pref_voting 1.16.31__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (92) hide show
  1. pref_voting/__init__.py +1 -0
  2. pref_voting/analysis.py +496 -0
  3. pref_voting/axiom.py +38 -0
  4. pref_voting/axiom_helpers.py +129 -0
  5. pref_voting/axioms.py +10 -0
  6. pref_voting/c1_methods.py +963 -0
  7. pref_voting/combined_methods.py +514 -0
  8. pref_voting/create_methods.py +128 -0
  9. pref_voting/data/examples/condorcet_winner/minimal_Anti-Plurality.soc +16 -0
  10. pref_voting/data/examples/condorcet_winner/minimal_Borda.soc +17 -0
  11. pref_voting/data/examples/condorcet_winner/minimal_Bracket_Voting.soc +20 -0
  12. pref_voting/data/examples/condorcet_winner/minimal_Bucklin.soc +19 -0
  13. pref_voting/data/examples/condorcet_winner/minimal_Coombs.soc +20 -0
  14. pref_voting/data/examples/condorcet_winner/minimal_Coombs_PUT.soc +20 -0
  15. pref_voting/data/examples/condorcet_winner/minimal_Coombs_TB.soc +20 -0
  16. pref_voting/data/examples/condorcet_winner/minimal_Dowdall.soc +19 -0
  17. pref_voting/data/examples/condorcet_winner/minimal_Instant_Runoff.soc +18 -0
  18. pref_voting/data/examples/condorcet_winner/minimal_Instant_Runoff_PUT.soc +18 -0
  19. pref_voting/data/examples/condorcet_winner/minimal_Instant_Runoff_TB.soc +18 -0
  20. pref_voting/data/examples/condorcet_winner/minimal_Iterated_Removal_Condorcet_Loser.soc +17 -0
  21. pref_voting/data/examples/condorcet_winner/minimal_Pareto.soc +17 -0
  22. pref_voting/data/examples/condorcet_winner/minimal_Plurality.soc +18 -0
  23. pref_voting/data/examples/condorcet_winner/minimal_PluralityWRunoff_PUT.soc +18 -0
  24. pref_voting/data/examples/condorcet_winner/minimal_Positive-Negative_Voting.soc +17 -0
  25. pref_voting/data/examples/condorcet_winner/minimal_Simplified_Bucklin.soc +18 -0
  26. pref_voting/data/examples/condorcet_winner/minimal_Superior_Voting.soc +19 -0
  27. pref_voting/data/examples/condorcet_winner/minimal_Weighted_Bucklin.soc +19 -0
  28. pref_voting/data/examples/condorcet_winner/minimal_resolute_Anti-Plurality.soc +17 -0
  29. pref_voting/data/examples/condorcet_winner/minimal_resolute_Borda.soc +17 -0
  30. pref_voting/data/examples/condorcet_winner/minimal_resolute_Bracket_Voting.soc +20 -0
  31. pref_voting/data/examples/condorcet_winner/minimal_resolute_Bucklin.soc +19 -0
  32. pref_voting/data/examples/condorcet_winner/minimal_resolute_Coombs.soc +21 -0
  33. pref_voting/data/examples/condorcet_winner/minimal_resolute_Coombs_PUT.soc +21 -0
  34. pref_voting/data/examples/condorcet_winner/minimal_resolute_Coombs_TB.soc +20 -0
  35. pref_voting/data/examples/condorcet_winner/minimal_resolute_Dowdall.soc +18 -0
  36. pref_voting/data/examples/condorcet_winner/minimal_resolute_Instant_Runoff.soc +18 -0
  37. pref_voting/data/examples/condorcet_winner/minimal_resolute_Instant_Runoff_PUT.soc +18 -0
  38. pref_voting/data/examples/condorcet_winner/minimal_resolute_Instant_Runoff_TB.soc +18 -0
  39. pref_voting/data/examples/condorcet_winner/minimal_resolute_Plurality.soc +18 -0
  40. pref_voting/data/examples/condorcet_winner/minimal_resolute_PluralityWRunoff_PUT.soc +18 -0
  41. pref_voting/data/examples/condorcet_winner/minimal_resolute_Positive-Negative_Voting.soc +17 -0
  42. pref_voting/data/examples/condorcet_winner/minimal_resolute_Simplified_Bucklin.soc +20 -0
  43. pref_voting/data/examples/condorcet_winner/minimal_resolute_Weighted_Bucklin.soc +19 -0
  44. pref_voting/data/voting_methods_properties.json +414 -0
  45. pref_voting/data/voting_methods_properties.json.lock +0 -0
  46. pref_voting/dominance_axioms.py +387 -0
  47. pref_voting/generate_profiles.py +801 -0
  48. pref_voting/generate_spatial_profiles.py +198 -0
  49. pref_voting/generate_utility_profiles.py +160 -0
  50. pref_voting/generate_weighted_majority_graphs.py +506 -0
  51. pref_voting/grade_methods.py +184 -0
  52. pref_voting/grade_profiles.py +357 -0
  53. pref_voting/helper.py +370 -0
  54. pref_voting/invariance_axioms.py +671 -0
  55. pref_voting/io/__init__.py +0 -0
  56. pref_voting/io/readers.py +432 -0
  57. pref_voting/io/writers.py +256 -0
  58. pref_voting/iterative_methods.py +2425 -0
  59. pref_voting/maj_graph_ex1.png +0 -0
  60. pref_voting/mappings.py +577 -0
  61. pref_voting/margin_based_methods.py +2345 -0
  62. pref_voting/monotonicity_axioms.py +872 -0
  63. pref_voting/num_evaluation_method.py +77 -0
  64. pref_voting/other_axioms.py +161 -0
  65. pref_voting/other_methods.py +939 -0
  66. pref_voting/pairwise_profiles.py +547 -0
  67. pref_voting/prob_voting_method.py +105 -0
  68. pref_voting/probabilistic_methods.py +287 -0
  69. pref_voting/profiles.py +856 -0
  70. pref_voting/profiles_with_ties.py +1069 -0
  71. pref_voting/rankings.py +466 -0
  72. pref_voting/scoring_methods.py +481 -0
