py-neuromodulation 0.0.4__py3-none-any.whl → 0.0.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- py_neuromodulation/ConnectivityDecoding/_get_grid_hull.m +34 -34
- py_neuromodulation/ConnectivityDecoding/_get_grid_whole_brain.py +95 -106
- py_neuromodulation/ConnectivityDecoding/_helper_write_connectome.py +107 -119
- py_neuromodulation/FieldTrip.py +589 -589
- py_neuromodulation/__init__.py +74 -13
- py_neuromodulation/_write_example_dataset_helper.py +83 -65
- py_neuromodulation/data/README +6 -6
- py_neuromodulation/data/dataset_description.json +8 -8
- py_neuromodulation/data/participants.json +32 -32
- py_neuromodulation/data/participants.tsv +2 -2
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_coordsystem.json +5 -5
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_electrodes.tsv +11 -11
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_channels.tsv +11 -11
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.json +18 -18
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vhdr +35 -35
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vmrk +13 -13
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/sub-testsub_ses-EphysMedOff_scans.tsv +2 -2
- py_neuromodulation/grid_cortex.tsv +40 -40
- py_neuromodulation/liblsl/libpugixml.so.1.12 +0 -0
- py_neuromodulation/liblsl/linux/bionic_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/bookworm_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/focal_amd46/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/jammy_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/jammy_x86/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/noble_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/macos/amd64/liblsl.1.16.2.dylib +0 -0
- py_neuromodulation/liblsl/macos/arm64/liblsl.1.16.0.dylib +0 -0
- py_neuromodulation/liblsl/windows/amd64/liblsl.1.16.2.dll +0 -0
- py_neuromodulation/liblsl/windows/x86/liblsl.1.16.2.dll +0 -0
- py_neuromodulation/nm_IO.py +413 -417
- py_neuromodulation/nm_RMAP.py +496 -531
- py_neuromodulation/nm_analysis.py +993 -1074
- py_neuromodulation/nm_artifacts.py +30 -25
- py_neuromodulation/nm_bispectra.py +154 -168
- py_neuromodulation/nm_bursts.py +292 -198
- py_neuromodulation/nm_coherence.py +251 -205
- py_neuromodulation/nm_database.py +149 -0
- py_neuromodulation/nm_decode.py +918 -992
- py_neuromodulation/nm_define_nmchannels.py +300 -302
- py_neuromodulation/nm_features.py +144 -116
- py_neuromodulation/nm_filter.py +219 -219
- py_neuromodulation/nm_filter_preprocessing.py +79 -91
- py_neuromodulation/nm_fooof.py +139 -159
- py_neuromodulation/nm_generator.py +45 -37
- py_neuromodulation/nm_hjorth_raw.py +52 -73
- py_neuromodulation/nm_kalmanfilter.py +71 -58
- py_neuromodulation/nm_linelength.py +21 -33
- py_neuromodulation/nm_logger.py +66 -0
- py_neuromodulation/nm_mne_connectivity.py +149 -112
- py_neuromodulation/nm_mnelsl_generator.py +90 -0
- py_neuromodulation/nm_mnelsl_stream.py +116 -0
- py_neuromodulation/nm_nolds.py +96 -93
- py_neuromodulation/nm_normalization.py +173 -214
- py_neuromodulation/nm_oscillatory.py +423 -448
- py_neuromodulation/nm_plots.py +585 -612
- py_neuromodulation/nm_preprocessing.py +83 -0
