prompty 0.1.10__py3-none-any.whl → 0.1.34__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
prompty/tracer.py CHANGED
@@ -1,6 +1,9 @@
1
1
  import os
2
2
  import json
3
3
  import inspect
4
+ import numbers
5
+ import traceback
6
+ import importlib
4
7
  import contextlib
5
8
  from pathlib import Path
6
9
  from numbers import Number
@@ -10,6 +13,18 @@ from functools import wraps, partial
10
13
  from typing import Any, Callable, Dict, Iterator, List
11
14
 
12
15
 
16
+ # clean up key value pairs for sensitive values
17
+ def sanitize(key: str, value: Any) -> Any:
18
+ if isinstance(value, str) and any(
19
+ [s in key.lower() for s in ["key", "token", "secret", "password", "credential"]]
20
+ ):
21
+ return len(str(value)) * "*"
22
+ elif isinstance(value, dict):
23
+ return {k: sanitize(k, v) for k, v in value.items()}
24
+ else:
25
+ return value
26
+
27
+
13
28
  class Tracer:
14
29
  _tracers: Dict[str, Callable[[str], Iterator[Callable[[str, Any], None]]]] = {}
15
30
 
@@ -30,7 +45,11 @@ class Tracer:
30
45
  traces = [
31
46
  stack.enter_context(tracer(name)) for tracer in cls._tracers.values()
32
47
  ]
33
- yield lambda key, value: [trace(key, value) for trace in traces]
48
+ yield lambda key, value: [
49
+ # normalize and sanitize any trace values
50
+ trace(key, sanitize(key, to_dict(value)))
51
+ for trace in traces
52
+ ]
34
53
 
35
54
 
36
55
  def to_dict(obj: Any) -> Dict[str, Any]:
@@ -69,11 +88,16 @@ def _name(func: Callable, args):
69
88
  else:
70
89
  signature = f"{func.__module__}.{func.__name__}"
71
90
 
72
- # core invoker gets special treatment
73
- core_invoker = signature == "prompty.core.Invoker.__call__"
91
+ # core invoker gets special treatment prompty.invoker.Invoker
92
+ core_invoker = signature.startswith("prompty.invoker.Invoker.run")
74
93
  if core_invoker:
75
94
  name = type(args[0]).__name__
76
- signature = f"{args[0].__module__}.{args[0].__class__.__name__}.invoke"
95
+ if signature.endswith("async"):
96
+ signature = (
97
+ f"{args[0].__module__}.{args[0].__class__.__name__}.invoke_async"
98
+ )
99
+ else:
100
+ signature = f"{args[0].__module__}.{args[0].__class__.__name__}.invoke"
77
101
  else:
78
102
  name = func.__name__
79
103
 
@@ -93,57 +117,98 @@ def _results(result: Any) -> dict:
93
117
  return to_dict(result) if result is not None else "None"
94
118
 
95
119
 
96
- def _trace_sync(func: Callable = None, *, description: str = None) -> Callable:
97
- description = description or ""
120
+ def _trace_sync(
121
+ func: Callable = None, **okwargs: Any
122
+ ) -> Callable:
98
123
 
99
124
  @wraps(func)
100
125
  def wrapper(*args, **kwargs):
101
126
  name, signature = _name(func, args)
102
127
  with Tracer.start(name) as trace:
103
128
  trace("signature", signature)
104
- if description and description != "":
105
- trace("description", description)
129
+
130
+ # support arbitrary keyword
131
+ # arguments for trace decorator
132
+ for k, v in okwargs.items():
133
+ trace(k, to_dict(v))
106
134
 
107
135
  inputs = _inputs(func, args, kwargs)
108
136
  trace("inputs", inputs)
109
137
 
110
- result = func(*args, **kwargs)
111
- trace("result", _results(result))
138
+ try:
139
+ result = func(*args, **kwargs)
140
+ trace("result", _results(result))
141
+ except Exception as e:
142
+ trace(
143
+ "result",
144
+ {
145
+ "exception": {
146
+ "type": type(e),
147
+ "traceback": (
148
+ traceback.format_tb(tb=e.__traceback__)
149
+ if e.__traceback__
150
+ else None
151
+ ),
152
+ "message": str(e),
153
+ "args": to_dict(e.args),
154
+ }
155
+ },
156
+ )
157
+ raise e
112
158
 