  73. pref_voting/social_welfare_function.py +59 -0
  74. pref_voting/social_welfare_functions.py +7 -0
  75. pref_voting/spatial_profiles.py +448 -0
  76. pref_voting/stochastic_methods.py +99 -0
  77. pref_voting/strategic_axioms.py +1394 -0
  78. pref_voting/swf_axioms.py +173 -0
  79. pref_voting/utility_functions.py +102 -0
  80. pref_voting/utility_methods.py +178 -0
  81. pref_voting/utility_profiles.py +333 -0
  82. pref_voting/variable_candidate_axioms.py +640 -0
  83. pref_voting/variable_voter_axioms.py +3747 -0
  84. pref_voting/voting_method.py +355 -0
  85. pref_voting/voting_method_properties.py +92 -0
  86. pref_voting/voting_methods.py +8 -0
  87. pref_voting/voting_methods_registry.py +136 -0
  88. pref_voting/weighted_majority_graphs.py +1539 -0
  89. pref_voting-1.16.31.dist-info/METADATA +208 -0
  90. pref_voting-1.16.31.dist-info/RECORD +92 -0
  91. pref_voting-1.16.31.dist-info/WHEEL +4 -0
  92. pref_voting-1.16.31.dist-info/licenses/LICENSE.txt +21 -0
@@ -0,0 +1,1069 @@
1
+ """
2
+ File: profiles_with_ties.py
3
+ Author: Wes Holliday (wesholliday@berkeley.edu) and Eric Pacuit (epacuit@umd.edu)
4
+ Date: January 5, 2022
5
+
6
+ A class that represents profiles of (truncated) strict weak orders.
7
+ """
8
+
9
+ from math import ceil
10
+ import copy
11
+ import numpy as np
12
+ from tabulate import tabulate
13
+ from pref_voting.profiles import Profile
14
+ from pref_voting.rankings import Ranking
15
+ from pref_voting.scoring_methods import symmetric_borda_scores
16
+ from pref_voting.weighted_majority_graphs import (
17
+ MajorityGraph,
18
+ MarginGraph,
19
+ SupportGraph,
20
+ )
21
+ import os
22
+ import pandas as pd
23
+
24
+ def _num_rank_profile_with_ties(rankings, rcounts, cand, level):
25
+ """
26
+ Counts the number of voters that rank candidate `cand` at rank `level` (1-based)
27
+ in a ProfileWithTies object.
28
+
29
+ Args:
30
+ rankings: list of Ranking objects
31
+ rcounts: list of counts for each ranking
32
+ cand: candidate
33
+ level: rank to check (1-based)
34
+
35
+ Returns:
36
+ Total number of voters ranking candidate `cand` at rank `level`
37
+ """
38
+ total = 0
39
+ for ranking, count in zip(rankings, rcounts):
40
+ if cand in ranking.rmap and ranking.rmap[cand] == level - 1: # Convert 1-based rank to 0-based
41
+ total += count
42
+ return total
43
+
44
+ def same_ranking_extended_strict_pref(ranking1, ranking2, candidates):
45
+ # check if ranking1 and ranking2 have the same ranking of candidates
46
+ for c1 in candidates:
47
+ for c2 in candidates:
48
+ if (not ranking1.extended_strict_pref(c1, c2) and ranking2.extended_strict_pref(c1, c2)) or (not ranking2.extended_strict_pref(c1, c2) and ranking1.extended_strict_pref(c1, c2)):
49
+ return False
50
+ return True
51
+
52
+ class ProfileWithTies(object):
53
+ """An anonymous profile of (truncated) strict weak orders of :math:`n` candidates.
54
+
55
+ :param rankings: List of rankings in the profile, where a ranking is either a :class:`Ranking` object or a dictionary.
56
+ :type rankings: list[dict[int or str: int]] or list[Ranking]
57
+ :param rcounts: List of the number of voters associated with each ranking. Should be the same length as rankings. If not provided, it is assumed that 1 voters submitted each element of ``rankings``.
58
+ :type rcounts: list[int], optional
59
+ :param candidates: List of candidates in the profile. If not provided, this is the list that is ranked by at least on voter.
60
+ :type candidates: list[int] or list[str], optional
61
+ :param cmap: Dictionary mapping candidates (integers) to candidate names (strings). If not provided, each candidate name is mapped to itself.
62
+ :type cmap: dict[int: str], optional
63
+
64
+ :Example:
65
+
66
+ The following code creates a profile in which
67
+ 2 voters submitted the ranking 0 ranked first, 1 ranked second, and 2 ranked third; 3 voters submitted the ranking 1 and 2 are tied for first place and 0 is ranked second; and 1 voter submitted the ranking in which 2 is ranked first and 0 is ranked second:
68
+
69
+ .. code-block:: python
70
+
71
+ prof = ProfileWithTies([{0: 1, 1: 2, 2: 3}, {1:1, 2:1, 0:2}, {2:1, 0:2}], [2, 3, 1])
72
+ """
73
+
74
+ def __init__(self, rankings, rcounts=None, candidates=None, cmap=None):
75
+ """constructor method"""
76
+
77
+ assert rcounts is None or len(rankings) == len(
78
+ rcounts
79
+ ), "The number of rankings much be the same as the number of rcounts"
80
+
81
+
82
+ get_cands = lambda r: list(r.keys()) if type(r) == dict else r.cands
83
+ self.candidates = (
84
+ sorted(candidates)
85
+ if candidates is not None
86
+ else sorted(list(set([c for r in rankings for c in get_cands(r)])))
87
+ )
88
+ """The candidates in the profile. """
89
+
90
+ self.num_cands = len(self.candidates)
91
+ """The number of candidates in the profile."""
