pref_voting 1.16.31__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (92) hide show
  1. pref_voting/__init__.py +1 -0
  2. pref_voting/analysis.py +496 -0
  3. pref_voting/axiom.py +38 -0
  4. pref_voting/axiom_helpers.py +129 -0
  5. pref_voting/axioms.py +10 -0
  6. pref_voting/c1_methods.py +963 -0
  7. pref_voting/combined_methods.py +514 -0
  8. pref_voting/create_methods.py +128 -0
  9. pref_voting/data/examples/condorcet_winner/minimal_Anti-Plurality.soc +16 -0
  10. pref_voting/data/examples/condorcet_winner/minimal_Borda.soc +17 -0
  11. pref_voting/data/examples/condorcet_winner/minimal_Bracket_Voting.soc +20 -0
  12. pref_voting/data/examples/condorcet_winner/minimal_Bucklin.soc +19 -0
  13. pref_voting/data/examples/condorcet_winner/minimal_Coombs.soc +20 -0
  14. pref_voting/data/examples/condorcet_winner/minimal_Coombs_PUT.soc +20 -0
  15. pref_voting/data/examples/condorcet_winner/minimal_Coombs_TB.soc +20 -0
  16. pref_voting/data/examples/condorcet_winner/minimal_Dowdall.soc +19 -0
  17. pref_voting/data/examples/condorcet_winner/minimal_Instant_Runoff.soc +18 -0
  18. pref_voting/data/examples/condorcet_winner/minimal_Instant_Runoff_PUT.soc +18 -0
  19. pref_voting/data/examples/condorcet_winner/minimal_Instant_Runoff_TB.soc +18 -0
  20. pref_voting/data/examples/condorcet_winner/minimal_Iterated_Removal_Condorcet_Loser.soc +17 -0
  21. pref_voting/data/examples/condorcet_winner/minimal_Pareto.soc +17 -0
  22. pref_voting/data/examples/condorcet_winner/minimal_Plurality.soc +18 -0
  23. pref_voting/data/examples/condorcet_winner/minimal_PluralityWRunoff_PUT.soc +18 -0
  24. pref_voting/data/examples/condorcet_winner/minimal_Positive-Negative_Voting.soc +17 -0
  25. pref_voting/data/examples/condorcet_winner/minimal_Simplified_Bucklin.soc +18 -0
  26. pref_voting/data/examples/condorcet_winner/minimal_Superior_Voting.soc +19 -0
  27. pref_voting/data/examples/condorcet_winner/minimal_Weighted_Bucklin.soc +19 -0
  28. pref_voting/data/examples/condorcet_winner/minimal_resolute_Anti-Plurality.soc +17 -0
  29. pref_voting/data/examples/condorcet_winner/minimal_resolute_Borda.soc +17 -0
  30. pref_voting/data/examples/condorcet_winner/minimal_resolute_Bracket_Voting.soc +20 -0
  31. pref_voting/data/examples/condorcet_winner/minimal_resolute_Bucklin.soc +19 -0
  32. pref_voting/data/examples/condorcet_winner/minimal_resolute_Coombs.soc +21 -0
  33. pref_voting/data/examples/condorcet_winner/minimal_resolute_Coombs_PUT.soc +21 -0
  34. pref_voting/data/examples/condorcet_winner/minimal_resolute_Coombs_TB.soc +20 -0
  35. pref_voting/data/examples/condorcet_winner/minimal_resolute_Dowdall.soc +18 -0
  36. pref_voting/data/examples/condorcet_winner/minimal_resolute_Instant_Runoff.soc +18 -0
  37. pref_voting/data/examples/condorcet_winner/minimal_resolute_Instant_Runoff_PUT.soc +18 -0
  38. pref_voting/data/examples/condorcet_winner/minimal_resolute_Instant_Runoff_TB.soc +18 -0
  39. pref_voting/data/examples/condorcet_winner/minimal_resolute_Plurality.soc +18 -0