113
159
  return result
114
160
 
115
161
  return wrapper
116
162
 
117
163
 
118
- def _trace_async(func: Callable = None, *, description: str = None) -> Callable:
119
- description = description or ""
164
+ def _trace_async(
165
+ func: Callable = None, **okwargs: Any
166
+ ) -> Callable:
120
167
 
121
168
  @wraps(func)
122
169
  async def wrapper(*args, **kwargs):
123
170
  name, signature = _name(func, args)
124
171
  with Tracer.start(name) as trace:
125
172
  trace("signature", signature)
126
- if description and description != "":
127
- trace("description", description)
173
+
174
+ # support arbitrary keyword
175
+ # arguments for trace decorator
176
+ for k, v in okwargs.items():
177
+ trace(k, to_dict(v))
128
178
 
129
179
  inputs = _inputs(func, args, kwargs)
130
180
  trace("inputs", inputs)
131
-
132
- result = await func(*args, **kwargs)
133
- trace("result", _results(result))
181
+ try:
182
+ result = await func(*args, **kwargs)
183
+ trace("result", _results(result))
184
+ except Exception as e:
185
+ trace(
186
+ "result",
187
+ {
188
+ "exception": {
189
+ "type": type(e),
190
+ "traceback": (
191
+ traceback.format_tb(tb=e.__traceback__)
192
+ if e.__traceback__
193
+ else None
194
+ ),
195
+ "message": str(e),
196
+ "args": to_dict(e.args),
197
+ }
198
+ },
199
+ )
200
+ raise e
134
201
 
135
202
  return result
136
203
 
137
204
  return wrapper
138
205
 
139
206
 
140
- def trace(func: Callable = None, *, description: str = None) -> Callable:
207
+ def trace(func: Callable = None, **kwargs: Any) -> Callable:
141
208
  if func is None:
142
- return partial(trace, description=description)
143
-
209
+ return partial(trace, **kwargs)
144
210
  wrapped_method = _trace_async if inspect.iscoroutinefunction(func) else _trace_sync
145
-
146
- return wrapped_method(func, description=description)
211
+ return wrapped_method(func, **kwargs)
147
212
 
148
213
 
149
214
  class PromptyTracer:
@@ -163,6 +228,9 @@ class PromptyTracer:
163
228
  try:
164
229
  self.stack.append({"name": name})
165
230
  frame = self.stack[-1]
231
+ frame["__time"] = {
232
+ "start": datetime.now(),
233
+ }
166
234
 
167
235
  def add(key: str, value: Any) -> None:
168
236
  if key not in frame:
@@ -177,26 +245,92 @@ class PromptyTracer:
177
245
  yield add
178
246
  finally:
179
247
  frame = self.stack.pop()
248
+ start: datetime = frame["__time"]["start"]
249
+ end: datetime = datetime.now()
250
+
251
+ # add duration to frame
252
+ frame["__time"] = {
253
+ "start": start.strftime("%Y-%m-%dT%H:%M:%S.%f"),
254
+ "end": end.strftime("%Y-%m-%dT%H:%M:%S.%f"),
255
+ "duration": int((end - start).total_seconds() * 1000),
256
+ }
257
+
258
+ # hoist usage to parent frame
259
+ if "result" in frame and isinstance(frame["result"], dict):
260
+ if "usage" in frame["result"]:
261
+ frame["__usage"] = self.hoist_item(
262
+ frame["result"]["usage"],
263
+ frame["__usage"] if "__usage" in frame else {},
264
+ )
265
+
266
+ # streamed results may have usage as well
267
+ if "result" in frame and isinstance(frame["result"], list):
268
+ for result in frame["result"]:
269
+ if (
270
+ isinstance(result, dict)
271
+ and "usage" in result
272
+ and isinstance(result["usage"], dict)
273
+ ):
274
+ frame["__usage"] = self.hoist_item(
275
+ result["usage"],
276
+ frame["__usage"] if "__usage" in frame else {},
277
+ )
278
+
279
+ # add any usage frames from below
280
+ if "__frames" in frame:
281
+ for child in frame["__frames"]:
282
+ if "__usage" in child:
283
+ frame["__usage"] = self.hoist_item(
284
+ child["__usage"],
285
+ frame["__usage"] if "__usage" in frame else {},
286
+ )
287
+
180
288
  # if stack is empty, dump the frame
181
289
  if len(self.stack) == 0:
182
- trace_file = (
183
- self.output
184
- / f"{frame['name']}.{datetime.now().strftime('%Y%m%d.%H%M%S')}.ptrace"
185
- )
186
-
187
- with open(trace_file, "w") as f:
188
- json.dump(frame, f, indent=4)
290
+ self.write_trace(frame)
189
291
  # otherwise, append the frame to the parent
190
292
  else:
191
293
  if "__frames" not in self.stack[-1]:
192
294
  self.stack[-1]["__frames"] = []
193
295
  self.stack[-1]["__frames"].append(frame)
194
296
 