92
+
93
+ self.cmap = cmap if cmap is not None else {c: str(c) for c in self.candidates}
94
+ """The candidate map is a dictionary associating a candidate with the name used when displaying a candidate."""
95
+
96
+ self._rankings = [
97
+ Ranking(r, cmap=self.cmap)
98
+ if type(r) == dict
99
+ else Ranking(r.rmap, cmap=self.cmap)
100
+ for r in rankings
101
+ ]
102
+ """The list of rankings in the Profile (each ranking is a :class:`Ranking` object).
103
+ """
104
+
105
+ self.ranks = list(range(1, self.num_cands + 1))
106
+ """The ranks that are possible in the profile. """
107
+
108
+ self.cindices = list(range(self.num_cands))
109
+ self._cand_to_cindex = {c: i for i, c in enumerate(self.candidates)}
110
+ self.cand_to_cindex = lambda c: self._cand_to_cindex[c]
111
+ self._cindex_to_cand = {i: c for i, c in enumerate(self.candidates)}
112
+ self.cindex_to_cand = lambda i: self._cindex_to_cand[i]
113
+ """Maps candidates to their index in the list of candidates and vice versa. """
114
+
115
+ self.rcounts = [1] * len(rankings) if rcounts is None else list(rcounts)
116
+
117
+ self.num_voters = np.sum(self.rcounts)
118
+ """The number of voters in the profile. """
119
+
120
+ self.using_extended_strict_preference = False
121
+ """A flag indicating whether the profile is using extended strict preferences when calculating supports, margins, etc."""
122
+
123
+ # memoize the supports
124
+ self._supports = {
125
+ c1: {
126
+ c2: sum(
127
+ n
128
+ for r, n in zip(self._rankings, self.rcounts)
129
+ if r.strict_pref(c1, c2)
130
+ )
131
+ for c2 in self.candidates
132
+ }
133
+ for c1 in self.candidates
134
+ }
135
+
136
+ def use_extended_strict_preference(self):
137
+ """
138
+ Redefine the supports so that *extended strict preferences* are used. Using extended strict preference may change the margins between candidates.
139
+ """
140
+
141
+ self.using_extended_strict_preference = True
142
+ self._supports = {
143
+ c1: {
144
+ c2: sum(
145
+ n
146
+ for r, n in zip(self._rankings, self.rcounts)
147
+ if r.extended_strict_pref(c1, c2)
148
+ )
149
+ for c2 in self.candidates
150
+ }
151
+ for c1 in self.candidates
152
+ }
153
+
154
+ def use_strict_preference(self):
155
+ """
156
+ Redefine the supports so that strict preferences are used. Using strict preference may change the margins between candidates.
157
+ """
158
+
159
+ self.using_extended_strict_preference = False
160
+ self._supports = {
161
+ c1: {
162
+ c2: sum(
163
+ n
164
+ for r, n in zip(self._rankings, self.rcounts)
165
+ if r.strict_pref(c1, c2)
166
+ )
167
+ for c2 in self.candidates
168
+ }
169
+ for c1 in self.candidates
170
+ }
171
+ @property
172
+ def rankings(self):
173
+ """
174
+ Return a list of all individual rankings in the profile.
175
+ """
176
+
177
+ return [r for ridx,r in enumerate(self._rankings)
178
+ for _ in range(self.rcounts[ridx])]
179
+
180
+ @property
181
+ def rankings_as_indifference_list(self):
182
+ """
183
+ Return a list of all individual rankings as indifference lists in the profile.
184
+ """
185
+
186
+ return [r.to_indiff_list() for ridx,r in enumerate(self._rankings)
187
+ for _ in range(self.rcounts[ridx])]
188
+
189
+ @property
190
+ def ranking_types(self):
191
+ """
192
+ Return a list of the types of rankings in the profile.
193
+ """
194
+
195
+ unique_rankings = []
196
+ for r in self._rankings:
197
+ if r not in unique_rankings:
198
+ unique_rankings.append(r)
199
+ return unique_rankings
200
+
201
+ @property
202
+ def rankings_counts(self):
203
+ """
204
+ Returns the rankings and the counts of each ranking.
205
+ """
206
+
207
+ return self._rankings, self.rcounts
208
+
209
+ @property
210
+ def rankings_as_dicts_counts(self):
211
+ """
212
+ Returns the rankings represented as dictionaries and the counts of each ranking.
213
+ """
214
+
215
+ return [r.rmap for r in self._rankings], self.rcounts
216
+
217
+ def support(self, c1, c2):
218
+ """
219
+ Returns the support of candidate ``c1`` over candidate ``c2``, where the support is the number of voters that rank ``c1`` strictly above ``c2``.
220
+ """
221
+
222
+ return self._supports[c1][c2]
223
+
224
+ def margin(self, c1, c2):
225
+ """
226
+ Returns the margin of candidate ``c1`` over candidate ``c2``, where the margin is the number of voters that rank ``c1`` strictly above ``c2`` minus the number of voters that rank ``c2`` strictly above ``c1``.
227
+ """
228
+
229
+ return self._supports[c1][c2] - self._supports[c2][c1]
230
+
231
+ @property
232
+ def margin_matrix(self):
233
+ """Returns the margin matrix of the profile, where the entry at row ``i`` and column ``j`` is the margin of candidate ``i`` over candidate ``j``."""
234
+
235
+ return np.array(
236
+ [[self.margin(self.cindex_to_cand(c1_idx), self.cindex_to_cand(c2_idx)) for c2_idx in self.cindices] for c1_idx in self.cindices]
237
+ )
238
+
239
+ def is_tied(self, c1, c2):
240
+ """Returns True if ``c1`` and ``c2`` are tied (i.e., the margin of ``c1`` over ``c2`` is 0)."""
