/ number_repeat
|
|
126
|
-
)
|
|
127
|
-
|
|
128
|
-
if self.analyzer.settings["methods"]["bandpass_filter"]:
|
|
129
|
-
dict_timings["time_applyfilterband"] = (
|
|
130
|
-
timeit.timeit(
|
|
131
|
-
lambda: self.analyzer.features.bandpass_filter.filter_data(
|
|
132
|
-
data,
|
|
133
|
-
),
|
|
134
|
-
number=number_repeat,
|
|
135
|
-
)
|
|
136
|
-
/ number_repeat
|
|
137
|
-
)
|
|
138
|
-
|
|
139
|
-
if self.analyzer.settings["methods"]["sharpwave_analysis"]:
|
|
140
|
-
dict_timings["time_sw"] = (
|
|
141
|
-
timeit.timeit(
|
|
142
|
-
lambda: self.analyzer.features.sw_features.get_sharpwave_features(
|
|
143
|
-
features_, data[ch_idx, -100:], ch_name
|
|
144
|
-
),
|
|
145
|
-
number=number_repeat,
|
|
146
|
-
)
|
|
147
|
-
/ number_repeat
|
|
148
|
-
)
|
|
149
|
-
|
|
150
|
-
if self.analyzer.settings["methods"]["stft"]:
|
|
151
|
-
dict_timings["time_stft"] = (
|
|
152
|
-
timeit.timeit(
|
|
153
|
-
lambda: nm_stft.get_stft_features(
|
|
154
|
-
features_,
|
|
155
|
-
self.analyzer.features.s,
|
|
156
|
-
self.analyzer.features.fs,
|
|
157
|
-
data[ch_idx, :],
|
|
158
|
-
self.analyzer.features.KF_dict,
|
|
159
|
-
ch_name + "-avgref",
|
|
160
|
-
self.analyzer.features.f_ranges,
|
|
161
|
-
self.analyzer.features.fband_names,
|
|
162
|
-
),
|
|
163
|
-
number=number_repeat,
|
|
164
|
-
)
|
|
165
|
-
/ number_repeat
|
|
166
|
-
)
|
|
167
|
-
|
|
168
|
-
if self.analyzer.settings["methods"]["fft"]:
|
|
169
|
-
dict_timings["time_fft"] = (
|
|
170
|
-
timeit.timeit(
|
|
171
|
-
lambda: nm_oscillatory.get_fft_features(
|
|
172
|
-
features_,
|
|
173
|
-
self.analyzer.features.s,
|
|
174
|
-
self.analyzer.features.fs,
|
|
175
|
-
data[ch_idx, :],
|
|
176
|
-
self.analyzer.features.KF_dict,
|
|
177
|
-
ch_name,
|
|
178
|
-
self.analyzer.features.f_ranges,
|
|
179
|
-
self.analyzer.features.fband_names,
|
|
180
|
-
),
|
|
181
|
-
number=number_repeat,
|
|
182
|
-
)
|
|
183
|
-
/ number_repeat
|
|
184
|
-
)
|
|
185
|
-
|
|
186
|
-
if self.analyzer.settings["methods"]["bandpass_filter"]:
|
|
187
|
-
seglengths = np.floor(
|
|
188
|
-
self.analyzer.fs
|
|
189
|
-
/ 1000
|
|
190
|
-
* np.array(
|
|
191
|
-
[
|
|
192
|
-
value
|
|
193
|
-
for value in self.analyzer.features.s[
|
|
194
|
-
"bandpass_filter_settings"
|
|
195
|
-
]["segment_lengths"].values()
|
|
196
|
-
]
|
|
197
|
-
)
|
|
198
|
-
).astype(int)
|
|
199
|
-
|
|
200
|
-
dat_filtered = nm_filter.apply_filter(
|
|
201
|
-
data, self.analyzer.features.filter_fun
|
|
202
|
-
) # shape (bands, time)
|
|
203
|
-
dict_timings["time_bandpass_filter"] = (
|
|
204
|
-
timeit.timeit(
|
|
205
|
-
lambda: nm_bandpower.get_bandpower_features(
|
|
206
|
-
features_,
|
|
207
|
-
self.analyzer.features.s,
|
|
208
|
-
seglengths,
|
|
209
|
-
dat_filtered,
|
|
210
|
-
self.analyzer.features.KF_dict,
|
|
211
|
-
ch_name,
|
|
212
|
-
ch_idx,
|
|
213
|
-
),
|
|
214
|
-
number=number_repeat,
|
|
215
|
-
)
|
|
216
|
-
/ number_repeat
|
|
217
|
-
)
|
|
218
|
-
|
|
219
|
-
if self.analyzer.settings["methods"]["coherence"]:
|
|
220
|
-
coh_obj = self.analyzer.features.coherence_objects[0]
|
|
221
|
-
dict_timings["time_coherence"] = (
|
|
222
|
-
timeit.timeit(
|
|
223
|
-
lambda: coh_obj.get_coh(
|
|
224
|
-
features_,
|
|
225
|
-
data[coh_obj.ch_1_idx, :],
|
|
226
|
-
data[coh_obj.ch_2_idx, :],
|
|
227
|
-
),
|
|
228
|
-
number=number_repeat,
|
|
229
|
-
)
|
|
230
|
-
/ number_repeat
|
|
231
|
-
)
|
|
232
|
-
|
|
233
|
-
print("Average duration per function:")
|
|
234
|
-
for key, val in dict_timings.items():
|
|
235
|
-
print(f" {key} : {np.round(val*1000, 2)}ms")
|
|
236
|
-
|
|
237
|
-
print(
|
|
238
|
-
"fft, sw, bandpass, coherence and stft are timings for an individual channel"
|
|
239
|
-
)
|