297
+ def hoist_item(self, src: Dict[str, Any], cur: Dict[str, Any]) -> None:
298
+ for key, value in src.items():
299
+ if value is None or isinstance(value, list) or isinstance(value, dict):
300
+ continue
301
+ try:
302
+ if key not in cur:
303
+ cur[key] = value
304
+ else:
305
+ cur[key] += value
306
+ except:
307
+ continue
308
+
309
+ return cur
310
+
311
+ def write_trace(self, frame: Dict[str, Any]) -> None:
312
+ trace_file = (
313
+ self.output
314
+ / f"{frame['name']}.{datetime.now().strftime('%Y%m%d.%H%M%S')}.tracy"
315
+ )
316
+
317
+ v = importlib.metadata.version("prompty")
318
+ enriched_frame = {
319
+ "runtime": "python",
320
+ "version": v,
321
+ "trace": frame,
322
+ }
323
+
324
+ with open(trace_file, "w") as f:
325
+ json.dump(enriched_frame, f, indent=4)
326
+
195
327
 
196
328
  @contextlib.contextmanager
197
329
  def console_tracer(name: str) -> Iterator[Callable[[str, Any], None]]:
198
330
  try:
199
331
  print(f"Starting {name}")
200
- yield lambda key, value: print(f"{key}:\n{json.dumps(value, indent=4)}")
332
+ yield lambda key, value: print(
333
+ f"{key}:\n{json.dumps(to_dict(value), indent=4)}"
334
+ )
201
335
  finally:
202
336
  print(f"Ending {name}")
prompty/utils.py ADDED
@@ -0,0 +1,105 @@
1
+ import re
2
+ import yaml
3
+ import json
4
+ import asyncio
5
+ import aiofiles
6
+ from typing import Dict
7
+ from pathlib import Path
8
+
9
+ _yaml_regex = re.compile(
10
+ r"^\s*" + r"(?:---|\+\+\+)" + r"(.*?)" + r"(?:---|\+\+\+)" + r"\s*(.+)$",
11
+ re.S | re.M,
12
+ )
13
+
14
+ def load_text(file_path, encoding='utf-8'):
15
+ with open(file_path, 'r', encoding=encoding) as file:
16
+ return file.read()
17
+
18
+ async def load_text_async(file_path, encoding='utf-8'):
19
+ async with aiofiles.open(file_path, mode='r', encoding=encoding) as f:
20
+ content = await f.read()
21
+ return content
22
+
23
+ def load_json(file_path, encoding='utf-8'):
24
+ return json.loads(load_text(file_path, encoding=encoding))
25
+
26
+ async def load_json_async(file_path, encoding='utf-8'):
27
+ # async file open
28
+ content = await load_text_async(file_path, encoding=encoding)
29
+ return json.loads(content)
30
+
31
+ def _find_global_config(prompty_path: Path = Path.cwd()) -> Path:
32
+ prompty_config = list(Path.cwd().glob("**/prompty.json"))
33
+
34
+ if len(prompty_config) > 0:
35
+ return sorted(
36
+ [
37
+ c
38
+ for c in prompty_config
39
+ if len(c.parent.parts) <= len(prompty_path.parts)
40
+ ],
41
+ key=lambda p: len(p.parts),
42
+ )[-1]
43
+ else:
44
+ return None
45
+
46
+
47
+ def load_global_config(
48
+ prompty_path: Path = Path.cwd(), configuration: str = "default"
49
+ ) -> Dict[str, any]:
50
+ # prompty.config laying around?
51
+ config = _find_global_config(prompty_path)
52
+
53
+ # if there is one load it
54
+ if config is not None:
55
+ c = load_json(config)
56
+ if configuration in c:
57
+ return c[configuration]
58
+ else:
59
+ raise ValueError(f'Item "{configuration}" not found in "{config}"')
60
+
61
+ return {}
62
+
63
+
64
+ async def load_global_config_async(
65
+ prompty_path: Path = Path.cwd(), configuration: str = "default"
66
+ ) -> Dict[str, any]:
67
+ # prompty.config laying around?
68
+ config = _find_global_config(prompty_path)
69
+
70
+ # if there is one load it