241
+
242
+ return self.margin(c1, c2) == 0
243
+
244
+ def dominators(self, cand, curr_cands=None):
245
+ """
246
+ Returns the list of candidates that are majority preferred to ``cand`` in the profile restricted to the candidates in ``curr_cands``.
247
+ """
248
+ candidates = self.candidates if curr_cands is None else curr_cands
249
+
250
+ return [c for c in candidates if self.majority_prefers(c, cand)]
251
+
252
+ def dominates(self, cand, curr_cands=None):
253
+ """
254
+ Returns the list of candidates that ``cand`` is majority preferred to in the majority graph restricted to ``curr_cands``.
255
+ """
256
+ candidates = self.candidates if curr_cands is None else curr_cands
257
+
258
+ return [c for c in candidates if self.majority_prefers(cand, c)]
259
+
260
+ def ratio(self, c1, c2):
261
+ """
262
+ Returns the ratio of the support of ``c1`` over ``c2`` to the support ``c2`` over ``c1``.
263
+ """
264
+
265
+ if self.support(c1, c2) > 0 and self.support(c2, c1) > 0:
266
+ return self.support(c1, c2) / self.support(c2, c1)
267
+ elif self.support(c1, c2) > 0 and self.support(c2, c1) == 0:
268
+ return float(self.num_voters + self.support(c1, c2))
269
+ elif self.support(c1, c2) == 0 and self.support(c2, c1) > 0:
270
+ return 1 / (self.num_voters + self.support(c2, c1))
271
+ elif self.support(c1, c2) == 0 and self.support(c2, c1) == 0:
272
+ return 1
273
+
274
+ def majority_prefers(self, c1, c2):
275
+ """Returns True if ``c1`` is majority preferred to ``c2``."""
276
+
277
+ return self.margin(c1, c2) > 0
278
+
279
+ def strength_matrix(self, curr_cands = None, strength_function = None):
280
+ """
281
+ Return the strength matrix of the profile. The strength matrix is a matrix where the entry in row :math:`i` and column :math:`j` is the number of voters that rank the candidate with index :math:`i` over the candidate with index :math:`j`. If ``curr_cands`` is provided, then the strength matrix is restricted to the candidates in ``curr_cands``. If ``strength_function`` is provided, then the strength matrix is computed using the strength function."""
282
+
283
+ if curr_cands is not None:
284
+ cindices = [cidx for cidx, _ in enumerate(curr_cands)]
285
+ cindex_to_cand = lambda cidx: curr_cands[cidx]
286
+ cand_to_cindex = lambda c: cindices[curr_cands.index(c)]
287
+ strength_function = self.margin if strength_function is None else strength_function
288
+ strength_matrix = np.array([[strength_function(cindex_to_cand(a_idx), cindex_to_cand(b_idx)) for b_idx in cindices] for a_idx in cindices])
289
+ else:
290
+ cindices = self.cindices
291
+ cindex_to_cand = self.cindex_to_cand
292
+ cand_to_cindex = self.cand_to_cindex
293
+ strength_matrix = np.array(self.margin_matrix) if strength_function is None else np.array([[strength_function(cindex_to_cand(a_idx), cindex_to_cand(b_idx)) for b_idx in cindices] for a_idx in cindices])
294
+
295
+ return strength_matrix, cand_to_cindex
296
+
297
+ def condorcet_winner(self, curr_cands=None):
298
+ """Returns the Condorcet winner in the profile restricted to ``curr_cands`` if one exists, otherwise return None.
299
+
300
+ The **Condorcet winner** is the candidate that is majority preferred to every other candidate.
301
+ """
302
+ curr_cands = curr_cands if curr_cands is not None else self.candidates
303
+
304
+ cw = None
305
+ for c in curr_cands:
306
+
307
+ if all([self.majority_prefers(c, c1) for c1 in curr_cands if c1 != c]):
308
+ cw = c
309
+ break
310
+ return cw
311
+
312
+ def condorcet_loser(self, curr_cands=None):
313
+ """Returns the Condorcet loser in the profile restricted to ``curr_cands`` if one exists, otherwise return None.
314
+
315
+ A candidate :math:`c` is a **Condorcet loser** if every other candidate is majority preferred to :math:`c`.
316
+ """
317
+
318
+ curr_cands = curr_cands if curr_cands is not None else self.candidates
319
+
320
+ cl = None
321
+ for c1 in curr_cands:
322
+ if all([self.majority_prefers(c2, c1) for c2 in curr_cands if c1 != c2]):
323
+ cl = c1
324
+ break # if a Condorcet loser exists, then it is unique
325
+ return cl
326
+
327
+ def weak_condorcet_winner(self, curr_cands=None):
328
+ """Returns a list of the weak Condorcet winners in the profile restricted to ``curr_cands`` (which may be empty).
329
+
330
+ A candidate :math:`c` is a **weak Condorcet winner** if there is no other candidate that is majority preferred to :math:`c`.
331
+
332
+ .. note:: While the Condorcet winner is unique if it exists, there may be multiple weak Condorcet winners.
333
+ """
334
+
335
+ curr_cands = curr_cands if curr_cands is not None else self.candidates
336
+
337
+ weak_cw = list()
338
+ for c1 in curr_cands:
339
+ if not any(
340
+ [self.majority_prefers(c2, c1) for c2 in curr_cands if c1 != c2]
341
+ ):
342
+ weak_cw.append(c1)
343
+ return sorted(weak_cw) if len(weak_cw) > 0 else None
344
+
345
+ def copeland_scores(self, curr_cands = None, scores = (1,0,-1)):
346
+ """The Copeland scores in the profile restricted to the candidates in ``curr_cands``.