- py_neuromodulation/nm_projection.py +370 -394
- py_neuromodulation/nm_rereference.py +97 -95
- py_neuromodulation/nm_resample.py +59 -50
- py_neuromodulation/nm_run_analysis.py +325 -435
- py_neuromodulation/nm_settings.py +289 -68
- py_neuromodulation/nm_settings.yaml +244 -0
- py_neuromodulation/nm_sharpwaves.py +423 -401
- py_neuromodulation/nm_stats.py +464 -480
- py_neuromodulation/nm_stream.py +398 -0
- py_neuromodulation/nm_stream_abc.py +166 -218
- py_neuromodulation/nm_types.py +193 -0
- {py_neuromodulation-0.0.4.dist-info → py_neuromodulation-0.0.5.dist-info}/METADATA +29 -26
- py_neuromodulation-0.0.5.dist-info/RECORD +83 -0
- {py_neuromodulation-0.0.4.dist-info → py_neuromodulation-0.0.5.dist-info}/WHEEL +1 -1
- {py_neuromodulation-0.0.4.dist-info → py_neuromodulation-0.0.5.dist-info}/licenses/LICENSE +21 -21
- py_neuromodulation/nm_EpochStream.py +0 -92
- py_neuromodulation/nm_across_patient_decoding.py +0 -927
- py_neuromodulation/nm_cohortwrapper.py +0 -435
- py_neuromodulation/nm_eval_timing.py +0 -239
- py_neuromodulation/nm_features_abc.py +0 -39
- py_neuromodulation/nm_settings.json +0 -338
- py_neuromodulation/nm_stream_offline.py +0 -359
- py_neuromodulation/utils/_logging.py +0 -24
- py_neuromodulation-0.0.4.dist-info/RECORD +0 -72
|
@@ -1,34 +1,34 @@
|
|
|
1
|
-
addpath('C:\code\wjn_toolbox');
|
|
2
|
-
addpath(genpath('C:\code\leaddbs'));
|
|
3
|
-
addpath(genpath('C:\code\spm12'));
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
%%
|
|
7
|
-
ctx = wjn_mni_cortex();
|
|
8
|
-
downsample_ctx=ctx.vertices(1:20:end,:); %downsample by 10
|
|
9
|
-
|
|
10
|
-
save("downsampled_cortex.mat", "downsample_ctx")
|
|
11
|
-
|
|
12
|
-
figure;
|
|
13
|
-
scatter3(downsample_ctx(:,1), downsample_ctx(:,2), downsample_ctx(:,3), 'filled');
|
|
14
|
-
title('3D Scatter Plot Example');
|
|
15
|
-
xlabel('X-axis');
|
|
16
|
-
ylabel('Y-axis');
|
|
17
|
-
zlabel('Z-axis');
|
|
18
|
-
grid on;
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
PATH_OUT = "D:\Connectome_RMAP_OUT\ROIs";
|
|
23
|
-
|
|
24
|
-
for a =1:size(downsample_ctx,1)
|
|
25
|
-
disp(a)
|
|
26
|
-
roiname = fullfile(PATH_OUT, strcat('ROI-', string(a), '.nii'));
|
|
27
|
-
mni = [downsample_ctx(a, 1) downsample_ctx(a, 2) downsample_ctx(a, 3)];
|
|
28
|
-
wjn_spherical_roi(roiname,mni,4);
|
|
29
|
-
end
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
1
|
+
addpath('C:\code\wjn_toolbox');
|
|
2
|
+
addpath(genpath('C:\code\leaddbs'));
|
|
3
|
+
addpath(genpath('C:\code\spm12'));
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
%%
|
|
7
|
+
ctx = wjn_mni_cortex();
|
|
8
|
+
downsample_ctx=ctx.vertices(1:20:end,:); %downsample by 10
|
|
9
|
+
|
|
10
|
+
save("downsampled_cortex.mat", "downsample_ctx")
|
|
11
|
+
|
|
12
|
+
figure;
|
|
13
|
+
scatter3(downsample_ctx(:,1), downsample_ctx(:,2), downsample_ctx(:,3), 'filled');
|
|
14
|
+
title('3D Scatter Plot Example');
|
|
15
|
+
xlabel('X-axis');
|
|
16
|
+
ylabel('Y-axis');
|
|
17
|
+
zlabel('Z-axis');
|
|
18
|
+
grid on;
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
PATH_OUT = "D:\Connectome_RMAP_OUT\ROIs";
|
|
23
|
+
|
|
24
|
+
for a =1:size(downsample_ctx,1)
|
|
25
|
+
disp(a)
|
|
26