  40. pref_voting/data/examples/condorcet_winner/minimal_resolute_PluralityWRunoff_PUT.soc +18 -0
  41. pref_voting/data/examples/condorcet_winner/minimal_resolute_Positive-Negative_Voting.soc +17 -0
  42. pref_voting/data/examples/condorcet_winner/minimal_resolute_Simplified_Bucklin.soc +20 -0
  43. pref_voting/data/examples/condorcet_winner/minimal_resolute_Weighted_Bucklin.soc +19 -0
  44. pref_voting/data/voting_methods_properties.json +414 -0
  45. pref_voting/data/voting_methods_properties.json.lock +0 -0
  46. pref_voting/dominance_axioms.py +387 -0
  47. pref_voting/generate_profiles.py +801 -0
  48. pref_voting/generate_spatial_profiles.py +198 -0
  49. pref_voting/generate_utility_profiles.py +160 -0
  50. pref_voting/generate_weighted_majority_graphs.py +506 -0
  51. pref_voting/grade_methods.py +184 -0
  52. pref_voting/grade_profiles.py +357 -0
  53. pref_voting/helper.py +370 -0
  54. pref_voting/invariance_axioms.py +671 -0
  55. pref_voting/io/__init__.py +0 -0
  56. pref_voting/io/readers.py +432 -0
  57. pref_voting/io/writers.py +256 -0
  58. pref_voting/iterative_methods.py +2425 -0
  59. pref_voting/maj_graph_ex1.png +0 -0
  60. pref_voting/mappings.py +577 -0
  61. pref_voting/margin_based_methods.py +2345 -0
  62. pref_voting/monotonicity_axioms.py +872 -0
  63. pref_voting/num_evaluation_method.py +77 -0
  64. pref_voting/other_axioms.py +161 -0
  65. pref_voting/other_methods.py +939 -0
  66. pref_voting/pairwise_profiles.py +547 -0
  67. pref_voting/prob_voting_method.py +105 -0
  68. pref_voting/probabilistic_methods.py +287 -0
  69. pref_voting/profiles.py +856 -0
  70. pref_voting/profiles_with_ties.py +1069 -0
  71. pref_voting/rankings.py +466 -0
  72. pref_voting/scoring_methods.py +481 -0
  73. pref_voting/social_welfare_function.py +59 -0
  74. pref_voting/social_welfare_functions.py +7 -0
  75. pref_voting/spatial_profiles.py +448 -0
  76. pref_voting/stochastic_methods.py +99 -0
  77. pref_voting/strategic_axioms.py +1394 -0
  78. pref_voting/swf_axioms.py +173 -0
  79. pref_voting/utility_functions.py +102 -0
  80. pref_voting/utility_methods.py +178 -0
  81. pref_voting/utility_profiles.py +333 -0
  82. pref_voting/variable_candidate_axioms.py +640 -0
  83. pref_voting/variable_voter_axioms.py +3747 -0
  84. pref_voting/voting_method.py +355 -0
  85. pref_voting/voting_method_properties.py +92 -0
  86. pref_voting/voting_methods.py +8 -0
  87. pref_voting/voting_methods_registry.py +136 -0
  88. pref_voting/weighted_majority_graphs.py +1539 -0
  89. pref_voting-1.16.31.dist-info/METADATA +208 -0
  90. pref_voting-1.16.31.dist-info/RECORD +92 -0
  91. pref_voting-1.16.31.dist-info/WHEEL +4 -0
  92. pref_voting-1.16.31.dist-info/licenses/LICENSE.txt +21 -0
@@ -0,0 +1,208 @@
1
+ Metadata-Version: 2.4
2
+ Name: pref_voting
3
+ Version: 1.16.31
4
+ Summary: pref_voting is a Python package that contains tools to reason about elections and margin graphs, and implementations of voting methods.