71
+ if config is not None:
72
+ c = await load_json_async(config)
73
+ if configuration in c:
74
+ return c[configuration]
75
+ else:
76
+ raise ValueError(f'Item "{configuration}" not found in "{config}"')
77
+
78
+ return {}
79
+
80
+
81
+ def load_prompty(file_path, encoding='utf-8'):
82
+ contents = load_text(file_path, encoding=encoding)
83
+ return parse(contents)
84
+
85
+
86
+ async def load_prompty_async(file_path, encoding="utf-8"):
87
+ contents = await load_text_async(file_path, encoding=encoding)
88
+ return parse(contents)
89
+
90
+
91
+ def parse(contents):
92
+ global _yaml_regex
93
+
94
+ fmatter = ""
95
+ body = ""
96
+ result = _yaml_regex.search(contents)
97
+
98
+ if result:
99
+ fmatter = result.group(1)
100
+ body = result.group(2)
101
+ return {
102
+ "attributes": yaml.load(fmatter, Loader=yaml.FullLoader),
103
+ "body": body,
104
+ "frontmatter": fmatter,
105
+ }
@@ -0,0 +1,219 @@
1
+ Metadata-Version: 2.1
2
+ Name: prompty
3
+ Version: 0.1.34
4
+ Summary: Prompty is a new asset class and format for LLM prompts that aims to provide observability, understandability, and portability for developers. It includes spec, tooling, and a runtime. This Prompty runtime supports Python
5
+ Author-Email: Seth Juarez <seth.juarez@microsoft.com>
6
+ License: MIT
7
+ Requires-Python: >=3.9
8
+ Requires-Dist: pyyaml>=6.0.1
9
+ Requires-Dist: pydantic>=2.8.2
10
+ Requires-Dist: jinja2>=3.1.4
11
+ Requires-Dist: python-dotenv>=1.0.1
12
+ Requires-Dist: click>=8.1.7
13
+ Requires-Dist: aiofiles>=24.1.0
14
+ Provides-Extra: azure
15
+ Requires-Dist: azure-identity>=1.17.1; extra == "azure"
16
+ Requires-Dist: openai>=1.35.10; extra == "azure"
17
+ Provides-Extra: openai
18
+ Requires-Dist: openai>=1.35.10; extra == "openai"
19
+ Provides-Extra: serverless
20
+ Requires-Dist: azure-identity>=1.17.1; extra == "serverless"
21
+ Requires-Dist: azure-ai-inference>=1.0.0b3; extra == "serverless"
22
+ Description-Content-Type: text/markdown
23
+
24
+
25
+ Prompty is an asset class and format for LLM prompts designed to enhance observability, understandability, and portability for developers. The primary goal is to accelerate the developer inner loop of prompt engineering and prompt source management in a cross-language and cross-platform implementation.
26
+
27
+ The file format has a supporting toolchain with a VS Code extension and runtimes in multiple programming languages to simplify and accelerate your AI application development.
28
+
29
+ The tooling comes together in three ways: the *prompty file asset*, the *VS Code extension tool*, and *runtimes* in multiple programming languages.
30
+
31
+ ## The Prompty File Format
32
+ Prompty is a language agnostic prompt asset for creating prompts and engineering the responses. Learn more about the format [here](https://prompty.ai/docs/prompty-file-spec).
33
+
34
+ Examples prompty file:
35
+ ```markdown
36
+ ---
37
+ name: Basic Prompt
38
+ description: A basic prompt that uses the GPT-3 chat API to answer questions
39
+ authors:
40
+ - sethjuarez
41
+ - jietong
42
+ model:
43
+ api: chat
44
+ configuration:
45
+ api_version: 2023-12-01-preview
46
+ azure_endpoint: ${env:AZURE_OPENAI_ENDPOINT}
47
+ azure_deployment: ${env:AZURE_OPENAI_DEPLOYMENT:gpt-35-turbo}
48
+ sample:
49
+ firstName: Jane
50
+ lastName: Doe
51
+ question: What is the meaning of life?
52
+ ---
53
+ system:
54
+ You are an AI assistant who helps people find information.
55
+ As the assistant, you answer questions briefly, succinctly,
56
+ and in a personable manner using markdown and even add some personal flair with appropriate emojis.
57
+
58
+ # Customer
59
+ You are helping {{firstName}} {{lastName}} to find answers to their questions.
60
+ Use their name to address them in your responses.
61
+
62
+ user:
63
+ {{question}}
64
+ ```
65
+
66
+
67
+ ## The Prompty VS Code Extension
68
+ Run Prompty files directly in VS Code. This Visual Studio Code extension offers an intuitive prompt playground within VS Code to streamline the prompt engineering process. You can find the Prompty extension in the Visual Studio Code Marketplace.
69
+
70
+ Download the [VS Code extension here](https://marketplace.visualstudio.com/items?itemName=ms-toolsai.prompty).
71
+
72
+
73
+ ## Using this Prompty Runtime
74
+ The Python runtime is a simple way to run your prompts in Python. The runtime is available as a Python package and can be installed using pip. Depending on the type of prompt you are running, you may need to install additional dependencies. The runtime is designed to be extensible and can be customized to fit your needs.
75
+
76
+ ```bash
77
+ pip install prompty[azure]
78
+ ```
79
+
80
+ Simple usage example:
81
+
82
+ ```python
83
+ import prompty
84
+ # import invoker
85
+ import prompty.azure
86
+
87
+ # execute the prompt
88
+ response = prompty.execute("path/to/prompty/file")
89
+
90
+ print(response)
91
+ ```
92
+
93
+ ## Available Invokers
94
+ The Prompty runtime comes with a set of built-in invokers that can be used to execute prompts. These include:
95
+
96
+ - `azure`: Invokes the Azure OpenAI API
97
+ - `openai`: Invokes the OpenAI API
98
+ - `serverless`: Invokes serverless models (like the ones on GitHub) using the [Azure AI Inference client library](https://learn.microsoft.com/en-us/python/api/overview/azure/ai-inference-readme?view=azure-python-preview) (currently only key based authentication is supported with more managed identity support coming soon)
99
+
100
+
101
+ ## Using Tracing in Prompty
102
+ Prompty supports tracing to help you understand the execution of your prompts. This functionality is customizable and can be used to trace the execution of your prompts in a way that makes sense to you. Prompty has two default traces built in: `console_tracer` and `PromptyTracer`. The `console_tracer` writes the trace to the console, and the `PromptyTracer` writes the trace to a JSON file. You can also create your own tracer by creating your own hook.
103
+
104
+ ```python
105
+ import prompty
106
+ # import invoker
107
+ import prompty.azure
108
+ from prompty.tracer import trace, Tracer, console_tracer, PromptyTracer
109
+
110
+ # add console tracer
111
+ Tracer.add("console", console_tracer)
112
+
113
+ # add PromptyTracer
114
+ json_tracer = PromptyTracer(output_dir="path/to/output")
115
+ Tracer.add("console", json_tracer.tracer)
116
+
117
+ # execute the prompt
118
+ response = prompty.execute("path/to/prompty/file")
119
+
120
+ print(response)
121
+ ```
122
+
123