347
+
348
+ The **Copeland score** for candidate :math:`c` is calculated as follows: :math:`c` receives ``scores[0]`` points for every candidate that :math:`c` is majority preferred to, ``scores[1]`` points for every candidate that is tied with :math:`c`, and ``scores[2]`` points for every candidate that is majority preferred to :math:`c`. The default ``scores`` is ``(1, 0, -1)``.
349
+
350
+
351
+ :param curr_cands: restrict attention to candidates in this list. Defaults to all candidates in the profile if not provided.
352
+ :type curr_cands: list[int], optional
353
+ :param scores: the scores used to calculate the Copeland score of a candidate :math:`c`: ``scores[0]`` is for the candidates that :math:`c` is majority preferred to; ``scores[1]`` is the number of candidates tied with :math:`c`; and ``scores[2]`` is the number of candidate majority preferred to :math:`c`. The default value is ``scores = (1, 0, -1)``
354
+ :type scores: tuple[int], optional
355
+ :returns: a dictionary associating each candidate in ``curr_cands`` with its Copeland score.
356
+
357
+ """
358
+
359
+ wscore, tscore, lscore = scores
360
+ candidates = self.candidates if curr_cands is None else curr_cands
361
+ c_scores = {c: 0.0 for c in candidates}
362
+ for c1 in candidates:
363
+ for c2 in candidates:
364
+ if self.majority_prefers(c1, c2):
365
+ c_scores[c1] += wscore
366
+ elif self.majority_prefers(c2, c1):
367
+ c_scores[c1] += lscore
368
+ elif c1 != c2:
369
+ c_scores[c1] += tscore
370
+ return c_scores
371
+
372
+
373
+ def strict_maj_size(self):
374
+ """Returns the strict majority of the number of voters."""
375
+
376
+ return int(
377
+ self.num_voters / 2 + 1
378
+ if self.num_voters % 2 == 0
379
+ else int(ceil(float(self.num_voters) / 2))
380
+ )
381
+
382
+ def plurality_scores(self, curr_cands=None):
383
+ """
384
+ Return the Plurality Scores of the candidates, assuming that each voter ranks a single candidate in first place.
385
+
386
+ Parameters:
387
+ - curr_cands: List of current candidates to consider. If None, use all candidates.
388
+
389
+ Returns:
390
+ - Dictionary with candidates as keys and their plurality scores as values.
391
+
392
+ Raises:
393
+ - ValueError: If any voter ranks multiple candidates in first place.
394
+ """
395
+
396
+ if curr_cands is None:
397
+ curr_cands = self.candidates
398
+
399
+ # Check if any voter ranks multiple candidates in first place
400
+ if any(len(r.first(cs=curr_cands)) > 1 for r in self._rankings):
401
+ raise ValueError("Cannot find the plurality scores unless all voters rank a unique candidate in first place.")
402
+
403
+ rankings, rcounts = self.rankings_counts
404
+
405
+ plurality_scores = {cand: 0 for cand in curr_cands}
406
+
407
+ for ranking, count in zip(rankings, rcounts):
408
+ first_place_candidates = ranking.first(cs=curr_cands)
409
+ if len(first_place_candidates) == 1:
410
+ cand = first_place_candidates[0]
411
+ plurality_scores[cand] += count
412
+
413
+ return plurality_scores
414
+
415
+ def plurality_scores_ignoring_overvotes(self, curr_cands=None):
416
+ """
417
+ Return the Plurality scores ignoring empty rankings and overvotes.
418
+ """
419
+
420
+ curr_cands = curr_cands if curr_cands is not None else self.candidates
421
+
422
+ rankings, rcounts = self.rankings_counts
423
+
424
+ return {cand: sum([c for r, c in zip(rankings, rcounts) if len(r.cands) > 0 and [cand] == r.first(cs=curr_cands)]) for cand in curr_cands}
425
+
426
+ def borda_scores(self,
427
+ curr_cands=None,
428
+ borda_score_fnc=symmetric_borda_scores):
429
+
430
+ curr_cands = self.candidates if curr_cands is None else curr_cands
431
+ restricted_prof = self.remove_candidates([c for c in self.candidates if c not in curr_cands])
432
+ return borda_score_fnc(restricted_prof)
433
+
434
+ def tops_scores(
435
+ self,
436
+ curr_cands=None,
437
+ score_type='approval'):
438
+ """
439
+ Return the tops scores of the candidates.
440
+
441
+ Parameters:
442
+ - curr_cands: List of current candidates to consider. If None, use all candidates.
443
+ - score_type: Type of tops score to compute. Options are 'approval' or 'split'.
444
+
445
+ Returns:
446
+ - Dictionary with candidates as keys and their tops scores as values.
447
+ """
448
+
449
+ if curr_cands is None:
450
+ curr_cands = self.candidates
451
+
452
+ rankings, rcounts = self.rankings_counts
453
+
454
+ if score_type not in {'approval', 'split'}:
455
+ raise ValueError("Invalid score_type specified. Use 'approval' or 'split'.")
456
+
457
+ tops_scores = {cand: 0 for cand in curr_cands}
458
+
459
+ if score_type == 'approval':
460
+ for ranking, count in zip(rankings, rcounts):
461
+ for cand in curr_cands:
462
+ if cand in ranking.first(cs=curr_cands):
463
+ tops_scores[cand] += count
464
+
465
+ elif score_type == 'split':
466
+ for ranking, count in zip(rankings, rcounts):
467
+ for cand in curr_cands:
468
+ if cand in ranking.first(cs=curr_cands):
469
+ tops_scores[cand] += count * 1/len(ranking.first(cs=curr_cands))
470
+
471
+ return tops_scores
472
+
473
+ def remove_empty_rankings(self):
474
+ """
475
+ Remove the empty rankings from the profile.