|
+
roiname = fullfile(PATH_OUT, strcat('ROI-', string(a), '.nii'));
|
|
27
|
+
mni = [downsample_ctx(a, 1) downsample_ctx(a, 2) downsample_ctx(a, 3)];
|
|
28
|
+
wjn_spherical_roi(roiname,mni,4);
|
|
29
|
+
end
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
|
|
@@ -1,106 +1,95 @@
|
|
|
1
|
-
import nibabel as nib
|
|
2
|
-
import numpy as np
|
|
3
|
-
import
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
self
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
self
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
#
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
#
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
)
|
|
32
|
-
|
|
33
|
-
#
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
if __name__ == "__main__":
|
|
99
|
-
|
|
100
|
-
nii_to_mni = NiiToMNI(
|
|
101
|
-
PATH_nii_file=r"C:\code\py_neuromodulation\ConnectivityDecoding\Automated Anatomical Labeling 3 (Rolls 2020).nii"
|
|
102
|
-
)
|
|
103
|
-
mni_coordinates = nii_to_mni.downsample_nii(resampling_factor=150)
|
|
104
|
-
coord_non_zero, ival_non_zero = nii_to_mni.select_non_zero_voxels(
|
|
105
|
-
mni_coordinates
|
|
106
|
-
)
|
|
1
|
+
import nibabel as nib
|
|
2
|
+
import numpy as np
|
|
3
|
+
from matplotlib import pyplot as plt
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class NiiToMNI:
|
|
7
|
+
def __init__(
|
|
8
|
+
self,
|
|
9
|
+
PATH_nii_file: str = r"C:\code\RMap_ROI_Estimation\Automated Anatomical Labeling 3 (Rolls 2020).nii",
|
|
10
|
+
) -> None:
|
|
11
|
+
self.img = nib.Nifti1Image.from_filename(PATH_nii_file)
|
|
12
|
+
self.data = self.img.get_fdata()
|
|
13
|
+
|
|
14
|
+
def downsample_nii(
|
|
15
|
+
self,
|
|
16
|
+
resampling_factor: int = 150,
|
|
17
|
+
):
|
|
18
|
+
# PATH_MNI_TO_ATLAS = r"C:\code\mni_to_atlas\src\mni_to_atlas\atlases\AAL.nii"
|
|
19
|
+
# img_mni_to_atlas = nib.load(PATH_MNI_TO_ATLAS)
|
|
20
|
+
|
|
21
|
+
x_dim, y_dim, z_dim = self.data.shape
|
|
22
|
+
|
|
23
|
+
# Create arrays of voxel coordinates
|
|
24
|
+
x_coords, y_coords, z_coords = np.meshgrid(
|
|
25
|
+
range(x_dim), range(y_dim), range(z_dim), indexing="ij"
|
|
26
|
+
)
|
|
27
|
+
|
|
28
|
+
# Downsample here the voxels --> check lateron if the voxels have non-zero values
|
|
29
|
+
x_c_flatten = x_coords.flatten()[::resampling_factor]
|
|
30
|
+
y_c_flatten = y_coords.flatten()[::resampling_factor]
|
|
31
|
+
z_c_flatten = z_coords.flatten()[::resampling_factor]
|
|
32
|
+
|
|
33
|
+
# Combine coordinates into a single array
|
|
34
|
+
voxel_coordinates = np.column_stack(
|
|
35
|
+
(
|
|
36
|
+
x_c_flatten,
|
|
37
|
+
y_c_flatten,
|
|
38
|
+
z_c_flatten,
|
|
39
|
+
np.ones(x_c_flatten.shape[0]),
|
|
40
|
+
)
|
|
41
|
+
)
|
|
42
|
+
|
|
43
|
+
aff_m = self.img.affine
|
|
44
|
+
aff_m[0, 0] = 2
|
|
45
|
+
aff_m[0, 3] = -90
|
|
46
|
+
|
|
47
|
+
mni_coordinates = np.dot(aff_m, voxel_coordinates.T).T[:, :3]
|
|
48
|
+
|
|
49
|
+
return mni_coordinates
|
|
50
|
+
|
|
51
|
+
def select_non_zero_voxels(
|
|
52
|
+
self,
|
|
53
|
+
mni_coordinates: np.ndarray,
|
|
54
|
+
):
|
|
55
|
+
coords = np.hstack((mni_coordinates, np.ones((mni_coordinates.shape[0], 1))))
|
|
56
|
+
|
|
57
|
+
# and transform back to get the voxel values
|