5
+ License: MIT
6
+ License-File: LICENSE.txt
7
+ Author: Eric Pacuit
8
+ Author-email: epacuit@umd.edu
9
+ Requires-Python: >=3.10,<4.0
10
+ Classifier: License :: OSI Approved :: MIT License
11
+ Classifier: Programming Language :: Python :: 3
12
+ Classifier: Programming Language :: Python :: 3.10
13
+ Classifier: Programming Language :: Python :: 3.11
14
+ Classifier: Programming Language :: Python :: 3.12
15
+ Classifier: Programming Language :: Python :: 3.13
16
+ Classifier: Programming Language :: Python :: 3.14
17
+ Requires-Dist: filelock (>=3.12.2,<4.0.0)
18
+ Requires-Dist: matplotlib (>=3.5.2,<4.0.0)
19
+ Requires-Dist: nashpy (>=0.0.40,<0.0.41)
20
+ Requires-Dist: networkx (>=3.0,<4.0)
21
+ Requires-Dist: numba (>=0.61.0,<0.62.0)
22
+ Requires-Dist: ortools (>=9.8.0,<10.0.0)
23
+ Requires-Dist: pathos (>=0.3.3,<0.4.0)
24
+ Requires-Dist: preflibtools (>=2.0.22,<3.0.0)
25
+ Requires-Dist: prefsampling (>=0.1.16,<0.2.0)
26
+ Requires-Dist: random2 (>=1.0.1,<2.0.0)
27
+ Requires-Dist: scipy (>=1.0.0,<2.0.0)
28
+ Requires-Dist: seaborn (>=0.13.2,<0.14.0)
29
+ Requires-Dist: tabulate (>=0.9.0,<0.10.0)
30
+ Project-URL: Homepage, https://github.com/voting-tools/pref_voting
31
+ Project-URL: Repository, https://github.com/voting-tools/pref_voting
32
+ Description-Content-Type: text/markdown
33
+
34
+ pref_voting
35
+ ==========
36
+ [![DOI](https://joss.theoj.org/papers/10.21105/joss.07020/status.svg)](https://doi.org/10.21105/joss.07020) [![DOI](https://zenodo.org/badge/578984957.svg)](https://doi.org/10.5281/zenodo.14675583)
37
+
38
+ [![Tests](https://github.com/voting-tools/pref_voting/actions/workflows/tests.yml/badge.svg)](https://github.com/voting-tools/pref_voting/actions/workflows/tests.yml)
39
+
40
+
41
+ > [!NOTE]
42
+ > - [**Documentation**](https://pref-voting.readthedocs.io/)
43
+ > - [**Installation**](https://pref-voting.readthedocs.io/en/latest/installation.html)
44
+ > - [**Example Notebooks**](https://github.com/voting-tools/pref_voting/tree/main/examples)
45
+ > - [**Example Elections**](https://github.com/voting-tools/election-analysis)
46
+ > - [**► pref_voting web app**](https://pref.tools/pref_voting/)
47
+
48
+ See the [COMSOC community page](https://comsoc-community.org/tools) for an overview of other software tools related to Computational Social Choice.
49
+
50
+ ## Installation
51
+
52
+ The package can be installed using the ``pip3`` package manager:
53
+
54
+ ```bash
55
+ pip3 install pref_voting
56
+ ```
57
+ **Notes**:
58
+ * The package requires Python 3.10 or higher and has been tested on Python 3.12.
59
+
60
+ * Since the package uses Numba, refer to the [Numba documentation for the latest supported Python version](https://numba.readthedocs.io/en/stable/user/installing.html#version-support-information).
61
+ * If you have both Python 2 and Python 3 installed on your system, make sure to use ``pip3`` instead of pip to install packages for Python 3. Alternatively, you can use ``python3 -m pip`` to ensure you're using the correct version of pip. If you have modified your system's defaults or soft links, adjust accordingly.
62
+
63
+ See the [installation guide](https://pref-voting.readthedocs.io/en/latest/installation.html) for more detailed instructions.
64
+
65
+ ## Example Usage
66
+
67
+ A profile (of linear orders over the candidates) is created by initializing a `Profile` class object. Simply provide a list of rankings (each ranking is a tuple of numbers) and a list giving the number of voters with each ranking:
68
+
69
+ ```python
70
+ from pref_voting.profiles import Profile
71
+
72
+ rankings = [
73
+ (0, 1, 2, 3), # candidate 0 is ranked first, candidate 1 is ranked second, candidate 2 is ranked 3rd, and candidate 3 is ranked last.
74
+ (2, 3, 1, 0),
75
+ (3, 1, 2, 0),
76
+ (1, 2, 0, 3),
77
+ (1, 3, 2, 0)]
78
+
79
+ rcounts = [5, 3, 2, 4, 3] # 5 voters submitted the first ranking (0, 1, 2, 3), 3 voters submitted the second ranking, and so on.