+ You can also bring your own tracer by your own tracing hook. The `console_tracer` is the simplest example of a tracer. It writes the trace to the console.
124
+ This is what it looks like:
125
+
126
+ ```python
127
+ @contextlib.contextmanager
128
+ def console_tracer(name: str) -> Iterator[Callable[[str, Any], None]]:
129
+ try:
130
+ print(f"Starting {name}")
131
+ yield lambda key, value: print(f"{key}:\n{json.dumps(value, indent=4)}")
132
+ finally:
133
+ print(f"Ending {name}")
134
+
135
+ ```
136
+
137
+ It uses a context manager to define the start and end of the trace so you can do whatever setup and teardown you need. The `yield` statement returns a function that you can use to write the trace. The `console_tracer` writes the trace to the console using the `print` function.
138
+
139
+ The `PromptyTracer` is a more complex example of a tracer. This tracer manages its internal state using a full class. Here's an example of the class based approach that writes each function trace to a JSON file:
140
+
141
+ ```python
142
+ class SimplePromptyTracer:
143
+ def __init__(self, output_dir: str):
144
+ self.output_dir = output_dir
145
+ self.tracer = self._tracer
146
+
147
+ @contextlib.contextmanager
148
+ def tracer(self, name: str) -> Iterator[Callable[[str, Any], None]]:
149
+ trace = {}
150
+ try:
151
+ yield lambda key, value: trace.update({key: value})
152
+ finally:
153
+ with open(os.path.join(self.output_dir, f"{name}.json"), "w") as f:
154
+ json.dump(trace, f, indent=4)
155
+ ```
156
+
157
+ The tracing mechanism is supported for all of the prompty runtime internals and can be used to trace the execution of the prompt along with all of the paramters. There is also a `@trace` decorator that can be used to trace the execution of any function external to the runtime. This is provided as a facility to trace the execution of the prompt and whatever supporting code you have.
158
+
159
+ ```python
160
+ import prompty
161
+ # import invoker
162
+ import prompty.azure
163
+ from prompty.tracer import trace, Tracer, PromptyTracer
164
+
165
+ json_tracer = PromptyTracer(output_dir="path/to/output")
166
+ Tracer.add("PromptyTracer", json_tracer.tracer)
167
+
168
+ @trace
169
+ def get_customer(customerId):
170
+ return {"id": customerId, "firstName": "Sally", "lastName": "Davis"}
171
+
172
+ @trace
173
+ def get_response(customerId, prompt):
174
+ customer = get_customer(customerId)
175
+
176
+ result = prompty.execute(
177
+ prompt,
178
+ inputs={"question": question, "customer": customer},
179
+ )
180
+ return {"question": question, "answer": result}
181
+
182
+ ```
183
+
184
+ In this case, whenever this code is executed, a `.tracy` file will be created in the `path/to/output` directory. This file will contain the trace of the execution of the `get_response` function, the execution of the `get_customer` function, and the prompty internals that generated the response.
185
+
186
+ ## OpenTelemetry Tracing
187
+ You can add OpenTelemetry tracing to your application using the same hook mechanism. In your application, you might create something like `trace_span` to trace the execution of your prompts:
188
+
189
+ ```python
190
+ from opentelemetry import trace as oteltrace
191
+
192
+ _tracer = "prompty"
193
+
194
+ @contextlib.contextmanager
195