|
58
|
+
voxels_downsampled = np.array(
|
|
59
|
+
np.linalg.solve(self.img.affine, coords.T).T
|
|
60
|
+
).astype(int)[:, :3]
|
|
61
|
+
|
|
62
|
+
ival = []
|
|
63
|
+
coord_ = []
|
|
64
|
+
for i in range(voxels_downsampled.shape[0]):
|
|
65
|
+
ival.append(self.data[tuple(voxels_downsampled[i, :])])
|
|
66
|
+
coord_.append(mni_coordinates[i, :])
|
|
67
|
+
|
|
68
|
+
# get only voxel values non-zero
|
|
69
|
+
ival_arr = np.array(ival)
|
|
70
|
+
coord_arr = np.array(coord_)
|
|
71
|
+
ival_non_zero = ival_arr[ival != 0]
|
|
72
|
+
coord_non_zero = coord_arr[ival != 0]
|
|
73
|
+
print(coord_non_zero.shape)
|
|
74
|
+
|
|
75
|
+
return coord_non_zero, ival_non_zero
|
|
76
|
+
|
|
77
|
+
def plot_3d_coordinates(self, coord_non_zero: np.ndarray):
|
|
78
|
+
fig = plt.figure()
|
|
79
|
+
ax = fig.add_subplot(111, projection="3d")
|
|
80
|
+
ax.scatter(
|
|
81
|
+
coord_non_zero[:, 0],
|
|
82
|
+
coord_non_zero[:, 1],
|
|
83
|
+
coord_non_zero[:, 2],
|
|
84
|
+
s=50,
|
|
85
|
+
alpha=0.2,
|
|
86
|
+
)
|
|
87
|
+
plt.show()
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
if __name__ == "__main__":
|
|
91
|
+
nii_to_mni = NiiToMNI(
|
|
92
|
+
PATH_nii_file=r"C:\code\py_neuromodulation\ConnectivityDecoding\Automated Anatomical Labeling 3 (Rolls 2020).nii"
|
|
93
|
+
)
|
|
94
|
+
mni_coordinates = nii_to_mni.downsample_nii(resampling_factor=150)
|
|
95
|
+
coord_non_zero, ival_non_zero = nii_to_mni.select_non_zero_voxels(mni_coordinates)
|
|
@@ -1,119 +1,107 @@
|
|
|
1
|
-
import nibabel as nib
|
|
2
|
-
import numpy as np
|
|
3
|
-
import scipy.io as sio
|
|
4
|
-
import os
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
"
|
|
12
|
-
"
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
)
|
|
17
|
-
|
|
18
|
-
#
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
files_fps = [
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
)
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
)
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
"
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
"
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
),
|
|
109
|
-
func_=True,
|
|
110
|
-
) # all there
|
|
111
|
-
|
|
112
|
-
write_connectome_mat(
|
|
113
|
-
PATH_Fingerprints=r"D:\Connectome_RMAP_OUT\hull\struc\HCP1000 6K",
|
|
114
|
-
PATH_CONNECTOME=os.path.join(
|
|
115
|
-
"py_neuromodulation",
|
|
116
|
-
"ConnectivityDecoding",
|
|
117
|
-
"connectome_hull_struc.mat",
|
|
118
|
-
),
|
|
119
|
-
) # 5 missing
|
|
1
|
+
import nibabel as nib
|
|
2
|
+
import numpy as np
|
|
3
|
+
import scipy.io as sio
|
|
4
|
+
import os
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
def write_connectome_mat(
|
|
8
|
+
PATH_Fingerprints: str = r"D:\Connectome_RMAP_OUT\ROIs\HCP1000 6K",
|
|
9
|
+
PATH_CONNECTOME: str = os.path.join(
|
|
10
|
+
"py_neuromodulation",
|
|
11
|
+
"ConnectivityDecoding",
|
|
12
|
+
"connectome_struct.mat",
|
|
13
|
+
),
|
|
14
|
+
func_: bool = False,
|
|
15
|
+
):
|
|
16
|
+
# connectome = sio.loadmat(PATH_CONNECTOME) # check if read was successful
|
|
17
|
+
|
|
18
|
+
# load all fingerprints and put them in .npy
|
|
19
|
+
dict_connectome = {}
|
|
20
|
+
if func_ is False:
|
|
21
|