80
+
81
+ prof = Profile(rankings, rcounts=rcounts)
82
+
83
+ prof.display() # display the profile
84
+ ```
85
+
86
+ The function `generate_profile` is used to generate a profile for a given number of candidates and voters:
87
+
88
+ ```python
89
+ from pref_voting.generate_profiles import generate_profile
90
+
91
+ # generate a profile using the Impartial Culture probability model
92
+ prof = generate_profile(3, 4) # prof is a Profile object with 3 candidates and 4 voters
93
+
94
+ # generate a profile using the Impartial Anonymous Culture probability model
95
+ prof = generate_profile(3, 4, probmod = "IAC") # prof is a Profile object with 3 candidates and 4 voters
96
+ ```
97
+
98
+ The `Profile` class has a number of methods that can be used to analyze the profile. For example, to determine the margin of victory between two candidates, the plurality scores, the Copeland scores, the Borda scores, the Condorcet winner, the weak Condorcet winner, and the Condorcet loser, and whether the profile is uniquely weighted, use the following code:
99
+
100
+ ```python
101
+
102
+ prof = Profile([
103
+ [2, 1, 0, 3],
104
+ [3, 2, 0, 1],
105
+ [3, 1, 0, 2]],
106
+ rcounts=[2, 2, 3])
107
+
108
+ prof.display()
109
+
110
+ print(f"The margin of 1 over 3 is {prof.margin(1, 3)}")
111
+ print(f"The Plurality scores are {prof.plurality_scores()}")
112
+ print(f"The Copeland scores are {prof.copeland_scores()}")
113
+ print(f"The Borda scores are {prof.borda_scores()}")
114
+ print(f"The Condorcet winner is {prof.condorcet_winner()}")
115
+ print(f"The weak Condorcet winner is {prof.weak_condorcet_winner()}")
116
+ print(f"The Condorcet loser is {prof.condorcet_loser()}")
117
+ print(f"The profile is uniquely weighted: {prof.is_uniquely_weighted()}")
118
+
119
+ ```
120
+
121
+ To use one of the many voting methods, import the function from `pref_voting.voting_methods` and apply it to the profile:
122
+
123
+ ```python
124
+ from pref_voting.generate_profiles import generate_profile
125
+ from pref_voting.voting_methods import *
126
+
127
+ prof = generate_profile(3, 4) # create a profile with 3 candidates and 4 voters
128
+ split_cycle(prof) # returns the sorted list of winning candidates
129
+ split_cycle.display(prof) # displays the winning candidates
130
+
131
+ ```
132
+
133
+ Additional notebooks that demonstrate how to use the package can be found in the [examples directory](https://github.com/voting-tools/pref_voting/tree/main/examples)
134
+
135
+ Some interesting political elections are analyzed using pref_voting in the [election-analysis repository](https://github.com/voting-tools/election-analysis).
136
+
137
+ Consult the documentation [https://pref-voting.readthedocs.io](https://pref-voting.readthedocs.io) for a complete overview of the package.
138
+
139
+
140
+ ## Testing
141
+
142
+ To ensure that the package is working correctly, you can run the test suite using [pytest](https://docs.pytest.org/en/stable/). The test files are located in the `tests` directory. Follow the instructions below based on your setup.
143
+
144
+ ### Prerequisites
145
+
146
+ - **Python 3.9 or higher**: Ensure you have a compatible version of Python installed.
147
+ - **`pytest`**: Install `pytest` if it's not already installed.
148
+
149
+ ### Running the tests
150
+
151
+ If you are using **Poetry** to manage your dependencies, run the tests with:
152
+
153
+ ```bash
154
+ poetry run pytest
155
+
156
+ ```
157
+
158
+ From the command line, run:
159
+
160
+ ```bash
161
+ pytest
162
+ ```
163
+
164
+ For more detailed output, add the -v or --verbose flag:
165
+
166
+ ```bash
167
+ pytest -v
168
+ ```
169
+
170
+ ## How to cite
171
+
172
+ If you would like to acknowledge our work in a scientific paper,
173
+ please use the following citation:
174
+
175
+ Wesley H. Holliday and Eric Pacuit (2025). pref_voting: The Preferential Voting Tools package for Python. Journal of Open Source Software, 10(105), 7020. https://doi.org/10.21105/joss.07020
176
+
177
+ ### BibTeX:
178
+
179
+ ```bibtex
180
+ @article{HollidayPacuit2025,
181
+ author = {Wesley H. Holliday and Eric Pacuit},
182
+ title = {pref_voting: The Preferential Voting Tools package for Python},
183
+ journal = {Journal of Open Source Software},
184
+ year = {2025},
185
+ publisher = {The Open Journal},
186
+ volume = {10},
187
+ number = {105},
188
+ pages = {7020},
189
+ doi = {10.21105/joss.07020}
190
+ }
191
+
192
+ ```
193
+
194
+ Alternatively, you can cite the archived code repository
195
+ at [zenodo](https://doi.org/10.5281/zenodo.14675583).
196
+
197
+ ## Contributing
198
+
199
+ If you would like to contribute to the project, please see the [contributing guidelines](CONTRIBUTING.md).
200
+
201
+ ## Questions?