476
+ """
477
+ new_rankings = list()
478
+ new_rcounts = list()
479
+
480
+ for r,c in zip(*(self.rankings_counts)):
481
+
482
+ if len(r.cands) != 0:
483
+ new_rankings.append(r)
484
+ new_rcounts.append(c)
485
+
486
+ self._rankings = new_rankings
487
+ self.rcounts = new_rcounts
488
+
489
+ # update the number of voters
490
+ self.num_voters = np.sum(self.rcounts)
491
+
492
+ if self.using_extended_strict_preference:
493
+ self.use_extended_strict_preference()
494
+ else:
495
+ self.use_strict_preference()
496
+
497
+ def truncate_overvotes(self):
498
+ """Return a new profile in which all rankings with overvotes are truncated. """
499
+
500
+ new_profile = copy.deepcopy(self)
501
+ rankings, rcounts = new_profile.rankings_counts
502
+
503
+ report = []
504
+ for r,c in zip(rankings, rcounts):
505
+ old_ranking = copy.deepcopy(r)
506
+ if r.has_overvote():
507
+ r.truncate_overvote()
508
+ report.append((old_ranking, r, c))
509
+
510
+ if self.using_extended_strict_preference:
511
+ new_profile.use_extended_strict_preference()
512
+ else:
513
+ new_profile.use_strict_preference()
514
+
515
+ return new_profile, report
516
+
517
+ def add_unranked_candidates(self):
518
+ """
519
+ Return a profile in which for each voter, any unranked candidate is added to the bottom of their ranking.
520
+ """
521
+ cands = self.candidates
522
+ ranks = list()
523
+ rcounts = list()
524
+
525
+ for r in self._rankings:
526
+ min_rank = max(r.ranks) if len(r.ranks) > 0 else 1
527
+ new_r ={c:r for c, r in r.rmap.items()}
528
+ for c in cands:
529
+ if c not in new_r.keys():
530
+ new_r[c] = min_rank+1
531
+ new_ranking = Ranking(new_r)
532
+
533
+ found_it = False
534
+ for _ridx, _r in enumerate(ranks):
535
+ if new_ranking == _r:
536
+ rcounts[_ridx] += 1
537
+ found_it = True
538
+ if not found_it:
539
+ ranks.append(new_ranking)
540
+ rcounts.append(1)
541
+
542
+ return ProfileWithTies([r.rmap for r in ranks], rcounts=rcounts, cmap=self.cmap)
543
+
544
+ @property
545
+ def is_truncated_linear(self):
546
+ """
547
+ Return True if the profile only contains (truncated) linear orders.
548
+ """
549
+ return all([r.is_truncated_linear(len(self.candidates)) or r.is_linear(len(self.candidates)) for r in self._rankings])
550
+
551
+ def to_linear_profile(self):
552
+ """Return a linear profile from the profile with ties. If the profile is not a linear profile, then return None.
553
+
554
+ Note that the candidates in a Profile must be integers, so the candidates in the linear profile will be the indices of the candidates in the original profile.
555
+
556
+ """
557
+ rankings, rcounts = self.rankings_counts
558
+ _new_rankings = [r.to_linear() for r in rankings]
559
+ cand_to_cindx = {c:i for i,c in enumerate(sorted(self.candidates))}
560
+ new_cmap = {cand_to_cindx[c]: self.cmap[c] for c in sorted(self.candidates)}
561
+ if any([r is None or len(r) != len(self.candidates) for r in _new_rankings]):
562
+ print("Error: Cannot convert to linear profile.")
563
+ return None
564
+ new_rankings = [tuple([cand_to_cindx[c] for c in r]) for r in _new_rankings]
565
+ return Profile(new_rankings, rcounts=rcounts, cmap=new_cmap)
566
+
567
+ def replace_rankings(
568
+ self,
569
+ old_ranking,
570
+ new_ranking,
571
+ num,
572
+ use_extended_strict_preference_for_comparison = False):
573
+ """
574
+
575
+ Create a new profile by replacing num ballots matching old_ranking with new_ranking.
576
+
577
+ If num is greater than the number of ballots matching old_ranking, then all ballots matching old_ranking are replaced with new_ranking.
578
+
579
+
580
+ """
581
+ using_extended_strict_pref = self.using_extended_strict_preference
582
+
583
+ ranking_types, ranking_counts = self.rankings_counts
584
+
585
+ if not isinstance(old_ranking, Ranking) or not isinstance(new_ranking, Ranking):
586
+ raise ValueError("rankings must be of type Ranking")
587
+
588
+ if use_extended_strict_preference_for_comparison:
589
+ same_ranking = lambda r1, r2: same_ranking_extended_strict_pref(r1, r2, self.candidates)
590
+ else:
591
+ same_ranking = lambda r1, r2: r1 == r2
592
+
593
+ new_ranking_types = []
594
+ new_ranking_counts = []
595
+
596
+ current_num = 0
597
+ for r, c in zip(ranking_types, ranking_counts):
598
+
599
+ if current_num < num and same_ranking(r, old_ranking):
600
+ if c > num - current_num:
601
+ new_ranking_types.append(new_ranking)
602
+ new_ranking_counts.append(num - current_num)
603
+ new_ranking_types.append(old_ranking)
604
+ new_ranking_counts.append(c - (num - current_num))
605
+ current_num = num
606
+ elif c == num - current_num and same_ranking(r, old_ranking):
607
+ new_ranking_types.append(new_ranking)
608
+ new_ranking_counts.append(num - current_num)
609
+ current_num = num
610
+ elif c < num - current_num:
611
+ new_ranking_types.append(new_ranking)
612
+ new_ranking_counts.append(c)
613
+ current_num += c
614
+ else:
615
+ new_ranking_types.append(r)
616
+ new_ranking_counts.append(c)
617
+
618
+ new_prof = ProfileWithTies(new_ranking_types, new_ranking_counts, self.candidates, cmap=self.cmap)
619
+
620
+ if using_extended_strict_pref:
621
+ new_prof.use_extended_strict_preference()
622
+
623
+ assert self.num_voters == new_prof.num_voters, "Problem: the number of voters is not the same in the new profile!"
