prompty 0.1.10__py3-none-any.whl → 0.1.34__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- prompty/__init__.py +312 -117
- prompty/azure/__init__.py +10 -0
- prompty/azure/executor.py +218 -0
- prompty/azure/processor.py +142 -0
- prompty/cli.py +74 -28
- prompty/core.py +112 -225
- prompty/invoker.py +297 -0
- prompty/openai/__init__.py +10 -0
- prompty/openai/executor.py +114 -0
- prompty/{processors.py → openai/processor.py} +25 -15
- prompty/parsers.py +18 -1
- prompty/renderers.py +19 -2
- prompty/serverless/__init__.py +8 -0
- prompty/serverless/executor.py +240 -0
- prompty/serverless/processor.py +113 -0
- prompty/tracer.py +164 -30
- prompty/utils.py +105 -0
- prompty-0.1.34.dist-info/METADATA +219 -0
- prompty-0.1.34.dist-info/RECORD +22 -0
- {prompty-0.1.10.dist-info → prompty-0.1.34.dist-info}/WHEEL +1 -1
- prompty-0.1.34.dist-info/entry_points.txt +5 -0
- prompty/executors.py +0 -94
- prompty-0.1.10.dist-info/METADATA +0 -136
- prompty-0.1.10.dist-info/RECORD +0 -12
- {prompty-0.1.10.dist-info → prompty-0.1.34.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,114 @@
|
|
1
|
+
import importlib.metadata
|
2
|
+
from openai import OpenAI
|
3
|
+
from typing import Iterator
|
4
|
+
|
5
|
+
from prompty.tracer import Tracer
|
6
|
+
from ..core import Prompty, PromptyStream
|
7
|
+
from ..invoker import Invoker, InvokerFactory
|
8
|
+
|
9
|
+
VERSION = importlib.metadata.version("prompty")
|
10
|
+
|
11
|
+
|
12
|
+
@InvokerFactory.register_executor("openai")
|
13
|
+
class OpenAIExecutor(Invoker):
|
14
|
+
"""OpenAI Executor"""
|
15
|
+
|
16
|
+
def __init__(self, prompty: Prompty) -> None:
|
17
|
+
super().__init__(prompty)
|
18
|
+
self.kwargs = {
|
19
|
+
key: value
|
20
|
+
for key, value in self.prompty.model.configuration.items()
|
21
|
+
if key != "type"
|
22
|
+
}
|
23
|
+
|
24
|
+
self.api = self.prompty.model.api
|
25
|
+
self.deployment = self.prompty.model.configuration["azure_deployment"]
|
26
|
+
self.parameters = self.prompty.model.parameters
|
27
|
+
|
28
|
+
def invoke(self, data: any) -> any:
|
29
|
+
"""Invoke the OpenAI API
|
30
|
+
|
31
|
+
Parameters
|
32
|
+
----------
|
33
|
+
data : any
|
34
|
+
The data to send to the OpenAI API
|
35
|
+
|
36
|
+
Returns
|
37
|
+
-------
|
38
|
+
any
|
39
|
+
The response from the OpenAI API
|
40
|
+
"""
|
41
|
+
with Tracer.start("OpenAI") as trace:
|
42
|
+
trace("type", "LLM")
|
43
|
+
trace("signature", "OpenAI.ctor")
|
44
|
+
trace("description", "OpenAI Constructor")
|
45
|
+
trace("inputs", self.kwargs)
|
46
|
+
client = OpenAI(
|
47
|
+
default_headers={
|
48
|
+
"User-Agent": f"prompty/{VERSION}",
|
49
|
+
"x-ms-useragent": f"prompty/{VERSION}",
|
50
|
+
},
|
51
|
+
**self.kwargs,
|
52
|
+
)
|
53
|
+
trace("result", client)
|
54
|
+
|
55
|
+
with Tracer.start("create") as trace:
|
56
|
+
trace("type", "LLM")
|
57
|
+
trace("description", "OpenAI Prompty Execution Invoker")
|
58
|
+
|
59
|
+
if self.api == "chat":