202
+
203
+ Feel free to [send an email](https://pacuit.org/) if you have questions about the project.
204
+
205
+ ## License
206
+
207
+ [MIT](https://github.com/voting-tools/pref_voting/blob/main/LICENSE.txt)
208
+
@@ -0,0 +1,92 @@
1
+ pref_voting/__init__.py,sha256=RGIBEpMe14rokrhJ03TcFlRORtpJRq6-n37IIugmDSo,24
2
+ pref_voting/analysis.py,sha256=2YEWqTR6phI3sMIWh-tsm0QOmOgTszBwwUFrXvszrbg,21025
3
+ pref_voting/axiom.py,sha256=aTON7iEnJywuMHwlNXsF-1KYVccMnylrzfnk52kJX6g,1270
4
+ pref_voting/axiom_helpers.py,sha256=3APt16me9ZhA8K-GI0PYf9x_Cwe4N4Is1fyG8_jDA1o,3904
5
+ pref_voting/axioms.py,sha256=zU9s2kCrqdPY-MGkR8gXQHwwW64CdIPoVnZZSN1Gkbc,401
6
+ pref_voting/c1_methods.py,sha256=9sRyyVqifUr0P6Fp9ot3W_e_ilogn_KH3HRjidPKXQw,36362
7
+ pref_voting/combined_methods.py,sha256=ZXZy0W5JNt1TlwwzsPb6-fjAevdgVH8n-f4nLP3BXjU,17324
8
+ pref_voting/create_methods.py,sha256=iaPoyExDgQFjw_pAEZBewRhFPVtbimKEkml5YUKvPNM,3523
9
+ pref_voting/data/examples/condorcet_winner/minimal_Anti-Plurality.soc,sha256=jeyTcVQ_CDWZrgiIoNGbv5YxfgQrhrPepU4KM6N4SZ4,334
10
+ pref_voting/data/examples/condorcet_winner/minimal_Borda.soc,sha256=W9HEItiv-jR82_LGKmvH-NgYzuAz0kqSkpxxXEJ9rZM,336
11
+ pref_voting/data/examples/condorcet_winner/minimal_Bracket_Voting.soc,sha256=NQmNUzs-6v7DVeHXe9FSGGU8uTglB3M3i-MgAWefAb4,422
12
+ pref_voting/data/examples/condorcet_winner/minimal_Bucklin.soc,sha256=yXAv4KBHp_rV34VKw95TvcfNvBsUHW-hRnnEd78VfuA,360
13
+ pref_voting/data/examples/condorcet_winner/minimal_Coombs.soc,sha256=iFkLAwksRGZWRnY0xjCMs4udZyx9Mwx61zLi7ggVq64,370
14
+ pref_voting/data/examples/condorcet_winner/minimal_Coombs_PUT.soc,sha256=MVeygs_6UKbSNxPiVW3Jsrecp41y7oIWPv2do6dxGfE,374
15
+ pref_voting/data/examples/condorcet_winner/minimal_Coombs_TB.soc,sha256=Mjpe470w4vPml8S1v19hkEP-zUPEA263uRV3rLzcksc,373
16
+ pref_voting/data/examples/condorcet_winner/minimal_Dowdall.soc,sha256=sBuQFzlSZ0V13r2CKnxZ8cp_TuEezVvPkJz7bFQ3GG8,360
17
+ pref_voting/data/examples/condorcet_winner/minimal_Instant_Runoff.soc,sha256=BU8oYuFqPxwZ9yMWK4K0RgdTCsATNeMkdsSUojsLSVg,356
18
+ pref_voting/data/examples/condorcet_winner/minimal_Instant_Runoff_PUT.soc,sha256=EwZQs6BT1LB8Dc15Wzn2GM2sMtj4tEvabq0yF_yBwjI,360
19
+ pref_voting/data/examples/condorcet_winner/minimal_Instant_Runoff_TB.soc,sha256=498oIk3HuIvlfUy3TJydfYDYtDDMC3JPS0doQpVcW1c,359
20
+ pref_voting/data/examples/condorcet_winner/minimal_Iterated_Removal_Condorcet_Loser.soc,sha256=tANbsjNzFIDEfc3bj4DLr5drbvsS3BFtu64aZxEkjW4,363
21
+ pref_voting/data/examples/condorcet_winner/minimal_Pareto.soc,sha256=QcTxE2zey4NxKzRCi1eDaFvkVcSqrOlpefzh61inwCo,337
22
