py-neuromodulation 0.0.4__py3-none-any.whl → 0.0.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- py_neuromodulation/ConnectivityDecoding/_get_grid_hull.m +34 -34
- py_neuromodulation/ConnectivityDecoding/_get_grid_whole_brain.py +95 -106
- py_neuromodulation/ConnectivityDecoding/_helper_write_connectome.py +107 -119
- py_neuromodulation/FieldTrip.py +589 -589
- py_neuromodulation/__init__.py +74 -13
- py_neuromodulation/_write_example_dataset_helper.py +83 -65
- py_neuromodulation/data/README +6 -6
- py_neuromodulation/data/dataset_description.json +8 -8
- py_neuromodulation/data/participants.json +32 -32
- py_neuromodulation/data/participants.tsv +2 -2
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_coordsystem.json +5 -5
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_electrodes.tsv +11 -11
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_channels.tsv +11 -11
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.json +18 -18
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vhdr +35 -35
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vmrk +13 -13
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/sub-testsub_ses-EphysMedOff_scans.tsv +2 -2
- py_neuromodulation/grid_cortex.tsv +40 -40
- py_neuromodulation/liblsl/libpugixml.so.1.12 +0 -0
- py_neuromodulation/liblsl/linux/bionic_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/bookworm_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/focal_amd46/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/jammy_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/jammy_x86/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/noble_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/macos/amd64/liblsl.1.16.2.dylib +0 -0
- py_neuromodulation/liblsl/macos/arm64/liblsl.1.16.0.dylib +0 -0
- py_neuromodulation/liblsl/windows/amd64/liblsl.1.16.2.dll +0 -0
- py_neuromodulation/liblsl/windows/x86/liblsl.1.16.2.dll +0 -0
- py_neuromodulation/nm_IO.py +413 -417
- py_neuromodulation/nm_RMAP.py +496 -531
- py_neuromodulation/nm_analysis.py +993 -1074
- py_neuromodulation/nm_artifacts.py +30 -25
- py_neuromodulation/nm_bispectra.py +154 -168
- py_neuromodulation/nm_bursts.py +292 -198
- py_neuromodulation/nm_coherence.py +251 -205
- py_neuromodulation/nm_database.py +149 -0
- py_neuromodulation/nm_decode.py +918 -992
- py_neuromodulation/nm_define_nmchannels.py +300 -302
- py_neuromodulation/nm_features.py +144 -116
- py_neuromodulation/nm_filter.py +219 -219
- py_neuromodulation/nm_filter_preprocessing.py +79 -91
- py_neuromodulation/nm_fooof.py +139 -159
- py_neuromodulation/nm_generator.py +45 -37
- py_neuromodulation/nm_hjorth_raw.py +52 -73
- py_neuromodulation/nm_kalmanfilter.py +71 -58
- py_neuromodulation/nm_linelength.py +21 -33
- py_neuromodulation/nm_logger.py +66 -0
- py_neuromodulation/nm_mne_connectivity.py +149 -112
- py_neuromodulation/nm_mnelsl_generator.py +90 -0
- py_neuromodulation/nm_mnelsl_stream.py +116 -0
- py_neuromodulation/nm_nolds.py +96 -93
- py_neuromodulation/nm_normalization.py +173 -214
- py_neuromodulation/nm_oscillatory.py +423 -448
- py_neuromodulation/nm_plots.py +585 -612
- py_neuromodulation/nm_preprocessing.py +83 -0
- py_neuromodulation/nm_projection.py +370 -394
- py_neuromodulation/nm_rereference.py +97 -95
- py_neuromodulation/nm_resample.py +59 -50
- py_neuromodulation/nm_run_analysis.py +325 -435
- py_neuromodulation/nm_settings.py +289 -68
- py_neuromodulation/nm_settings.yaml +244 -0
- py_neuromodulation/nm_sharpwaves.py +423 -401
- py_neuromodulation/nm_stats.py +464 -480
- py_neuromodulation/nm_stream.py +398 -0
- py_neuromodulation/nm_stream_abc.py +166 -218
- py_neuromodulation/nm_types.py +193 -0
- {py_neuromodulation-0.0.4.dist-info → py_neuromodulation-0.0.5.dist-info}/METADATA +29 -26
- py_neuromodulation-0.0.5.dist-info/RECORD +83 -0
- {py_neuromodulation-0.0.4.dist-info → py_neuromodulation-0.0.5.dist-info}/WHEEL +1 -1
- {py_neuromodulation-0.0.4.dist-info → py_neuromodulation-0.0.5.dist-info}/licenses/LICENSE +21 -21
- py_neuromodulation/nm_EpochStream.py +0 -92
- py_neuromodulation/nm_across_patient_decoding.py +0 -927
- py_neuromodulation/nm_cohortwrapper.py +0 -435
- py_neuromodulation/nm_eval_timing.py +0 -239
- py_neuromodulation/nm_features_abc.py +0 -39
- py_neuromodulation/nm_settings.json +0 -338
- py_neuromodulation/nm_stream_offline.py +0 -359
- py_neuromodulation/utils/_logging.py +0 -24
- py_neuromodulation-0.0.4.dist-info/RECORD +0 -72
|