624
+
625
+ return new_prof
626
+
627
+ def num_bullet_votes(self):
628
+ """
629
+ Return the number of bullet votes in the profile.
630
+ """
631
+
632
+ return sum([c for r,c in zip(*self.rankings_counts) if r.is_bullet_vote()])
633
+
634
+ def num_empty_rankings(self):
635
+ """
636
+ Return the number of empty rankings in the profile.
637
+ """
638
+
639
+ return sum([c for r,c in zip(*self.rankings_counts) if r.is_empty()])
640
+
641
+ def num_linear_orders(self):
642
+ """
643
+ Return the number of linear orders in the profile.
644
+ """
645
+
646
+ return sum([c for r,c in zip(*self.rankings_counts) if r.is_linear(len(self.candidates))])
647
+
648
+ def num_truncated_linear_orders(self):
649
+ """
650
+ Return the number of truncated linear orders in the profile.
651
+ """
652
+
653
+ return sum([c for r,c in zip(*self.rankings_counts) if r.is_truncated_linear(len(self.candidates))])
654
+
655
+ def num_rankings_with_ties(self):
656
+ """
657
+ Return the number of rankings with ties in the profile.
658
+ """
659
+
660
+ return sum([c for r,c in zip(*self.rankings_counts) if r.has_tie()])
661
+
662
+ def num_ranked_all_candidates(self):
663
+ """
664
+ Return the number of rankings that rank all candidates in the profile.
665
+ """
666
+
667
+ return sum([c for r,c in zip(*self.rankings_counts) if all([r.is_ranked(cand) for cand in self.candidates])])
668
+
669
+ def num_ranking_each_candidate(self):
670
+ """Return a dictionary mapping each candidate to the number of voters that rank the candidate. """
671
+
672
+ return {
673
+ cand: sum([c for r,c in zip(*self.rankings_counts) if r.is_ranked(cand)])
674
+ for cand in self.candidates
675
+ }
676
+ def margin_graph(self):
677
+ """Returns the margin graph of the profile. See :class:`.MarginGraph`.
678
+
679
+ :Example:
680
+
681
+ .. exec_code:: python
682
+
683
+ from pref_voting.profiles_with_ties import ProfileWithTies
684
+ prof = ProfileWithTies([{0: 1, 1: 2, 2: 3}, {1:1, 2:1, 0:2}, {2:1, 0:2}], [2, 3, 1])
685
+
686
+ mg = prof.margin_graph()
687
+ print(mg.edges)
688
+ print(mg.margin_matrix)
689
+ """
690
+
691
+ return MarginGraph.from_profile(self)
692
+
693
+ def support_graph(self):
694
+ """Returns the support graph of the profile. See :class:`.SupportGraph`.
695
+
696
+ :Example:
697
+
698
+ .. exec_code:: python
699
+
700
+ from pref_voting.profiles_with_ties import ProfileWithTies
701
+ prof = ProfileWithTies([{0: 1, 1: 2, 2: 3}, {1:1, 2:1, 0:2}, {2:1, 0:2}], [2, 3, 1])
702
+
703
+ sg = prof.support_graph()
704
+ print(sg.edges)
705
+ print(sg.s_matrix)
706
+
707
+ """
708
+
709
+ return SupportGraph.from_profile(self)
710
+
711
+ def majority_graph(self):
712
+ """Returns the majority graph of the profile. See :class:`.MarginGraph`.
713
+
714
+ :Example:
715
+
716
+ .. exec_code:: python
717
+
718
+ from pref_voting.profiles_with_ties import ProfileWithTies
719
+ prof = ProfileWithTies([{0: 1, 1: 2, 2: 3}, {1:1, 2:1, 0:2}, {2:1, 0:2}], [2, 3, 1])
720
+
721
+ mg = prof.majority_graph()
722
+ print(mg.edges)
723
+
724
+ """
725
+
726
+ return MajorityGraph.from_profile(self)
727
+
728
+ def cycles(self):
729
+ """Return a list of the cycles in the profile."""
730
+
731
+ return self.margin_graph().cycles()
732
+
733
+ def is_uniquely_weighted(self):
734
+ """Returns True if the profile is uniquely weighted.
735
+
736
+ A profile is **uniquely weighted** when there are no 0 margins and all the margins between any two candidates are unique.
737
+ """
738
+
739
+ return MarginGraph.from_profile(self).is_uniquely_weighted()
740
+
741
+ def remove_candidates(self, cands_to_ignore):
742
+ """Remove all candidates from ``cands_to_ignore`` from the profile.
743
+
744
+ :param cands_to_ignore: list of candidates to remove from the profile
745
+ :type cands_to_ignore: list[int]
746
+ :returns: a profile with candidates from ``cands_to_ignore`` removed.
747
+
748
+ :Example:
749
+
750
+ .. exec_code::
751
+
752
+ from pref_voting.profiles_with_ties import ProfileWithTies
753
+ prof = ProfileWithTies([{0: 1, 1: 2, 2: 3}, {1:1, 2:1, 0:2}, {2:1, 0:2}], [2, 3, 1])
754
+ prof.display()
755
+ new_prof = prof.remove_candidates([1])
756
+ new_prof.display()
757
+ print(new_prof.ranks)
758
+ """
759
+
760
+ updated_rankings = [
761
+ {c: r for c, r in rank.rmap.items() if c not in cands_to_ignore}
762
+ for rank in self._rankings
763
+ ]
764
+ new_candidates = [c for c in self.candidates if c not in cands_to_ignore]
765
+ restricted_prof = ProfileWithTies(
766
+ updated_rankings,
767
+ rcounts=self.rcounts,
768
+ candidates=new_candidates,
769
+ cmap=self.cmap,
770
+ )
771
+
772
+ if self.using_extended_strict_preference:
773
+ restricted_prof.use_extended_strict_preference()
774
+
775
+ return restricted_prof
776
+
777
+ def report(self):
778
+ """
779
+ Display a report of the types of rankings in the profile.