+ pref_voting/data/examples/condorcet_winner/minimal_Plurality.soc,sha256=JZK0ixg15orO8Dnc0E5GwcJvboOnjOGvMbBfUIecBAo,351
23
+ pref_voting/data/examples/condorcet_winner/minimal_PluralityWRunoff_PUT.soc,sha256=dud8BVrMDLpOIQEKkK2Hc0-5hS7_OopKZezhLXDA2U4,362
24
+ pref_voting/data/examples/condorcet_winner/minimal_Positive-Negative_Voting.soc,sha256=DRwV8cjoYO5zRM62qsnMtOkvD6ZFrbsKhOAEnjFUpVE,355
25
+ pref_voting/data/examples/condorcet_winner/minimal_Simplified_Bucklin.soc,sha256=KgEbYF7doP2XO5gL8p1pNFzKW2iVjzCMqLthAo3vnM4,360
26
+ pref_voting/data/examples/condorcet_winner/minimal_Superior_Voting.soc,sha256=oeXB30ZATHatGOCt4ZwGAw-C9nM8mIJKL3kP1pMRzSs,390
27
+ pref_voting/data/examples/condorcet_winner/minimal_Weighted_Bucklin.soc,sha256=4T8RIPv_25DNi51WN4Wi4Foj15RdZ74Uxbop-1a-2H4,369
28
+ pref_voting/data/examples/condorcet_winner/minimal_resolute_Anti-Plurality.soc,sha256=8jWiq4KeEZjqVQNtXveZFii63b8Me5mIiqewicoJv0o,354
29
+ pref_voting/data/examples/condorcet_winner/minimal_resolute_Borda.soc,sha256=vU1ZDyKvMZ4OqVCG_2FC9SuJiFVCu577SNxK7qiLEh8,345
30
+ pref_voting/data/examples/condorcet_winner/minimal_resolute_Bracket_Voting.soc,sha256=s8jTtkRhGGr0MzDGFxtqBxaaJ4oRivSaeGzwoqcf3vo,431
31
+ pref_voting/data/examples/condorcet_winner/minimal_resolute_Bucklin.soc,sha256=ALZYD1By4ucMMvbob7_FBkUqwU4X-tHYH5H-4h9q9UU,369
32
+ pref_voting/data/examples/condorcet_winner/minimal_resolute_Coombs.soc,sha256=GH47YAbUEUtzXT6Znx_qq4WgGHDN23KgTP6ac7e9Z18,418
33
+ pref_voting/data/examples/condorcet_winner/minimal_resolute_Coombs_PUT.soc,sha256=qyijQLu4pmFpC3I-hUlv3gbH0GdhW4k5Uglp-pgkX3I,422
34
+ pref_voting/data/examples/condorcet_winner/minimal_resolute_Coombs_TB.soc,sha256=61Hg0mPk3MthhoDQ72V-867m3Yh5VACGNRZPrn8ksqE,382
35
+ pref_voting/data/examples/condorcet_winner/minimal_resolute_Dowdall.soc,sha256=MBR47LJ46e2q480bkAN6LgDz_8huSTmnu2H3rghRmCQ,358
36
+ pref_voting/data/examples/condorcet_winner/minimal_resolute_Instant_Runoff.soc,sha256=CJVynD9vacAMVOTvQWMe7ZzeYS_eq_3_NnXOKKmMxfc,365
37
+ pref_voting/data/examples/condorcet_winner/minimal_resolute_Instant_Runoff_PUT.soc,sha256=-AhJWOSrngiiJ3vgZjrVJg4Un21Tp60FkxULQxVoGDY,369
38
+ pref_voting/data/examples/condorcet_winner/minimal_resolute_Instant_Runoff_TB.soc,sha256=FOR3gdU51bBbYDIgpCYh5jT0zmsMiiOz-ShYK7avN14,368
39
+ pref_voting/data/examples/condorcet_winner/minimal_resolute_Plurality.soc,sha256=aLwedMPtz5ASD7o0voo0QOVUAEXqkX0Zx1hAFBmmp2o,360
40
+ pref_voting/data/examples/condorcet_winner/minimal_resolute_PluralityWRunoff_PUT.soc,sha256=W-b03KbPxbI4kgWHcRznwz-imQOSqflcOzXUHTB4uRM,371
41