@@ -1,927 +0,0 @@
|
|
|
1
|
-
import numpy as np
|
|
2
|
-
import os
|
|
3
|
-
import pandas as pd
|
|
4
|
-
from sklearn import metrics, linear_model, model_selection
|
|
5
|
-
|
|
6
|
-
import py_neuromodulation
|
|
7
|
-
from py_neuromodulation import nm_decode, nm_RMAP
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
class AcrossPatientRunner:
|
|
11
|
-
def __init__(
|
|
12
|
-
self,
|
|
13
|
-
outpath: str,
|
|
14
|
-
model=linear_model.LogisticRegression(class_weight="balanced"),
|
|
15
|
-
TRAIN_VAL_SPLIT=False,
|
|
16
|
-
eval_method=metrics.balanced_accuracy_score,
|
|
17
|
-
cv_method=model_selection.KFold(n_splits=3, shuffle=False),
|
|
18
|
-
VERBOSE=False,
|
|
19
|
-
use_nested_cv=True,
|
|
20
|
-
RUN_BAY_OPT=False,
|
|
21
|
-
ML_model_name="LM",
|
|
22
|
-
cohorts: list = None,
|
|
23
|
-
load_channel_all: bool = False,
|
|
24
|
-
load_grid_point_all: bool = False,
|
|
25
|
-
) -> None:
|
|
26
|
-
|
|
27
|
-
self.outpath = outpath
|
|
28
|
-
self.model = model
|
|
29
|
-
self.TRAIN_VAL_SPLIT = TRAIN_VAL_SPLIT
|
|
30
|
-
self.use_nested_cv = use_nested_cv
|
|
31
|
-
self.RUN_BAY_OPT = RUN_BAY_OPT
|
|
32
|
-
self.VERBOSE = VERBOSE
|
|
33
|
-
self.eval_method = eval_method
|
|
34
|
-
self.ML_model_name = ML_model_name
|
|
35
|
-
self.cv_method = cv_method
|
|
36
|
-
self.cohorts = cohorts
|
|
37
|
-
|
|
38
|
-
self.grid_cortex = pd.read_csv(
|
|
39
|
-
os.path.join(py_neuromodulation.__path__[0], "grid_cortex.tsv"),
|
|
40
|
-
sep="\t",
|
|
41
|
-
).to_numpy()
|
|
42
|
-
|
|
43
|
-
self.RMAPSelector = nm_RMAP.RMAPChannelSelector()
|
|
44
|
-
|
|
45
|
-
if load_channel_all is True:
|
|
46
|
-
self.ch_all = np.load(
|
|
47
|
-
os.path.join(self.outpath, "channel_all.npy"),
|
|
48
|
-
allow_pickle="TRUE",
|
|
49
|
-
).item()
|
|
50
|
-
if load_grid_point_all is True:
|
|
51
|
-
self.grid_point_all = np.load(
|
|
52
|
-
os.path.join(self.outpath, "grid_point_all.npy"),
|
|
53
|
-
allow_pickle="TRUE",
|
|
54
|
-
).item()
|
|
55
|
-
|
|
56
|
-
def init_decoder(self) -> nm_decode.Decoder:
|
|
57
|
-
|
|
58
|
-
return nm_decode.Decoder(
|
|
59
|
-
model=self.model,
|
|
60
|
-
TRAIN_VAL_SPLIT=self.TRAIN_VAL_SPLIT,
|
|
61
|
-
get_movement_detection_rate=True,
|
|
62
|
-
eval_method=self.eval_method,
|
|
63
|
-
VERBOSE=self.VERBOSE,
|
|
64
|
-
cv_method=self.cv_method,
|
|
65
|
-
use_nested_cv=self.use_nested_cv,
|
|
66
|
-
RUN_BAY_OPT=self.RUN_BAY_OPT,
|
|
67
|
-
)
|
|
68
|
-
|
|
69
|
-
def eval_model(self, X_train, y_train, X_test, y_test):
|
|
70
|
-
|
|
71
|
-
return self.decoder.wrapper_model_train(
|
|
72
|
-
X_train,
|
|
73
|
-
y_train,
|
|
74
|
-
X_test,
|
|
75
|
-
y_test,
|
|
76
|
-
cv_res=nm_decode.CV_res(get_movement_detection_rate=True),
|
|
77
|
-
)
|
|
78
|
-
|
|
79
|
-
@staticmethod
|
|
80
|
-
def get_data_sub_ch(channel_all, cohort, sub, ch):
|
|
81
|
-
|
|
82
|
-
X_train = []
|
|
83
|
-
y_train = []
|
|
84
|
-
|
|
85
|
-
for f in channel_all[cohort][sub][ch].keys():
|
|
86
|
-
X_train.append(channel_all[cohort][sub][ch][f]["data"])
|
|
87
|
-
y_train.append(channel_all[cohort][sub][ch][f]["label"])
|
|
88
|
-
if len(X_train) > 1:
|
|
89
|
-
X_train = np.concatenate(X_train, axis=0)
|
|
90
|
-
y_train = np.concatenate(y_train, axis=0)
|
|
91
|
-
else:
|
|
92
|
-
X_train = X_train[0]
|
|
93
|
-
y_train = y_train[0]
|
|
94
|
-
|
|
95
|
-
return X_train, y_train
|
|
96
|
-
|
|
97
|
-
def get_patients_train_dict(self, sub_test, cohort_test, val_approach: str, data_select: dict):
|
|
98
|
-
cohorts_train = {}
|
|
99
|
-
for cohort in self.cohorts:
|
|
100
|
-
if val_approach == "leave_1_cohort_out" and cohort == cohort_test:
|
|
101
|
-
continue
|
|
102
|
-
if (
|
|
103
|
-
val_approach == "leave_1_sub_out_within_coh"
|
|
104
|
-
and cohort != cohort_test
|
|
105
|
-
):
|
|
106
|
-
continue
|
|
107
|
-
cohorts_train[cohort] = []
|
|
108
|
-
for sub in data_select[cohort]:
|
|
109
|
-
if (
|
|
110
|
-
val_approach == "leave_1_sub_out_within_coh"
|
|
111
|
-
and sub == sub_test
|
|
112
|
-
and cohort == cohort_test
|
|
113
|
-
):
|
|
114
|
-
continue
|
|
115
|
-
if (
|
|
116
|
-
val_approach == "leave_1_sub_out_across_coh"
|
|
117
|
-
and sub == sub_test
|
|
118
|
-
):
|
|
119
|
-
continue
|
|
120
|
-
cohorts_train[cohort].append(sub)
|
|
121
|
-
return cohorts_train
|
|
122
|
-
|
|
123
|
-
def get_data_grid_point(
|
|
124
|
-
self, sub_test: str, cohort_test: str, best_gp_list: list
|
|
125
|
-
):
|
|
126
|
-
for gp in best_gp_list:
|
|
127
|
-
if gp in self.grid_point_all[cohort_test][sub_test]:
|
|
128
|
-
X_test, y_test = self.get_data_sub_ch(
|
|
129
|
-
self.grid_point_all, cohort_test, sub_test, gp
|
|
130
|
-
)
|
|
131
|
-
break
|
|
132
|
-
else:
|
|
133
|
-
continue
|
|
134
|
-
return X_test, y_test
|
|
135
|
-
|
|
136
|
-
def get_data_channels(self, sub_test: str, cohort_test: str, df_rmap: list):
|
|
137
|
-
ch_test = df_rmap.query("cohort == @cohort_test and sub == @sub_test")[
|
|
138
|
-
"ch"
|
|
139
|
-
].iloc[0]
|
|
140
|
-
X_test, y_test = self.get_data_sub_ch(
|
|
141
|
-
self.ch_all, cohort_test, sub_test, ch_test
|
|
142
|
-
)
|
|
143
|
-
return X_test, y_test
|
|
144
|
-
|
|
145
|
-
def cross_val_approach_RMAP(
|
|
146
|
-
self,
|
|
147
|
-
val_approach: str = "leave_1_cohort_out",
|
|
148
|
-
df_select: pd.DataFrame = None,
|
|
149
|
-
select_best_gp: bool = False,
|
|
150
|
-
add_UPDRS: bool = False,
|
|
151
|
-
df_updrs: pd.DataFrame = None,
|
|
152
|
-
):
|
|
153
|
-
|
|
154
|
-
if select_best_gp is True:
|
|
155
|
-
best_gp_list = list(
|
|
156
|
-
df_select.sort_values("performance_test", ascending=False)["ch"]
|
|
157
|
-
)
|
|
158
|
-
data_select = self.grid_point_all
|
|
159
|
-
else:
|
|
160
|
-
data_select = self.ch_all
|
|
161
|
-
|
|
162
|
-
p_ = {}
|
|
163
|
-
for cohort_test in self.cohorts:
|
|
164
|
-
print(cohort_test)
|
|
165
|
-
if cohort_test not in p_:
|
|
166
|
-
p_[cohort_test] = {}
|
|
167
|
-
for sub_test in data_select[cohort_test].keys():
|
|
168
|
-
print(sub_test)
|
|
169
|
-
if sub_test not in p_[cohort_test]:
|
|
170
|
-
p_[cohort_test][sub_test] = {}
|
|
171
|
-
if select_best_gp is True:
|
|
172
|
-
X_test, y_test = self.get_data_grid_point(
|
|
173
|
-
sub_test, cohort_test, best_gp_list
|
|
174
|
-
)
|
|
175
|
-
else:
|
|
176
|
-
X_test, y_test = self.get_data_channels(
|
|
177
|
-
sub_test, cohort_test, df_rmap=df_select
|
|
178
|
-
)
|
|
179
|
-
|
|
180
|
-
if add_UPDRS is True:
|
|
181
|
-
updrs = df_updrs.query(
|
|
182
|
-
"sub == @sub_test and cohort == @cohort_test"
|
|
183
|
-
).iloc[0]["UPDRS_total"]
|
|
184
|
-
if np.isnan(updrs):
|
|
185
|
-
continue
|
|
186
|
-
X_test = np.concatenate(
|
|
187
|
-
(
|
|
188
|
-
X_test,
|
|
189
|
-
np.expand_dims(
|
|
190
|
-
np.repeat(updrs, repeats=X_test.shape[0]),
|
|
191
|
-
axis=1,
|
|
192
|
-
),
|
|
193
|
-
),
|
|
194
|
-
axis=1,
|
|
195
|
-
)
|
|
196
|
-
|
|
197
|
-
cohorts_train = self.get_patients_train_dict(
|
|
198
|
-
sub_test, cohort_test, val_approach=val_approach, data_select=data_select
|
|
199
|
-
)
|
|
200
|
-
|
|
201
|
-
X_train_comb = []
|
|
202
|
-
y_train_comb = []
|
|
203
|
-
for cohort_train in list(cohorts_train.keys()):
|
|
204
|
-
for sub_train in cohorts_train[cohort_train]:
|
|
205
|
-
if select_best_gp is True:
|
|
206
|
-
X_train, y_train = self.get_data_grid_point(
|
|
207
|
-
sub_train, cohort_train, best_gp_list
|
|
208
|
-
)
|
|
209
|
-
else:
|
|
210
|
-
X_train, y_train = self.get_data_channels(
|
|
211
|
-
sub_train, cohort_train, df_rmap=df_select
|
|
212
|
-
)
|
|
213
|
-
if add_UPDRS is True:
|
|
214
|
-
updrs = df_updrs.query(
|
|
215
|
-
"sub == @sub_train and cohort == @cohort_train"
|
|
216
|
-
).iloc[0]["UPDRS_total"]
|
|
217
|
-
if np.isnan(
|
|
218
|
-
updrs
|
|
219
|
-
): # the returned True is here not boolean but np boolean
|
|
220
|
-
continue
|
|
221
|
-
X_train = np.concatenate(
|
|
222
|
-
(
|
|
223
|
-
X_train,
|
|
224
|
-
np.expand_dims(
|
|
225
|
-
np.repeat(
|
|
226
|
-
updrs, repeats=X_train.shape[0]
|
|
227
|
-
),
|
|
228
|
-
axis=1,
|
|
229
|
-
),
|
|
230
|
-
),
|
|
231
|
-
axis=1,
|
|
232
|
-
)
|
|
233
|
-
|
|
234
|
-
X_train_comb.append(X_train)
|
|
235
|
-
y_train_comb.append(y_train)
|
|
236
|
-
if len(X_train_comb) > 1:
|
|
237
|
-
X_train = np.concatenate(X_train_comb, axis=0)
|
|
238
|
-
y_train = np.concatenate(y_train_comb, axis=0)
|
|
239
|
-
else:
|
|
240
|
-
X_train = X_train_comb[0]
|
|
241
|
-
y_train = X_train_comb[0]
|
|
242
|
-
|
|
243
|
-
self.decoder = self.init_decoder()
|
|
244
|
-
|
|
245
|
-
# X_train, y_train, X_test, y_test = self.decoder.append_samples_val(X_train, y_train, X_test, y_test, 5)
|
|
246
|
-
|
|
247
|
-
model = self.decoder.wrapper_model_train(
|
|
248
|
-
X_train=X_train,
|
|
249
|
-
y_train=y_train,
|
|
250
|
-
return_fitted_model_only=True,
|
|
251
|
-
)
|
|
252
|
-
cv_res = self.decoder.eval_model(
|
|
253
|
-
model,
|
|
254
|
-
X_train,
|
|
255
|
-
X_test,
|
|
256
|
-
y_train,
|
|
257
|
-
y_test,
|
|
258
|
-
cv_res=nm_decode.CV_res(get_movement_detection_rate=True),
|