|
60
|
+
trace("signature", "OpenAI.chat.completions.create")
|
61
|
+
args = {
|
62
|
+
"model": self.deployment,
|
63
|
+
"messages": data if isinstance(data, list) else [data],
|
64
|
+
**self.parameters,
|
65
|
+
}
|
66
|
+
trace("inputs", args)
|
67
|
+
response = client.chat.completions.create(**args)
|
68
|
+
|
69
|
+
elif self.api == "completion":
|
70
|
+
trace("signature", "OpenAI.completions.create")
|
71
|
+
args = {
|
72
|
+
"prompt": data.item,
|
73
|
+
"model": self.deployment,
|
74
|
+
**self.parameters,
|
75
|
+
}
|
76
|
+
trace("inputs", args)
|
77
|
+
response = client.completions.create(**args)
|
78
|
+
|
79
|
+
elif self.api == "embedding":
|
80
|
+
trace("signature", "OpenAI.embeddings.create")
|
81
|
+
args = {
|
82
|
+
"input": data if isinstance(data, list) else [data],
|
83
|
+
"model": self.deployment,
|
84
|
+
**self.parameters,
|
85
|
+
}
|
86
|
+
trace("inputs", args)
|
87
|
+
response = client.embeddings.create(**args)
|
88
|
+
|
89
|
+
elif self.api == "image":
|
90
|
+
raise NotImplementedError("OpenAI Image API is not implemented yet")
|
91
|
+
|
92
|
+
# stream response
|
93
|
+
if isinstance(response, Iterator):
|
94
|
+
stream = PromptyStream("AzureOpenAIExecutor", response)
|
95
|
+
trace("result", stream)
|
96
|
+
return stream
|
97
|
+
else:
|
98
|
+
trace("result", response)
|
99
|
+
return response
|
100
|
+
|
101
|
+
async def invoke_async(self, data: str) -> str:
|
102
|
+
"""Invoke the Prompty Chat Parser (Async)
|
103
|
+
|
104
|
+
Parameters
|
105
|
+
----------
|
106
|
+
data : str
|
107
|
+
The data to parse
|
108
|
+
|
109
|
+
Returns
|
110
|
+
-------
|
111
|
+
str
|
112
|
+
The parsed data
|
113
|
+
"""
|
114
|
+
return self.invoke(data)
|
@@ -1,38 +1,30 @@
|
|
1
1
|
from typing import Iterator
|
2
|
-
from pydantic import BaseModel
|
3
2
|
from openai.types.completion import Completion
|
4
3
|
from openai.types.chat.chat_completion import ChatCompletion
|
5
|
-
from
|
4
|
+
from ..invoker import Invoker, InvokerFactory
|
5
|
+
from ..core import Prompty, PromptyStream, ToolCall
|
6
6
|
from openai.types.create_embedding_response import CreateEmbeddingResponse
|
7
7
|
|
8
8
|
|
9
|
-
class ToolCall(BaseModel):
|
10
|
-
id: str
|
11
|
-
name: str
|
12
|
-
arguments: str
|
13
|
-
|
14
|
-
|
15
9
|
@InvokerFactory.register_processor("openai")
|
16
|
-
@InvokerFactory.register_processor("azure")
|
17
|
-
@InvokerFactory.register_processor("azure_openai")
|
18
10
|
class OpenAIProcessor(Invoker):
|
19
|
-
"""OpenAI
|
11
|
+
"""OpenAI Processor"""
|
20
12
|
|
21
13
|
def __init__(self, prompty: Prompty) -> None:
|
22
14
|
super().__init__(prompty)
|
23
15
|
|
24
16
|
def invoke(self, data: any) -> any:
|
25
|
-
"""Invoke the OpenAI
|
17
|
+
"""Invoke the OpenAI API
|
26
18
|
|
27
19
|
Parameters
|
28
20
|
----------
|
29
21
|
data : any
|
30
|
-
The data to send to the OpenAI
|
22
|
+
The data to send to the OpenAI API
|
31
23
|
|
32
24
|
Returns
|