+
files_fps = [f for f in os.listdir(PATH_Fingerprints) if ".nii" in f]
|
|
22
|
+
else:
|
|
23
|
+
files_fps = [
|
|
24
|
+
f for f in os.listdir(PATH_Fingerprints) if "func_seed_AvgR_Fz.nii" in f
|
|
25
|
+
]
|
|
26
|
+
|
|
27
|
+
# I except 1025 files, check which ones are missing
|
|
28
|
+
missing_files = []
|
|
29
|
+
|
|
30
|
+
for i in range(1, 1026):
|
|
31
|
+
MISSING = False
|
|
32
|
+
|
|
33
|
+
if func_ is False:
|
|
34
|
+
if f"ROI-{i}_struc_seed.nii" not in files_fps:
|
|
35
|
+
missing_files.append(f"ROI-{i}_struc_seed.nii")
|
|
36
|
+
MISSING = True
|
|
37
|
+
else:
|
|
38
|
+
if f"ROI-{i}_func_seed_AvgR_Fz.nii" not in files_fps:
|
|
39
|
+
missing_files.append(f"ROI-{i}_func_seed_AvgR_Fz.nii")
|
|
40
|
+
MISSING = True
|
|
41
|
+
|
|
42
|
+
if MISSING:
|
|
43
|
+
ROI_file = os.path.join(
|
|
44
|
+
r"D:\Connectome_RMAP_OUT\whole_brain\ROIs", f"ROI-{i}.nii"
|
|
45
|
+
)
|
|
46
|
+
# copy the ROI file to the following folder:
|
|
47
|
+
PATH_ROI_OUT = r"D:\Connectome_RMAP_OUT\whole_brain\ROI_missing_struc"
|
|
48
|
+
import shutil
|
|
49
|
+
|
|
50
|
+
shutil.copy(ROI_file, os.path.join(PATH_ROI_OUT, f"ROI-{i}.nii"))
|
|
51
|
+
|
|
52
|
+
for idx, f in enumerate(files_fps):
|
|
53
|
+
# load the .nii file and put it all in in a dictionary with the name of the file
|
|
54
|
+
fp = nib.load(os.path.join(PATH_Fingerprints, f)).get_fdata().astype(np.float16)
|
|
55
|
+
if "struc" in f:
|
|
56
|
+
dict_connectome[f[f.find("ROI-") + 4 : f.find("_struc")]] = fp
|
|
57
|
+
else:
|
|
58
|
+
dict_connectome[
|
|
59
|
+
f[f.find("ROI-") + 4 : f.find("_func_seed_AvgR_Fz.nii")]
|
|
60
|
+
] = fp
|
|
61
|
+
|
|
62
|
+
print(idx)
|
|
63
|
+
# save the dictionary
|
|
64
|
+
sio.savemat(
|
|
65
|
+
PATH_CONNECTOME,
|
|
66
|
+
dict_connectome,
|
|
67
|
+
)
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
if __name__ == "__main__":
|
|
71
|
+
write_connectome_mat(
|
|
72
|
+
PATH_Fingerprints=r"D:\Connectome_RMAP_OUT\whole_brain\struc\HCP1000 6K",
|
|
73
|
+
PATH_CONNECTOME=os.path.join(
|
|
74
|
+
"py_neuromodulation",
|
|
75
|
+
"ConnectivityDecoding",
|
|
76
|
+
"connectome_whole_brain_struc.mat",
|
|
77
|
+
),
|
|
78
|
+
) # 58 files are missing
|
|
79
|
+
|
|
80
|
+
write_connectome_mat(
|
|
81
|
+
PATH_Fingerprints=r"D:\Connectome_RMAP_OUT\whole_brain\func",
|
|
82
|
+
PATH_CONNECTOME=os.path.join(
|
|
83
|
+
"py_neuromodulation",
|
|
84
|
+
"ConnectivityDecoding",
|
|
85
|
+
"connectome_whole_brain_func.mat",
|
|
86
|
+
),
|
|
87
|
+
func_=True,
|
|
88
|
+
)
|
|
89
|
+
|
|
90
|
+
write_connectome_mat(
|
|
91
|
+
PATH_Fingerprints=r"D:\Connectome_RMAP_OUT\hull\func\GSP 1000 (Yeo 2011)_Full Set (Yeo 2011)",
|
|
92
|
+
PATH_CONNECTOME=os.path.join(
|
|
93
|
+
"py_neuromodulation",
|
|
94
|
+
"ConnectivityDecoding",
|
|
95
|
+
"connectome_hull_func.mat",
|
|
96
|
+
),
|
|
97
|
+
func_=True,
|
|
98
|
+
) # all there
|
|
99
|
+
|
|
100
|
+
write_connectome_mat(
|
|
101
|
+
PATH_Fingerprints=r"D:\Connectome_RMAP_OUT\hull\struc\HCP1000 6K",
|
|
102
|
+
PATH_CONNECTOME=os.path.join(
|
|
103
|
+
"py_neuromodulation",
|
|
104
|
+
"ConnectivityDecoding",
|
|
105
|
+
"connectome_hull_struc.mat",
|
|
106
|
+
),
|
|
107
|
+
) # 5 missing
|