|
259
|
-
save_data=False,
|
|
260
|
-
)
|
|
261
|
-
p_[cohort_test][sub_test] = cv_res
|
|
262
|
-
np.save(
|
|
263
|
-
os.path.join(
|
|
264
|
-
self.outpath,
|
|
265
|
-
self.ML_model_name + f"_performance_{val_approach}_RMAP.npy",
|
|
266
|
-
),
|
|
267
|
-
p_,
|
|
268
|
-
)
|
|
269
|
-
|
|
270
|
-
def cross_val_p2p_RMAP(
|
|
271
|
-
self,
|
|
272
|
-
df_select: pd.DataFrame = None,
|
|
273
|
-
select_best_gp: bool = False,
|
|
274
|
-
):
|
|
275
|
-
if select_best_gp is True:
|
|
276
|
-
best_gp_list = list(
|
|
277
|
-
df_select.sort_values("performance_test", ascending=False)["ch"]
|
|
278
|
-
)
|
|
279
|
-
data_select = self.grid_point_all
|
|
280
|
-
else:
|
|
281
|
-
data_select = self.ch_all
|
|
282
|
-
|
|
283
|
-
p_ = {}
|
|
284
|
-
for cohort_test in self.cohorts:
|
|
285
|
-
print(cohort_test)
|
|
286
|
-
if cohort_test not in p_:
|
|
287
|
-
p_[cohort_test] = {}
|
|
288
|
-
for sub_test in data_select[cohort_test].keys():
|
|
289
|
-
print(sub_test)
|
|
290
|
-
if sub_test not in p_[cohort_test]:
|
|
291
|
-
p_[cohort_test][sub_test] = {}
|
|
292
|
-
|
|
293
|
-
if select_best_gp is True:
|
|
294
|
-
X_test, y_test = self.get_data_grid_point(
|
|
295
|
-
sub_test, cohort_test, best_gp_list
|
|
296
|
-
)
|
|
297
|
-
else:
|
|
298
|
-
X_test, y_test = self.get_data_channels(
|
|
299
|
-
sub_test, cohort_test, df_rmap=df_select
|
|
300
|
-
)
|
|
301
|
-
for cohort_train in self.cohorts:
|
|
302
|
-
if cohort_train not in p_[cohort_test][sub_test]:
|
|
303
|
-
p_[cohort_test][sub_test][cohort_train] = {}
|
|
304
|
-
for sub_train in list(data_select[cohort_train].keys()):
|
|
305
|
-
if (
|
|
306
|
-
sub_train
|
|
307
|
-
not in p_[cohort_test][sub_test][cohort_train]
|
|
308
|
-
):
|
|
309
|
-
p_[cohort_test][sub_test][cohort_train][
|
|
310
|
-
sub_train
|
|
311
|
-
] = {}
|
|
312
|
-
|
|
313
|
-
if select_best_gp is True:
|
|
314
|
-
X_train, y_train = self.get_data_grid_point(
|
|
315
|
-
sub_train, cohort_train, best_gp_list
|
|
316
|
-
)
|
|
317
|
-
else:
|
|
318
|
-
X_train, y_train = self.get_data_channels(
|
|
319
|
-
sub_train, cohort_train, df_rmap=df_select
|
|
320
|
-
)
|
|
321
|
-
self.decoder = self.init_decoder()
|
|
322
|
-
|
|
323
|
-
# X_train, y_train, X_test, y_test = self.decoder.append_samples_val(X_train, y_train, X_test, y_test, 5)
|
|
324
|
-
|
|
325
|
-
model = self.decoder.wrapper_model_train(
|
|
326
|
-
X_train=X_train,
|
|
327
|
-
y_train=y_train,
|
|
328
|
-
return_fitted_model_only=True,
|
|
329
|
-
)
|
|
330
|
-
cv_res = self.decoder.eval_model(
|
|
331
|
-
model,
|
|
332
|
-
X_train,
|
|
333
|
-
X_test,
|
|
334
|
-
y_train,
|
|
335
|
-
y_test,
|
|
336
|
-
cv_res=nm_decode.CV_res(
|
|
337
|
-
get_movement_detection_rate=True
|
|
338
|
-
),
|
|
339
|
-
save_data=False,
|
|
340
|
-
)
|
|
341
|
-
p_[cohort_test][sub_test][cohort_train][
|
|
342
|
-
sub_train
|
|
343
|
-
] = cv_res
|
|
344
|
-
|
|
345
|
-
np.save(
|
|
346
|
-
os.path.join(
|
|
347
|
-
self.outpath,
|
|
348
|
-
self.ML_model_name + f"_performance_p2p_RMAP.npy",
|
|
349
|
-
),
|
|
350
|
-
p_,
|
|
351
|
-
)
|
|
352
|
-
|
|
353
|
-
def leave_one_patient_out_RMAP(
|
|
354
|
-
self, val_approach: str = "leave_1_cohort_out"
|
|
355
|
-
):
|
|
356
|
-
p_ = {}
|
|
357
|
-
for cohort_test in self.cohorts:
|
|
358
|
-
if cohort_test not in p_:
|
|
359
|
-
p_[cohort_test] = {}
|
|
360
|
-
for sub_test in self.ch_all[cohort_test].keys():
|
|
361
|
-
if sub_test not in p_:
|
|
362
|
-
p_[cohort_test][sub_test] = {}
|
|
363
|
-
for ch_test in self.ch_all[cohort_test][sub_test].keys():
|
|
364
|
-
if ch_test not in p_[cohort_test][sub_test]:
|
|
365
|
-
p_[cohort_test][sub_test][ch_test] = {}
|
|
366
|
-
|
|
367
|
-
cohorts_train = self.get_patients_train_dict(
|
|
368
|
-
sub_test, cohort_test, val_approach=val_approach
|
|
369
|
-
)
|
|
370
|
-
|
|
371
|
-
(
|
|
372
|
-
cohort_train,
|
|
373
|
-
sub_train,
|
|
374
|
-
ch_train,
|
|
375
|
-
) = self.RMAPSelector.get_highest_corr_sub_ch(
|
|
376
|
-
cohort_test,
|
|
377
|
-
sub_test,
|
|
378
|
-
ch_test,
|
|
379
|
-
cohorts_train,
|
|
380
|
-
path_dir=r"C:\Users\ICN_admin\OneDrive - Charité - Universitätsmedizin Berlin\Connectomics\DecodingToolbox_BerlinPittsburgh_Beijing\functional_connectivity",
|
|
381
|
-
)
|
|
382
|
-
|
|
383
|
-
X_train, y_train = self.get_data_sub_ch(
|
|
384
|
-
self.ch_all, cohort_train, sub_train, ch_train
|
|
385
|
-
)
|
|
386
|
-
X_test, y_test = self.get_data_sub_ch(
|
|
387
|
-
self.ch_all, cohort_test, sub_test, ch_test