33
25
|
-------
|
34
26
|
any
|
35
|
-
The response from the OpenAI
|
27
|
+
The response from the OpenAI API
|
36
28
|
"""
|
37
29
|
if isinstance(data, ChatCompletion):
|
38
30
|
response = data.choices[0].message
|
@@ -62,10 +54,28 @@ class OpenAIProcessor(Invoker):
|
|
62
54
|
|
63
55
|
def generator():
|
64
56
|
for chunk in data:
|
65
|
-
if
|
57
|
+
if (
|
58
|
+
len(chunk.choices) == 1
|
59
|
+
and chunk.choices[0].delta.content != None
|
60
|
+
):
|
66
61
|
content = chunk.choices[0].delta.content
|
67
62
|
yield content
|
68
63
|
|
69
64
|
return PromptyStream("OpenAIProcessor", generator())
|
70
65
|
else:
|
71
66
|
return data
|
67
|
+
|
68
|
+
async def invoke_async(self, data: str) -> str:
|
69
|
+
"""Invoke the Prompty Chat Parser (Async)
|
70
|
+
|
71
|
+
Parameters
|
72
|
+
----------
|
73
|
+
data : str
|
74
|
+
The data to parse
|
75
|
+
|
76
|
+
Returns
|
77
|
+
-------
|
78
|
+
str
|
79
|
+
The parsed data
|
80
|
+
"""
|
81
|
+
return self.invoke(data)
|
prompty/parsers.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1
1
|
import re
|
2
2
|
import base64
|
3
|
-
from .core import
|
3
|
+
from .core import Prompty
|
4
|
+
from .invoker import Invoker, InvokerFactory
|
4
5
|
|
5
6
|
|
6
7
|
@InvokerFactory.register_parser("prompty.chat")
|
@@ -137,3 +138,19 @@ class PromptyChatParser(Invoker):
|
|
137
138
|
messages.append({"role": role, "content": self.parse_content(content)})
|
138
139
|
|
139
140
|
return messages
|
141
|
+
|
142
|
+
|
143
|
+
async def invoke_async(self, data: str) -> str:
|
144
|
+
""" Invoke the Prompty Chat Parser (Async)
|
145
|
+
|
146
|
+
Parameters
|
147
|
+
----------
|
148
|
+
data : str
|
149
|
+
The data to parse
|
150
|
+
|
151
|
+
Returns
|
152
|
+
-------
|
153
|
+
str
|
154
|
+
The parsed data
|
155
|
+
"""
|
156
|
+
return self.invoke(data)
|
prompty/renderers.py
CHANGED
@@ -1,10 +1,12 @@
|
|
1
|
+
from .core import Prompty
|
1
2
|
from jinja2 import DictLoader, Environment
|
2
|
-
from .
|
3
|
+
from .invoker import Invoker, InvokerFactory
|
3
4
|
|
4
5
|
|
5
6
|
@InvokerFactory.register_renderer("jinja2")
|
6
7
|
class Jinja2Renderer(Invoker):
|
7
|
-
"""
|
8
|
+
"""Jinja2 Renderer"""
|
9
|
+
|
8
10
|
def __init__(self, prompty: Prompty) -> None:
|
9
11
|
super().__init__(prompty)
|
10
12
|
self.templates = {}
|
@@ -21,3 +23,18 @@ class Jinja2Renderer(Invoker):
|
|
21
23
|
t = env.get_template(self.name)
|
22
24
|
generated = t.render(**data)
|
23
25
|
return generated
|
26
|
+
|
27
|
+
async def invoke_async(self, data: str) -> str:
|
28
|
+
"""Invoke the Prompty Chat Parser (Async)
|
29
|
+
|
30
|
+
Parameters
|
31
|
+
----------
|
32
|
+
data : str
|
33
|
+
The data to parse
|
34
|
+
|
35
|
+
Returns
|
36
|
+
-------
|
37
|
+
str
|
38
|
+
The parsed data
|
39
|
+
"""
|
40
|
+
return self.invoke(data)
|
@@ -0,0 +1,8 @@
|
|
1
|
+
# __init__.py
|
2
|
+
from prompty.invoker import InvokerException
|
3
|
+
|
4
|
+
try:
|
5
|
+