+ pref_voting/data/examples/condorcet_winner/minimal_resolute_Positive-Negative_Voting.soc,sha256=SRJrz7-HJE7fGYn7iJGDusQYAooC6tI1lhF0VtWBYng,364
42
+ pref_voting/data/examples/condorcet_winner/minimal_resolute_Simplified_Bucklin.soc,sha256=KR0-QiYpCJWLPFPx6gC-hBPd1OwgEMEo8jik4DWKy5E,416
43
+ pref_voting/data/examples/condorcet_winner/minimal_resolute_Weighted_Bucklin.soc,sha256=d0YQewlyvU0yZsQ0ZY13UHztKHGERAh_olUNHO8TLl8,378
44
+ pref_voting/data/voting_methods_properties.json,sha256=9qaqKjdFsP9gY1OBwIGFIjSTkOq5H8ZiP5WcWA7TaXk,11674
45
+ pref_voting/data/voting_methods_properties.json.lock,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
46
+ pref_voting/dominance_axioms.py,sha256=hINCiN6toG7dXewUK1739UurKJXqxE_OPCMrabo1w3Q,14744
47
+ pref_voting/generate_profiles.py,sha256=YRINNewa08syH8kOr2st7ueW7VY15fVBv2uiCL47H_Q,27361
48
+ pref_voting/generate_spatial_profiles.py,sha256=aq7C5RS0w1uFaqJ-KSs1zFX-0zxBSzBfxUPDOzFvNyQ,8723
49
+ pref_voting/generate_utility_profiles.py,sha256=ZujEd7pLzzS-VcJxFLwEfj3oPVKKS7kHlVnhNn0Qdd8,6181
50
+ pref_voting/generate_weighted_majority_graphs.py,sha256=GevVIPOuWgQT1pONXWriX-eClbS7NGXb6epK1GCdy-I,19535
51
+ pref_voting/grade_methods.py,sha256=AgytMW8MagEpA6hpbl64CnalEC8Gy2SQRt5py4uOEPI,8796
52
+ pref_voting/grade_profiles.py,sha256=IGEhMaFcxdS_qcbBOLWhSh8uDYMAJ6RAnDfWUXMEAWw,15678
53
+ pref_voting/helper.py,sha256=t3dAbylZkvZpS6-8pn4TOa6nvTmoqb7eEo3dwn0IOg0,12791
54
+ pref_voting/invariance_axioms.py,sha256=Urpl0v_O3-FAB20XMS9amdyOi-5DAzQN4aU177zP2_4,30121
55
+ pref_voting/io/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
56
+ pref_voting/io/readers.py,sha256=knvgQrrdzwy3qEg9rXVLjf5owwBUTHnujP1hKBoFG5s,17362
57
+ pref_voting/io/writers.py,sha256=7wuJDH6ZQe8D6ciUhtTrVcNPtT3_yeb8nMEddpKdpdM,9283
58
+ pref_voting/iterative_methods.py,sha256=FnM1EnBBiNXhAcR0hfxOQiD_ak_50Bxd89Dn_uO-Ye4,110980
59
+ pref_voting/maj_graph_ex1.png,sha256=lvdiFEgXALCl8gvXfiYoMwjp-vo-GvInWQjqsFTbc0c,20246
60
+ pref_voting/mappings.py,sha256=O68mQwZb9UQ7nOMZBJIguSxjYlj9huXYMVrh-cKzlBk,23485
61
+ pref_voting/margin_based_methods.py,sha256=DOhJeB_42VPUwSh8yE244J0ttf15LJ3szJ9-YWvb4S0,111294
62
+ pref_voting/monotonicity_axioms.py,sha256=otL0y6XE9o2Dzn6MzVH2wUoN8RpMyERkJ9vMMsAxZf8,40566
63
+ pref_voting/num_evaluation_method.py,sha256=1n3Xi2BKbk5Fd2T3KSP6kSyJ1PvShSfvUxPgNGIUOXs,2665
64
+ pref_voting/other_axioms.py,sha256=wm4jzupwGAIU-oEP6bEaIYQxXX_IZ2FQi6T9zT2YAsI,4943
65
+ pref_voting/other_methods.py,sha256=8_dGVThgNZK7Gdq8Mgq3SMRStbNUYn02BIIfvHW4XnE,43357
66
+ pref_voting/pairwise_profiles.py,sha256=1D7S-fCY6ZyF6vbwcpZzWFS8VoVWYGn3eqBcuMYCTsg,21981
67