|
|
388
|
-
)
|
|
389
|
-
|
|
390
|
-
self.decoder = self.init_decoder()
|
|
391
|
-
|
|
392
|
-
model = self.decoder.wrapper_model_train(
|
|
393
|
-
X_train=X_train,
|
|
394
|
-
y_train=y_train,
|
|
395
|
-
return_fitted_model_only=True,
|
|
396
|
-
)
|
|
397
|
-
cv_res = self.decoder.eval_model(
|
|
398
|
-
model,
|
|
399
|
-
X_train,
|
|
400
|
-
X_test,
|
|
401
|
-
y_train,
|
|
402
|
-
y_test,
|
|
403
|
-
cv_res=nm_decode.CV_res(
|
|
404
|
-
get_movement_detection_rate=True
|
|
405
|
-
),
|
|
406
|
-
save_data=False,
|
|
407
|
-
append_samples=True,
|
|
408
|
-
)
|
|
409
|
-
p_[cohort_test][sub_test][ch_test] = cv_res
|
|
410
|
-
np.save(
|
|
411
|
-
os.path.join(
|
|
412
|
-
self.outpath,
|
|
413
|
-
self.ML_model_name
|
|
414
|
-
+ "_performance_leave_one_cohort_out_RMAP.npy",
|
|
415
|
-
),
|
|
416
|
-
p_,
|
|
417
|
-
)
|
|
418
|
-
|
|
419
|
-
def run_cohort_leave_one_patient_out_CV_within_cohort(self):
|
|
420
|
-
|
|
421
|
-
grid_point_all = np.load(
|
|
422
|
-
os.path.join(self.outpath, "grid_point_all.npy"),
|
|
423
|
-
allow_pickle="TRUE",
|
|
424
|
-
).item()
|
|
425
|
-
performance_leave_one_patient_out = {}
|
|
426
|
-
|
|
427
|
-
for cohort in self.cohorts:
|
|
428
|
-
print("cohort: " + str(cohort))
|
|
429
|
-
performance_leave_one_patient_out[cohort] = {}
|
|
430
|
-
|
|
431
|
-
for grid_point in list(grid_point_all.keys()):
|
|
432
|
-
print("grid point: " + str(grid_point))
|
|
433
|
-
if cohort not in grid_point_all[grid_point]:
|
|
434
|
-
continue
|
|
435
|
-
if len(list(grid_point_all[grid_point][cohort].keys())) <= 1:
|
|
436
|
-
continue # cannot do leave one out prediction with a single subject
|
|
437
|
-
performance_leave_one_patient_out[cohort][grid_point] = {}
|
|
438
|
-
|
|
439
|
-
for subject_test in list(
|
|
440
|
-
grid_point_all[grid_point][cohort].keys()
|
|
441
|
-
):
|
|
442
|
-
X_test = []
|
|
443
|
-
y_test = []
|
|
444
|
-
for run in list(
|
|
445
|
-
grid_point_all[grid_point][cohort][subject_test].keys()
|
|
446
|
-
):
|
|
447
|
-
if (
|
|
448
|
-
grid_point_all[grid_point][cohort][subject_test][
|
|
449
|
-
run
|
|
450
|
-
]["lat"]
|
|
451
|
-
!= "CON"
|
|
452
|
-
):
|
|
453
|
-
continue
|
|
454
|
-
X_test.append(
|
|
455
|
-
grid_point_all[grid_point][cohort][subject_test][
|
|
456
|
-
run
|
|
457
|
-
]["data"]
|
|
458
|
-
)
|
|
459
|
-
y_test.append(
|
|
460
|
-
grid_point_all[grid_point][cohort][subject_test][
|
|
461
|
-
run
|
|
462
|
-
]["label"]
|
|
463
|
-
)
|
|
464
|
-
if len(X_test) > 1:
|
|
465
|
-
X_test = np.concatenate(X_test, axis=0)
|
|
466
|
-
y_test = np.concatenate(y_test, axis=0)
|
|
467
|
-
else:
|
|
468
|
-
X_test = X_test[0]
|
|
469
|
-
y_test = y_test[0]
|
|
470
|
-
X_train = []
|
|
471
|
-
y_train = []
|
|
472
|
-
for subject_train in list(
|
|
473
|
-
grid_point_all[grid_point][cohort].keys()
|
|
474
|
-
):
|
|
475
|
-
if subject_test == subject_train:
|
|
476
|
-
continue
|
|
477
|
-
for run in list(
|
|
478
|
-
grid_point_all[grid_point][cohort][
|
|
479
|
-
subject_train
|
|
480
|
-
].keys()
|
|
481
|
-
):
|
|
482
|
-
if (
|
|
483
|
-
grid_point_all[grid_point][cohort][
|
|
484
|
-
subject_train
|
|
485
|
-
][run]["lat"]
|
|
486
|
-
!= "CON"
|
|
487
|
-
):
|
|
488
|
-
continue
|
|
489
|
-
X_train.append(
|
|
490
|
-
grid_point_all[grid_point][cohort][
|
|
491
|
-
subject_train
|
|
492
|
-
][run]["data"]
|
|
493
|
-
)
|
|
494
|
-
y_train.append(
|
|
495
|
-
grid_point_all[grid_point][cohort][
|
|
496
|
-
subject_train
|
|
497
|
-
][run]["label"]
|
|
498
|
-
)
|
|
499
|
-
if len(X_train) > 1:
|
|
500
|
-
X_train = np.concatenate(X_train, axis=0)
|
|
501
|
-
y_train = np.concatenate(y_train, axis=0)
|
|
502
|
-
else:
|
|
503
|
-
X_train = X_train[0]
|
|
504
|
-
y_train = y_train[0]
|
|
505
|
-
|
|
506
|
-
# run here ML estimation
|
|
507
|
-
self.decoder = self.init_decoder()
|
|
508
|
-
model = self.decoder.wrapper_model_train(
|
|
509
|
-
X_train=X_train,
|
|
510
|
-
y_train=y_train,
|
|
511
|
-
return_fitted_model_only=True,
|
|
512
|
-
)
|
|
513
|
-
# use initialized decoder
|
|
514
|
-
try:
|
|
515
|
-
cv_res = self.eval_model(
|
|
516
|
-
X_train, y_train, X_test, y_test
|
|
517
|
-
)
|
|
518
|
-
except nm_decode.Decoder.ClassMissingException:
|
|
519
|
-
continue
|
|
520
|
-
|
|
521
|
-
performance_leave_one_patient_out[cohort][grid_point][
|
|
522
|
-
subject_test
|
|
523
|
-
] = cv_res
|
|
524
|
-
|
|
525
|
-
performance_leave_one_patient_out["grid_cortex"] = self.grid_cortex
|
|
526
|
-
np.save(
|
|
527
|
-