from .executor import ServerlessExecutor
|
6
|
+
from .processor import ServerlessProcessor
|
7
|
+
except ImportError:
|
8
|
+
raise InvokerException("Error registering ServerlessExecutor and ServerlessProcessor", "serverless")
|
@@ -0,0 +1,240 @@
|
|
1
|
+
import azure.identity
|
2
|
+
import importlib.metadata
|
3
|
+
from typing import Iterator
|
4
|
+
from azure.core.credentials import AzureKeyCredential
|
5
|
+
from azure.ai.inference import (
|
6
|
+
ChatCompletionsClient,
|
7
|
+
EmbeddingsClient,
|
8
|
+
)
|
9
|
+
|
10
|
+
from azure.ai.inference.aio import (
|
11
|
+
ChatCompletionsClient as AsyncChatCompletionsClient,
|
12
|
+
EmbeddingsClient as AsyncEmbeddingsClient,
|
13
|
+
)
|
14
|
+
from azure.ai.inference.models import (
|
15
|
+
StreamingChatCompletions,
|
16
|
+
AsyncStreamingChatCompletions,
|
17
|
+
)
|
18
|
+
|
19
|
+
from ..tracer import Tracer
|
20
|
+
from ..invoker import Invoker, InvokerFactory
|
21
|
+
from ..core import Prompty, PromptyStream, AsyncPromptyStream
|
22
|
+
|
23
|
+
VERSION = importlib.metadata.version("prompty")
|
24
|
+
|
25
|
+
|
26
|
+
@InvokerFactory.register_executor("serverless")
|
27
|
+
class ServerlessExecutor(Invoker):
|
28
|
+
"""Azure OpenAI Executor"""
|
29
|
+
|
30
|
+
def __init__(self, prompty: Prompty) -> None:
|
31
|
+
super().__init__(prompty)
|
32
|
+
|
33
|
+
self.endpoint = self.prompty.model.configuration["endpoint"]
|
34
|
+
self.model = self.prompty.model.configuration["model"]
|
35
|
+
|
36
|
+
# no key, use default credentials
|
37
|
+
if "key" not in self.kwargs:
|
38
|
+
self.credential = azure.identity.DefaultAzureCredential(
|
39
|
+
exclude_shared_token_cache_credential=True
|
40
|
+
)
|
41
|
+
else:
|
42
|
+
self.credential = AzureKeyCredential(
|
43
|
+
self.prompty.model.configuration["key"]
|
44
|
+
)
|
45
|
+
|
46
|
+
# api type
|
47
|
+
self.api = self.prompty.model.api
|
48
|
+
|
49
|
+
def _response(self, response: any) -> any:
|
50
|
+
# stream response
|
51
|
+
if isinstance(response, Iterator):
|
52
|
+
if isinstance(response, StreamingChatCompletions):
|
53
|
+
stream = PromptyStream("ServerlessExecutor", response)
|
54
|
+
return stream
|
55
|
+
elif isinstance(response, AsyncStreamingChatCompletions):
|
56
|
+
stream = AsyncPromptyStream("ServerlessExecutor", response)
|
57
|
+
return stream
|
58
|
+
else:
|
59
|
+
stream = PromptyStream("ServerlessExecutor", response)
|
60
|
+
|
61
|
+
return stream
|
62
|
+
else:
|
63
|
+
return response
|
64
|
+
|
65
|
+
def invoke(self, data: any) -> any:
|
66
|
+
"""Invoke the Serverless SDK
|
67
|
+
|
68
|
+
Parameters
|
69
|
+
----------
|
70
|
+
data : any
|
71
|
+
The data to send to the Serverless SDK
|
72
|
+
|
73
|
+
Returns
|
74
|
+
-------
|
75
|
+
any
|
76
|
+
The response from the Serverless SDK
|
77
|
+
"""
|
78
|
+
|
79
|
+
cargs = {
|
80
|
+
"endpoint": self.endpoint,
|
81
|
+
"credential": self.credential,
|
82
|
+
}
|
83
|
+
|
84
|
+
if self.api == "chat":
|
85
|
+