+ pref_voting/prob_voting_method.py,sha256=PYgaRYhJqX-8QySYnOCYv_6ra5OVYvGc8FYUV2dkH-E,3721
68
+ pref_voting/probabilistic_methods.py,sha256=HslHc61w9mPuP2ToNih9pl7zLNQw8EicSGqVnMu8vkg,11865
69
+ pref_voting/profiles.py,sha256=kuhWD-7mwBpHLVlh1H6rx3brfyD5fk1eEbkdFVP5aTo,36307
70
+ pref_voting/profiles_with_ties.py,sha256=tSjhsocPEidCbZKQfHk3HUmeWQ0O-wNAYTQvFYSLgzs,41023
71
+ pref_voting/rankings.py,sha256=1BqvxW9j1owo6ERH5Aod_y0wu31h3rmGOTb4OkF2V_E,16408
72
+ pref_voting/scoring_methods.py,sha256=Y8IBfEzbZ_uctYZ8qhz8KivjUeh1geOTw2FcS69s5DQ,21877
73
+ pref_voting/social_welfare_function.py,sha256=_bnd_Oz4s1twm-N033-rCN2G6DX5Hxb7iruIbVXiFag,1951
74
+ pref_voting/social_welfare_functions.py,sha256=DrMNmY95CeVkkUJXHTGvJaML7jWzrUAeGjx-Cgru4To,362
75
+ pref_voting/spatial_profiles.py,sha256=aFcUzA7j_47YhBdTBssfd3nD6lgwdW9fInmoD8RapeI,19728
76
+ pref_voting/stochastic_methods.py,sha256=afvwpoLvSjHpMCGhkLtt84sVyFC6YNqtozbsts85_mo,4246
77
+ pref_voting/strategic_axioms.py,sha256=Wj07T5xXDd-Gsitis8W1v5VgWCL_oLEmsWmFfyeBmKo,71758
78
+ pref_voting/swf_axioms.py,sha256=VwXslBJqUJT5LD0wYFI0fsG3pJaSUggPp9oFNRy8Ftk,7881
79
+ pref_voting/utility_functions.py,sha256=1gUWVRuoREt0GQm3kr2-2GvZaI7Lmiay_L_DnTlMUbM,4086
80
+ pref_voting/utility_methods.py,sha256=qWP2Ks1NtAK38m79x6w1UFabdYR3jVpL5Flyzp1RSBE,7326
81
+ pref_voting/utility_profiles.py,sha256=XhzV7axTpVK_jF7sadE8BFlnH-J7ng9XzqD-pY8DLDc,12992
82
+ pref_voting/variable_candidate_axioms.py,sha256=av8Ug5Z6ijhWGUFdgwz1wtCNCtROJCtDmqSSpzsdu-c,31892
83
+ pref_voting/variable_voter_axioms.py,sha256=BhMQTupdvKEeSGJEgwgj5_58wkSZNqbrEGep7HRZk98,195803
84
+ pref_voting/voting_method.py,sha256=rKM0GH-3d_1NHTJALQFblYG17sJTCFgvFis_zsRwMkI,13282
85
+ pref_voting/voting_method_properties.py,sha256=xwYaiIXTS5JdqFP9LNqcpB7ANfA58vdxYOicAatuZHM,2680
86
+ pref_voting/voting_methods.py,sha256=6dSuOoz8gMFlN6oN20p-C-iEnpQD_bZevVUGVZ1qntU,299
87
+ pref_voting/voting_methods_registry.py,sha256=AoLxRDajlaJdnXKjpYlpnlEKWxCL4FBOyh40p_x-RBQ,5028
88
+ pref_voting/weighted_majority_graphs.py,sha256=J_OoHcMSjvV97i-3VQ88oBUHgLWJa59mT8feh_gseHk,59095
89
+ pref_voting-1.16.31.dist-info/METADATA,sha256=nk09sL6QiUwFSoOJisV_xSkeibJjpooAZaNCi99PhlU,8146
90
+ pref_voting-1.16.31.dist-info/WHEEL,sha256=M5asmiAlL6HEcOq52Yi5mmk9KmTVjY2RDPtO4p9DMrc,88
91
+ pref_voting-1.16.31.dist-info/licenses/LICENSE.txt,sha256=HrDgoFIL8aUJAoU2P4CmPR7XKaGq2Mq3arCYa2Jbjiw,1085
92
+ pref_voting-1.16.31.dist-info/RECORD,,
@@ -0,0 +1,4 @@
1
+ Wheel-Version: 1.0
2
+ Generator: poetry-core 2.2.0
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2024 Wes Holliday and Eric Pacuit
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.