os.path.join(
|
|
528
|
-
self.outpath,
|
|
529
|
-
self.ML_model_name
|
|
530
|
-
+ "_performance_leave_one_patient_out_within_cohort.npy",
|
|
531
|
-
),
|
|
532
|
-
performance_leave_one_patient_out,
|
|
533
|
-
)
|
|
534
|
-
return performance_leave_one_patient_out
|
|
535
|
-
|
|
536
|
-
def run_cohort_leave_one_cohort_out_CV(self):
|
|
537
|
-
grid_point_all = np.load(
|
|
538
|
-
os.path.join(self.outpath, "grid_point_all.npy"),
|
|
539
|
-
allow_pickle="TRUE",
|
|
540
|
-
).item()
|
|
541
|
-
performance_leave_one_cohort_out = {}
|
|
542
|
-
|
|
543
|
-
for cohort_test in self.cohorts:
|
|
544
|
-
print("cohort: " + str(cohort_test))
|
|
545
|
-
if cohort_test not in performance_leave_one_cohort_out:
|
|
546
|
-
performance_leave_one_cohort_out[cohort_test] = {}
|
|
547
|
-
|
|
548
|
-
for grid_point in list(grid_point_all.keys()):
|
|
549
|
-
print("grid point: " + str(grid_point))
|
|
550
|
-
if cohort_test not in grid_point_all[grid_point]:
|
|
551
|
-
continue
|
|
552
|
-
if len(list(grid_point_all[grid_point].keys())) == 1:
|
|
553
|
-
continue # cannot do leave one cohort prediction with a single cohort
|
|
554
|
-
|
|
555
|
-
X_train = []
|
|
556
|
-
y_train = []
|
|
557
|
-
for cohort_train in self.cohorts:
|
|
558
|
-
if cohort_test == cohort_train:
|
|
559
|
-
continue
|
|
560
|
-
if cohort_train not in grid_point_all[grid_point]:
|
|
561
|
-
continue
|
|
562
|
-
for subject_test in list(
|
|
563
|
-
grid_point_all[grid_point][cohort_train].keys()
|
|
564
|
-
):
|
|
565
|
-
for run in list(
|
|
566
|
-
grid_point_all[grid_point][cohort_train][
|
|
567
|
-
subject_test
|
|
568
|
-
].keys()
|
|
569
|
-
):
|
|
570
|
-
if (
|
|
571
|
-
grid_point_all[grid_point][cohort_train][
|
|
572
|
-
subject_test
|
|
573
|
-
][run]["lat"]
|
|
574
|
-
!= "CON"
|
|
575
|
-
):
|
|
576
|
-
continue
|
|
577
|
-
X_train.append(
|
|
578
|
-
grid_point_all[grid_point][cohort_train][
|
|
579
|
-
subject_test
|
|
580
|
-
][run]["data"]
|
|
581
|
-
)
|
|
582
|
-
y_train.append(
|
|
583
|
-
grid_point_all[grid_point][cohort_train][
|
|
584
|
-
subject_test
|
|
585
|
-
][run]["label"]
|
|
586
|
-
)
|
|
587
|
-
if len(X_train) > 1:
|
|
588
|
-
X_train = np.concatenate(X_train, axis=0)
|
|
589
|
-
y_train = np.concatenate(y_train, axis=0)
|
|
590
|
-
else:
|
|
591
|
-
X_train = X_train[0]
|
|
592
|
-
y_train = y_train[0]
|
|
593
|
-
|
|
594
|
-
# run here ML estimation
|
|
595
|
-
self.decoder = self.init_decoder()
|
|
596
|
-
model = self.decoder.wrapper_model_train(
|
|
597
|
-
X_train=X_train,
|
|
598
|
-
y_train=y_train,
|
|
599
|
-
return_fitted_model_only=True,
|
|
600
|
-
)
|
|
601
|
-
|
|
602
|
-
performance_leave_one_cohort_out[cohort_test][grid_point] = {}
|
|
603
|
-
for subject_test in list(
|
|
604
|
-
grid_point_all[grid_point][cohort_test].keys()
|
|
605
|
-
):
|
|
606
|
-
X_test = []
|
|
607
|
-
y_test = []
|
|
608
|
-
for run in list(
|
|
609
|
-
grid_point_all[grid_point][cohort_test][
|
|
610
|
-
subject_test
|
|
611
|
-
].keys()
|
|
612
|
-
):
|
|
613
|
-
if (
|
|
614
|
-
grid_point_all[grid_point][cohort_test][
|
|
615
|
-
subject_test
|
|
616
|
-
][run]["lat"]
|
|
617
|
-
!= "CON"
|
|
618
|
-
):
|
|
619
|
-
continue
|
|
620
|
-
X_test.append(
|
|
621
|
-
grid_point_all[grid_point][cohort_test][
|
|
622
|
-
subject_test
|
|
623
|
-
][run]["data"]
|
|
624
|
-
)
|
|
625
|
-
y_test.append(
|
|
626
|
-
grid_point_all[grid_point][cohort_test][
|
|
627
|
-
subject_test
|
|
628
|
-
][run]["label"]
|
|
629
|
-
)
|
|
630
|
-
if len(X_test) > 1:
|
|
631
|
-
X_test = np.concatenate(X_test, axis=0)
|
|
632
|
-
y_test = np.concatenate(y_test, axis=0)
|
|
633
|
-
else:
|
|
634
|
-
X_test = X_test[0]
|
|
635
|
-
y_test = y_test[0]
|
|
636
|
-
|
|
637
|
-
cv_res = self.decoder.eval_model(
|
|
638
|
-
model,
|
|
639
|
-
X_train,
|
|
640
|
-
X_test,
|
|
641
|
-
y_train,
|
|
642
|
-
y_test,
|
|
643
|
-
cv_res=nm_decode.CV_res(),
|
|
644
|
-
)
|
|
645
|
-
|
|
646
|
-
performance_leave_one_cohort_out[cohort_test][grid_point][
|
|
647
|
-
subject_test
|
|
648
|
-
] = cv_res
|
|
649
|
-
|
|
650
|
-
performance_leave_one_cohort_out["grid_cortex"] = self.grid_cortex
|
|
651
|
-
np.save(
|
|
652
|
-
os.path.join(
|
|
653
|
-
self.outpath,
|
|
654
|
-
self.ML_model_name + "_performance_leave_one_cohort_out.npy",
|
|
655
|
-
),
|
|
656
|
-
performance_leave_one_cohort_out,
|
|
657
|
-
)
|
|
658
|
-
|
|
659
|
-
def run_leave_one_patient_out_across_cohorts(self):
|
|
660
|
-
|
|
661
|
-
grid_point_all = np.load(
|