with Tracer.start("ChatCompletionsClient") as trace:
|
86
|
+
trace("type", "LLM")
|
87
|
+
trace("signature", "azure.ai.inference.ChatCompletionsClient.ctor")
|
88
|
+
trace(
|
89
|
+
"description", "Azure Unified Inference SDK Chat Completions Client"
|
90
|
+
)
|
91
|
+
trace("inputs", cargs)
|
92
|
+
client = ChatCompletionsClient(
|
93
|
+
user_agent=f"prompty/{VERSION}",
|
94
|
+
**cargs,
|
95
|
+
)
|
96
|
+
trace("result", client)
|
97
|
+
|
98
|
+
with Tracer.start("complete") as trace:
|
99
|
+
trace("type", "LLM")
|
100
|
+
trace("signature", "azure.ai.inference.ChatCompletionsClient.complete")
|
101
|
+
trace(
|
102
|
+
"description", "Azure Unified Inference SDK Chat Completions Client"
|
103
|
+
)
|
104
|
+
eargs = {
|
105
|
+
"model": self.model,
|
106
|
+
"messages": data if isinstance(data, list) else [data],
|
107
|
+
**self.prompty.model.parameters,
|
108
|
+
}
|
109
|
+
trace("inputs", eargs)
|
110
|
+
r = client.complete(**eargs)
|
111
|
+
trace("result", r)
|
112
|
+
|
113
|
+
response = self._response(r)
|
114
|
+
|
115
|
+
elif self.api == "completion":
|
116
|
+
raise NotImplementedError(
|
117
|
+
"Serverless Completions API is not implemented yet"
|
118
|
+
)
|
119
|
+
|
120
|
+
elif self.api == "embedding":
|
121
|
+
with Tracer.start("EmbeddingsClient") as trace:
|
122
|
+
trace("type", "LLM")
|
123
|
+
trace("signature", "azure.ai.inference.EmbeddingsClient.ctor")
|
124
|
+
trace("description", "Azure Unified Inference SDK Embeddings Client")
|
125
|
+
trace("inputs", cargs)
|
126
|
+
client = EmbeddingsClient(
|
127
|
+
user_agent=f"prompty/{VERSION}",
|
128
|
+
**cargs,
|
129
|
+
)
|
130
|
+
trace("result", client)
|
131
|
+
|
132
|
+
with Tracer.start("complete") as trace:
|
133
|
+
trace("type", "LLM")
|
134
|
+
trace("signature", "azure.ai.inference.ChatCompletionsClient.complete")
|
135
|
+
trace(
|
136
|
+
"description", "Azure Unified Inference SDK Chat Completions Client"
|
137
|
+
)
|
138
|
+
eargs = {
|
139
|
+
"model": self.model,
|
140
|
+
"input": data if isinstance(data, list) else [data],
|
141
|
+
**self.prompty.model.parameters,
|
142
|
+
}
|
143
|
+
trace("inputs", eargs)
|
144
|
+
r = client.complete(**eargs)
|
145
|
+
trace("result", r)
|
146
|
+
|
147
|
+
response = self._response(r)
|
148
|
+
|
149
|
+
elif self.api == "image":
|
150
|
+
raise NotImplementedError("Azure OpenAI Image API is not implemented yet")
|
151
|
+
|
152
|
+
return response
|
153
|
+
|
154
|
+
async def invoke_async(self, data: str) -> str:
|
155
|
+
"""Invoke the Prompty Chat Parser (Async)
|
156
|
+
|
157
|
+
Parameters
|
158
|
+
----------
|
159
|
+
data : str
|
160
|
+
The data to parse
|
161
|
+
|
162
|
+
Returns
|
163
|
+
-------
|
164
|
+
str
|
165
|
+
The parsed data
|
166
|
+
"""
|
167
|
+
cargs = {
|
168
|
+
"endpoint": self.endpoint,
|
169
|
+
"credential": self.credential,
|
170
|
+
}
|
171
|
+
|
172
|
+
if self.api == "chat":
|
173
|
+
with Tracer.start("ChatCompletionsClient") as trace:
|
174
|
+
trace("type", "LLM")
|
175
|
+
trace("signature", "azure.ai.inference.aio.ChatCompletionsClient.ctor")
|
176
|
+
trace(
|
177
|
+
"description", "Azure Unified Inference SDK Async Chat Completions Client"
|
178
|
+
)
|
179
|
+
trace("inputs", cargs)
|
180
|
+
client = AsyncChatCompletionsClient(
|
181
|
+
user_agent=f"prompty/{VERSION}",
|
182
|
+
**cargs,
|
183
|
+
)
|
184
|
+
trace("result", client)
|
185
|
+
|
186
|
+
with Tracer.start("complete") as trace:
|
187
|
+
trace("type", "LLM")
|
188
|
+
trace("signature", "azure.ai.inference.ChatCompletionsClient.complete")
|
189
|
+
trace(
|
190
|
+
"description", "Azure Unified Inference SDK Async Chat Completions Client"
|
191
|
+
)
|
192
|
+
eargs = {
|
193
|
+
"model": self.model,
|
194
|
+
"messages": data if isinstance(data, list) else [data],
|
195
|
+
**self.prompty.model.parameters,
|
196
|
+
}
|
197
|
+
trace("inputs", eargs)
|
198
|
+
r = await client.complete(**eargs)
|
199
|
+
trace("result", r)
|
200
|
+
|
201
|
+
response = self._response(r)
|
202
|
+
|
203
|
+
elif self.api == "completion":
|
204
|
+
raise NotImplementedError(
|
205
|
+
"Serverless Completions API is not implemented yet"
|
206
|
+
)
|
207
|
+
|
208
|
+
elif self.api == "embedding":
|
209
|
+
with Tracer.start("EmbeddingsClient") as trace:
|
210
|
+
trace("type", "LLM")
|
211
|
+
trace("signature", "azure.ai.inference.aio.EmbeddingsClient.ctor")
|
212
|
+
trace("description", "Azure Unified Inference SDK Async Embeddings Client")
|
213
|
+
trace("inputs", cargs)
|
214
|
+
client = AsyncEmbeddingsClient(
|
215
|
+
user_agent=f"prompty/{VERSION}",
|
216
|
+
**cargs,
|
217
|
+
)
|
218
|
+
trace("result", client)
|
219
|
+
|
220
|
+
with Tracer.start("complete") as trace:
|
221
|
+
trace("type", "LLM")
|
222
|
+
trace("signature", "azure.ai.inference.ChatCompletionsClient.complete")
|
223
|
+
trace(
|
224
|
+
"description", "Azure Unified Inference SDK Chat Completions Client"
|
225
|
+
)
|
226
|
+
eargs = {
|
227
|
+
"model": self.model,
|
228
|
+
"input": data if isinstance(data, list) else [data],
|
229
|
+
**self.prompty.model.parameters,
|
230
|
+
}
|
231
|
+
trace("inputs", eargs)
|
232
|
+
r = await client.complete(**eargs)
|
233
|
+
trace("result", r)
|
234
|
+
|
235
|
+
response = self._response(r)
|
236
|
+
|
237
|
+
elif self.api == "image":
|
238
|
+
raise NotImplementedError("Azure OpenAI Image API is not implemented yet")
|
239
|
+
|
240
|
+
return response
|
@@ -0,0 +1,113 @@
|
|
1
|
+
from typing import AsyncIterator, Iterator
|
2
|
+
from ..invoker import Invoker, InvokerFactory
|
3
|
+
from ..core import AsyncPromptyStream, Prompty, PromptyStream, ToolCall
|
4
|
+
|
5
|
+
from azure.ai.inference.models import ChatCompletions, EmbeddingsResult
|
6
|
+
|
7
|
+
|
8
|
+
@InvokerFactory.register_processor("serverless")
|
9
|
+
class ServerlessProcessor(Invoker):
|
10
|
+
"""OpenAI Processor"""
|
11
|
+
|
12
|
+