+ def trace_span(name: str):
196
+ tracer = oteltrace.get_tracer(_tracer)
197
+ with tracer.start_as_current_span(name) as span:
198
+ yield lambda key, value: span.set_attribute(
199
+ key, json.dumps(value).replace("\n", "")
200
+ )
201
+
202
+ # adding this hook to the prompty runtime
203
+ Tracer.add("OpenTelemetry", trace_span)
204
+
205
+ ```
206
+
207
+ This will produce spans during the execution of the prompt that can be sent to an OpenTelemetry collector for further analysis.
208
+
209
+ ## CLI
210
+ The Prompty runtime also comes with a CLI tool that allows you to run prompts from the command line. The CLI tool is installed with the Python package.
211
+
212
+ ```bash
213
+ prompty -s path/to/prompty/file -e .env
214
+ ```
215
+
216
+ This will execute the prompt and print the response to the console. If there are any environment variables the CLI should take into account, you can pass those in via the `-e` flag. It also has default tracing enabled.
217
+
218
+ ## Contributing
219
+ We welcome contributions to the Prompty project! This community led project is open to all contributors. The project can be found on [GitHub](https://github.com/Microsoft/prompty).
@@ -0,0 +1,22 @@
1
+ prompty-0.1.34.dist-info/METADATA,sha256=tZPxYcZ2mi_pOO-Z-6wrQ6zTeadaPLpFdkLZXbfWDF0,9166
2
+ prompty-0.1.34.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
3
+ prompty-0.1.34.dist-info/entry_points.txt,sha256=a3i7Kvf--3DOkkv9VQpstwaNKgsnXwDGaPL18lPpKeI,60
4
+ prompty-0.1.34.dist-info/licenses/LICENSE,sha256=KWSC4z9cfML_t0xThoQYjzTdcZQj86Y_mhXdatzU-KM,1052
5
+ prompty/__init__.py,sha256=HCAvInBgNcIDO54rR4-RDIF4KUmGVQ2TRam_dS7xHEk,16561
6
+ prompty/azure/__init__.py,sha256=WI8qeNWfxqggj21bznL-mxGUS-v67bUrunX0Lf2hsI8,295
7
+ prompty/azure/executor.py,sha256=RJXMB0W7KcVvQ7l3xJaau7YM8PqOCQwuN4IwIe0sTLg,7930
8
+ prompty/azure/processor.py,sha256=eWcHTLwxxBw7ZfK-rSf2cdljJgouxGXuRh_7EtV-MGk,4974
9
+ prompty/cli.py,sha256=k8Rxm41fMFNvmnsX737UiN6v-7756tpoJPN4rPXMNcU,3726
10
+ prompty/core.py,sha256=EvkXV_mH7Mj1skT21XMZ4VX-Jlwx6AF-WEJ9yPc50AE,13061
11
+ prompty/invoker.py,sha256=O77E5iQ1552wQXxL8FhZGERbCi_0O3mDTd5Ozqw-O-E,8593
12
+ prompty/openai/__init__.py,sha256=hbBhgCwB_uSq-1NWL02yiOiNkyi39-G-AyVlTSgKTkU,276
13
+ prompty/openai/executor.py,sha256=qkFSMA-pWlA1c602Dx5aR1cFEOnYsUUp_E7P3zFhSPs,3644
14
+ prompty/openai/processor.py,sha256=l9-91_CCgRtYvkwMO-jV6rkgeCA4gV_MFamQcvoNGQ0,2499
15
+ prompty/parsers.py,sha256=zHqcRpFPUDG6BOI7ipaJf6yGc6ZbKnsLmO7jKEYNct4,5013
16
+ prompty/renderers.py,sha256=80HNtCp3osgaLfhKxkG4j1kiRhJ727ITzT_yL5JLjEQ,1104
17
+ prompty/serverless/__init__.py,sha256=xoXOTRXO8C631swNKaa-ek5_R3X-87bJpTm0z_Rsg6A,282
18
+ prompty/serverless/executor.py,sha256=PUDJsYcJLQx9JSTh-R3HdJd0ehEC6w2Ch5OEqz52uVI,8395
19
+ prompty/serverless/processor.py,sha256=ZSL9y8JC-G4qbtWOSbQAqEcFMWEaLskyOr5VjLthelU,3660
20
+ prompty/tracer.py,sha256=WUR7PsvhBLQf7WcnKQPOeLeii9l4xPKB2owjvJ50d0E,10907
21
+ prompty/utils.py,sha256=jm7HEzOGk3zz8d5aquXK3zWIQWuDpBpJTzlz5sswtdg,2836
22
+ prompty-0.1.34.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: pdm-backend (2.3.3)
2
+ Generator: pdm-backend (2.4.3)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
@@ -0,0 +1,5 @@
1
+ [console_scripts]
2
+ prompty = prompty.cli:run
3
+
4
+ [gui_scripts]
5
+