|
662
|
-
os.path.join(self.outpath, "grid_point_all.npy"),
|
|
663
|
-
allow_pickle="TRUE",
|
|
664
|
-
).item()
|
|
665
|
-
performance_leave_one_patient_out = {}
|
|
666
|
-
|
|
667
|
-
for grid_point in list(grid_point_all.keys()):
|
|
668
|
-
print("grid point: " + str(grid_point))
|
|
669
|
-
for cohort in self.cohorts:
|
|
670
|
-
print("cohort: " + str(cohort))
|
|
671
|
-
if cohort not in performance_leave_one_patient_out:
|
|
672
|
-
performance_leave_one_patient_out[cohort] = {}
|
|
673
|
-
|
|
674
|
-
if cohort not in grid_point_all[grid_point]:
|
|
675
|
-
continue
|
|
676
|
-
if len(list(grid_point_all[grid_point][cohort].keys())) <= 1:
|
|
677
|
-
continue # cannot do leave one out prediction with a single subject
|
|
678
|
-
|
|
679
|
-
if grid_point not in performance_leave_one_patient_out[cohort]:
|
|
680
|
-
performance_leave_one_patient_out[cohort][grid_point] = {}
|
|
681
|
-
|
|
682
|
-
for subject_test in list(
|
|
683
|
-
grid_point_all[grid_point][cohort].keys()
|
|
684
|
-
):
|
|
685
|
-
X_test = []
|
|
686
|
-
y_test = []
|
|
687
|
-
for run in list(
|
|
688
|
-
grid_point_all[grid_point][cohort][subject_test].keys()
|
|
689
|
-
):
|
|
690
|
-
if (
|
|
691
|
-
grid_point_all[grid_point][cohort][subject_test][
|
|
692
|
-
run
|
|
693
|
-
]["lat"]
|
|
694
|
-
!= "CON"
|
|
695
|
-
):
|
|
696
|
-
continue
|
|
697
|
-
X_test.append(
|
|
698
|
-
grid_point_all[grid_point][cohort][subject_test][
|
|
699
|
-
run
|
|
700
|
-
]["data"]
|
|
701
|
-
)
|
|
702
|
-
y_test.append(
|
|
703
|
-
grid_point_all[grid_point][cohort][subject_test][
|
|
704
|
-
run
|
|
705
|
-
]["label"]
|
|
706
|
-
)
|
|
707
|
-
if len(X_test) > 1:
|
|
708
|
-
X_test = np.concatenate(X_test, axis=0)
|
|
709
|
-
y_test = np.concatenate(y_test, axis=0)
|
|
710
|
-
else:
|
|
711
|
-
X_test = X_test[0]
|
|
712
|
-
y_test = y_test[0]
|
|
713
|
-
X_train = []
|
|
714
|
-
y_train = []
|
|
715
|
-
for cohort_inner in list(
|
|
716
|
-
grid_point_all[grid_point].keys()
|
|
717
|
-
): # available cohorts for that grid point
|
|
718
|
-
for subject_train in list(
|
|
719
|
-
grid_point_all[grid_point][cohort_inner].keys()
|
|
720
|
-
):
|
|
721
|
-
if (subject_test == subject_train) and (
|
|
722
|
-
cohort_inner == cohort
|
|
723
|
-
):
|
|
724
|
-
continue
|
|
725
|
-
for run in list(
|
|
726
|
-
grid_point_all[grid_point][cohort_inner][
|
|
727
|
-
subject_train
|
|
728
|
-
].keys()
|
|
729
|
-
):
|
|
730
|
-
if (
|
|
731
|
-
grid_point_all[grid_point][cohort_inner][
|
|
732
|
-
subject_train
|
|
733
|
-
][run]["lat"]
|
|
734
|
-
!= "CON"
|
|
735
|
-
):
|
|
736
|
-
continue
|
|
737
|
-
X_train.append(
|
|
738
|
-
grid_point_all[grid_point][cohort_inner][
|
|
739
|
-
subject_train
|
|
740
|
-
][run]["data"]
|
|
741
|
-
)
|
|
742
|
-
y_train.append(
|
|
743
|
-
grid_point_all[grid_point][cohort_inner][
|
|
744
|
-
subject_train
|
|
745
|
-
][run]["label"]
|
|
746
|
-
)
|
|
747
|
-
if len(X_train) > 1:
|
|
748
|
-
X_train = np.concatenate(X_train, axis=0)
|
|
749
|
-
y_train = np.concatenate(y_train, axis=0)
|
|
750
|
-
else:
|
|
751
|
-
X_train = X_train[0]
|
|
752
|
-
y_train = y_train[0]
|
|
753
|
-
|
|
754
|
-
self.decoder = self.init_decoder()
|
|
755
|
-
try:
|
|
756
|
-
cv_res = self.eval_model(
|
|
757
|
-
X_train, y_train, X_test, y_test
|
|
758
|
-
)
|
|
759
|
-
except nm_decode.Decoder.ClassMissingException:
|
|
760
|
-
continue
|
|
761
|
-
|
|
762
|
-
performance_leave_one_patient_out[cohort][grid_point][
|
|
763
|
-
subject_test
|
|
764
|
-
] = cv_res
|
|
765
|
-
|
|
766
|
-
performance_leave_one_patient_out["grid_cortex"] = self.grid_cortex
|
|
767
|
-
np.save(
|
|
768
|
-
os.path.join(
|
|
769
|
-
self.outpath,
|
|
770
|
-
self.ML_model_name
|
|
771
|
-
+ "_performance_leave_one_patient_out_across_cohorts.npy",
|
|
772
|
-
),
|
|
773
|
-
performance_leave_one_patient_out,
|
|
774
|
-
)
|
|
775
|
-
|
|
776
|
-
def run_leave_nminus1_patient_out_across_cohorts(self):
|
|
777
|
-
|
|
778
|
-
grid_point_all = np.load(
|
|
779
|
-
os.path.join(self.outpath, "grid_point_all_re.npy"),
|
|
780
|
-
allow_pickle="TRUE",
|
|
781
|
-
).item()
|
|
782
|
-
performance_leave_one_patient_out = {}
|
|
783
|
-
|
|
784
|
-
for grid_point in list(grid_point_all.keys()):
|
|
785
|
-
print("grid point: " + str(grid_point))
|
|
786
|
-
for cohort_train in self.cohorts:
|
|
787
|
-
print("cohort: " + str(cohort_train))
|
|
788
|
-
if cohort_train not in performance_leave_one_patient_out:
|
|
789
|
-