def __init__(self, prompty: Prompty) -> None:
|
13
|
+
super().__init__(prompty)
|
14
|
+
|
15
|
+
def invoke(self, data: any) -> any:
|
16
|
+
"""Invoke the OpenAI API
|
17
|
+
|
18
|
+
Parameters
|
19
|
+
----------
|
20
|
+
data : any
|
21
|
+
The data to send to the OpenAI API
|
22
|
+
|
23
|
+
Returns
|
24
|
+
-------
|
25
|
+
any
|
26
|
+
The response from the OpenAI API
|
27
|
+
"""
|
28
|
+
if isinstance(data, ChatCompletions):
|
29
|
+
response = data.choices[0].message
|
30
|
+
# tool calls available in response
|
31
|
+
if response.tool_calls:
|
32
|
+
return [
|
33
|
+
ToolCall(
|
34
|
+
id=tool_call.id,
|
35
|
+
name=tool_call.function.name,
|
36
|
+
arguments=tool_call.function.arguments,
|
37
|
+
)
|
38
|
+
for tool_call in response.tool_calls
|
39
|
+
]
|
40
|
+
else:
|
41
|
+
return response.content
|
42
|
+
|
43
|
+
elif isinstance(data, EmbeddingsResult):
|
44
|
+
if len(data.data) == 0:
|
45
|
+
raise ValueError("Invalid data")
|
46
|
+
elif len(data.data) == 1:
|
47
|
+
return data.data[0].embedding
|
48
|
+
else:
|
49
|
+
return [item.embedding for item in data.data]
|
50
|
+
elif isinstance(data, Iterator):
|
51
|
+
|
52
|
+
def generator():
|
53
|
+
for chunk in data:
|
54
|
+
if (
|
55
|
+
len(chunk.choices) == 1
|
56
|
+
and chunk.choices[0].delta.content != None
|
57
|
+
):
|
58
|
+
content = chunk.choices[0].delta.content
|
59
|
+
yield content
|
60
|
+
|
61
|
+
return PromptyStream("ServerlessProcessor", generator())
|
62
|
+
else:
|
63
|
+
return data
|
64
|
+
|
65
|
+
async def invoke_async(self, data: str) -> str:
|
66
|
+
"""Invoke the Prompty Chat Parser (Async)
|
67
|
+
|
68
|
+
Parameters
|
69
|
+
----------
|
70
|
+
data : str
|
71
|
+
The data to parse
|
72
|
+
|
73
|
+
Returns
|
74
|
+
-------
|
75
|
+
str
|
76
|
+
The parsed data
|
77
|
+
"""
|
78
|
+
if isinstance(data, ChatCompletions):
|
79
|
+
response = data.choices[0].message
|
80
|
+
# tool calls available in response
|
81
|
+
if response.tool_calls:
|
82
|
+
return [
|
83
|
+
ToolCall(
|
84
|
+
id=tool_call.id,
|
85
|
+
name=tool_call.function.name,
|
86
|
+
arguments=tool_call.function.arguments,
|
87
|
+
)
|
88
|
+
for tool_call in response.tool_calls
|
89
|
+
]
|
90
|
+
else:
|
91
|
+
return response.content
|
92
|
+
|
93
|
+
elif isinstance(data, EmbeddingsResult):
|
94
|
+
if len(data.data) == 0:
|
95
|
+
raise ValueError("Invalid data")
|
96
|
+
elif len(data.data) == 1:
|
97
|
+
return data.data[0].embedding
|
98
|
+
else:
|
99
|
+
return [item.embedding for item in data.data]
|
100
|
+
elif isinstance(data, AsyncIterator):
|
101
|
+
|
102
|
+
async def generator():
|
103
|
+
async for chunk in data:
|
104
|
+
if (
|
105
|
+
len(chunk.choices) == 1
|
106
|
+
and chunk.choices[0].delta.content != None
|
107
|
+
):
|
108
|
+
content = chunk.choices[0].delta.content
|
109
|
+
yield content
|
110
|
+
|
111
|
+
return AsyncPromptyStream("ServerlessProcessor", generator())
|
112
|
+
else:
|
113
|
+
return data
|