performance_leave_one_patient_out[cohort_train] = {}
|
|
790
|
-
|
|
791
|
-
if cohort_train not in grid_point_all[grid_point]:
|
|
792
|
-
continue
|
|
793
|
-
if (
|
|
794
|
-
len(list(grid_point_all[grid_point][cohort_train].keys()))
|
|
795
|
-
<= 1
|
|
796
|
-
):
|
|
797
|
-
continue # cannot do leave one out prediction with a single subject
|
|
798
|
-
if (
|
|
799
|
-
grid_point
|
|
800
|
-
not in performance_leave_one_patient_out[cohort_train]
|
|
801
|
-
):
|
|
802
|
-
performance_leave_one_patient_out[cohort_train][
|
|
803
|
-
grid_point
|
|
804
|
-
] = {}
|
|
805
|
-
|
|
806
|
-
for subject_train in list(
|
|
807
|
-
grid_point_all[grid_point][cohort_train].keys()
|
|
808
|
-
):
|
|
809
|
-
X_train = []
|
|
810
|
-
y_train = []
|
|
811
|
-
for run in list(
|
|
812
|
-
grid_point_all[grid_point][cohort_train][
|
|
813
|
-
subject_train
|
|
814
|
-
].keys()
|
|
815
|
-
):
|
|
816
|
-
if (
|
|
817
|
-
grid_point_all[grid_point][cohort_train][
|
|
818
|
-
subject_train
|
|
819
|
-
][run]["lat"]
|
|
820
|
-
!= "CON"
|
|
821
|
-
):
|
|
822
|
-
continue
|
|
823
|
-
X_train.append(
|
|
824
|
-
grid_point_all[grid_point][cohort_train][
|
|
825
|
-
subject_train
|
|
826
|
-
][run]["data"]
|
|
827
|
-
)
|
|
828
|
-
y_train.append(
|
|
829
|
-
grid_point_all[grid_point][cohort_train][
|
|
830
|
-
subject_train
|
|
831
|
-
][run]["label"]
|
|
832
|
-
)
|
|
833
|
-
if len(X_train) > 1:
|
|
834
|
-
X_train = np.concatenate(X_train, axis=0)
|
|
835
|
-
y_train = np.concatenate(y_train, axis=0)
|
|
836
|
-
else:
|
|
837
|
-
X_train = X_train[0]
|
|
838
|
-
y_train = y_train[0]
|
|
839
|
-
|
|
840
|
-
for cohort_test in list(grid_point_all[grid_point].keys()):
|
|
841
|
-
for subject_test in list(
|
|
842
|
-
grid_point_all[grid_point][cohort_test].keys()
|
|
843
|
-
):
|
|
844
|
-
if (subject_test == subject_train) and (
|
|
845
|
-
cohort_test == cohort_train
|
|
846
|
-
):
|
|
847
|
-
continue
|
|
848
|
-
X_test = []
|
|
849
|
-
y_test = []
|
|
850
|
-
for run in list(
|
|
851
|
-
grid_point_all[grid_point][cohort_test][
|
|
852
|
-
subject_test
|
|
853
|
-
].keys()
|
|
854
|
-
):
|
|
855
|
-
if (
|
|
856
|
-
grid_point_all[grid_point][cohort_test][
|
|
857
|
-
subject_test
|
|
858
|
-
][run]["lat"]
|
|
859
|
-
!= "CON"
|
|
860
|
-
):
|
|
861
|
-
continue
|
|
862
|
-
X_test.append(
|
|
863
|
-
grid_point_all[grid_point][cohort_test][
|
|
864
|
-
subject_test
|
|
865
|
-
][run]["data"]
|
|
866
|
-
)
|
|
867
|
-
y_test.append(
|
|
868
|
-
grid_point_all[grid_point][cohort_test][
|
|
869
|
-
subject_test
|
|
870
|
-
][run]["label"]
|
|
871
|
-
)
|
|
872
|
-
if len(X_test) > 1:
|
|
873
|
-
X_test = np.concatenate(X_test, axis=0)
|
|
874
|
-
y_test = np.concatenate(y_test, axis=0)
|
|
875
|
-
else:
|
|
876
|
-
X_test = X_test[0]
|
|
877
|
-
y_test = y_test[0]
|
|
878
|
-
|
|
879
|
-
self.decoder = self.init_decoder()
|
|
880
|
-
try:
|
|
881
|
-
cv_res = self.eval_model(
|
|
882
|
-
X_train, y_train, X_test, y_test
|
|
883
|
-
)
|
|
884
|
-
except nm_decode.Decoder.ClassMissingException:
|
|
885
|
-
continue
|
|
886
|
-
|
|
887
|
-
if (
|
|
888
|
-
subject_train
|
|
889
|
-
not in performance_leave_one_patient_out[
|
|
890
|
-
cohort_train
|
|
891
|
-
][grid_point]
|
|
892
|
-
):
|
|
893
|
-
performance_leave_one_patient_out[cohort_train][
|
|
894
|
-
grid_point
|
|
895
|
-
][subject_train] = {}
|
|
896
|
-
if (
|
|
897
|
-
cohort_test
|
|
898
|
-
not in performance_leave_one_patient_out[
|
|
899
|
-
cohort_train
|
|
900
|
-
][grid_point][subject_train]
|
|
901
|
-
):
|
|
902
|
-
performance_leave_one_patient_out[cohort_train][
|
|
903
|
-
grid_point
|
|
904
|
-
][subject_train][cohort_test] = {}
|
|
905
|
-
if (
|
|
906
|
-
subject_test
|
|
907
|
-
not in performance_leave_one_patient_out[
|
|
908
|
-
cohort_train
|
|
909
|
-
][grid_point][subject_train][cohort_test]
|
|
910
|
-
):
|
|
911
|
-
performance_leave_one_patient_out[cohort_train][
|
|
912
|
-
grid_point
|
|
913
|
-
][subject_train][cohort_test][subject_test] = {}
|
|
914
|
-
|
|
915
|
-
performance_leave_one_patient_out[cohort_train][
|
|
916
|
-
grid_point
|
|
917
|
-
][subject_train][cohort_test][subject_test] = cv_res
|
|
918
|
-
|
|
919
|
-
performance_leave_one_patient_out["grid_cortex"] = self.grid_cortex
|
|
920
|
-
np.save(
|
|
921
|
-
os.path.join(
|
|
922
|
-
self.outpath,
|
|
923
|
-
self.ML_model_name
|
|
924
|
-
+ "_performance_leave_nminus1_patient_out_across_cohorts.npy",
|
|
925
|
-
),
|
|
926
|
-
performance_leave_one_patient_out,
|
|
927
|
-
)
|