780
+ """
781
+ num_ties = 0
782
+ num_empty_rankings = 0
783
+ num_with_skipped_ranks = 0
784
+ num_trucated_linear_orders = 0
785
+ num_linear_orders = 0
786
+
787
+ rankings, rcounts = self.rankings_counts
788
+
789
+ for r, c in zip(rankings, rcounts):
790
+
791
+ if r.has_tie():
792
+ num_ties += c
793
+ if r.is_empty():
794
+ num_empty_rankings += c
795
+ elif r.is_linear(len(self.candidates)):
796
+ num_linear_orders += c
797
+ elif r.is_truncated_linear(len(self.candidates)):
798
+ num_trucated_linear_orders += c
799
+
800
+ if r.has_skipped_rank():
801
+ num_with_skipped_ranks += c
802
+ print(f'''There are {len(self.candidates)} candidates and {str(sum(rcounts))} {'ranking: ' if sum(rcounts) == 1 else 'rankings: '}
803
+ The number of empty rankings: {num_empty_rankings}
804
+ The number of rankings with ties: {num_ties}
805
+ The number of linear orders: {num_linear_orders}
806
+ The number of truncated linear orders: {num_trucated_linear_orders}
807
+
808
+ The number of rankings with skipped ranks: {num_with_skipped_ranks}
809
+
810
+ ''')
811
+
812
+ def display_rankings(self):
813
+ """
814
+ Display a list of the rankings in the profile.
815
+ """
816
+ rankings, rcounts = self.rankings_counts
817
+
818
+ rs = dict()
819
+ for r, c in zip(rankings, rcounts):
820
+ if str(r) in rs.keys():
821
+ rs[str(r)] += c
822
+ else:
823
+ rs[str(r)] = c
824
+
825
+ for r,c in rs.items():
826
+ print(f"{r}: {c}")
827
+
828
+
829
+ def anonymize(self):
830
+ """
831
+ Return a profile which is the anonymized version of this profile.
832
+ """
833
+
834
+ rankings = list()
835
+ rcounts = list()
836
+ for r in self.rankings:
837
+ found_it = False
838
+ for _ridx, _r in enumerate(rankings):
839
+ if r == _r:
840
+ rcounts[_ridx] += 1
841
+ found_it = True
842
+ break
843
+ if not found_it:
844
+ rankings.append(r)
845
+ rcounts.append(1)
846
+
847
+ prof = ProfileWithTies(rankings, rcounts=rcounts, cmap=self.cmap)
848
+
849
+ if self.using_extended_strict_preference:
850
+ prof.use_extended_strict_preference()
851
+
852
+ return prof
853
+
854
+ def description(self):
855
+ """
856
+ Return the Python code needed to create the profile.
857
+ """
858
+ return f"ProfileWithTies({[r.rmap for r in self._rankings]}, rcounts={[int(c) for c in self.rcounts]}, cmap={self.cmap})"
859
+
860
+ def display(
861
+ self,
862
+ cmap=None,
863
+ style="pretty",
864
+ curr_cands=None,
865
+ order_by_counts=False,
866
+ ):
867
+ """Display a profile (restricted to ``curr_cands``) as an ascii table (using tabulate).
868
+
869
+ :param cmap: the candidate map (overrides the cmap associated with this profile)
870
+ :type cmap: dict[int,str], optional
871
+ :param style: the candidate map to use (overrides the cmap associated with this profile)
872
+ :type style: str --- "pretty" or "fancy_grid" (or any other style option for tabulate)
873
+ :param curr_cands: list of candidates
874
+ :type curr_cands: list[int], optional
875
+ :rtype: None
876
+
877
+ :Example:
878
+
879
+ .. exec_code::
880
+
881
+ from pref_voting.profiles_with_ties import ProfileWithTies
882
+ prof = ProfileWithTies([{0: 1, 1: 2, 2: 3}, {1:1, 2:1, 0:2}, {2:1, 0:2}], [2, 3, 1])
883
+ prof.display()
884
+ prof.display(cmap={0:"a", 1:"b", 2:"c"})
885
+
886
+ """
887
+
888
+ _rankings = copy.deepcopy(self._rankings)
889
+ _rankings = [r.normalize_ranks() or r for r in _rankings]
890
+ curr_cands = curr_cands if curr_cands is not None else self.candidates
891
+ cmap = cmap if cmap is not None else self.cmap
892
+
893
+ existing_ranks = list(range(min(min(r.ranks) for r in _rankings), max(max(r.ranks) for r in _rankings) + 1)) if len(_rankings) > 0 else []
894
+ if order_by_counts:
895
+ _rankings, rcounts = zip(*sorted(zip(_rankings, self.rcounts), key=lambda x: x[1], reverse=True))
896
+ else:
897
+ rcounts = self.rcounts
898
+ print(
899
+ tabulate(
900
+ [
901
+ [
902
+ " ".join(
903
+ [
904
+ str(cmap[c])
905
+ for c in r.cands_at_rank(rank)
906
+ if c in curr_cands
907
+ ]
908
+ )
909
+ for r in _rankings
910
+ ]
911
+ for rank in existing_ranks
912
+ ],
913
+ rcounts,
914
+ tablefmt=style,
915
+ )
916
+ )
917
+
918
+ def display_margin_graph(self, cmap=None, curr_cands=None):
919
+ """
920
+ Display the margin graph of the profile (restricted to ``curr_cands``) using the ``cmap``. See :class:`.MarginGraph`.
921
+ """
922
+
923
+ cmap = cmap if cmap is not None else self.cmap
924
+ MarginGraph.from_profile(self, cmap=cmap).display(curr_cands=curr_cands)
925
+
926
+ def display_support_graph(self, cmap=None, curr_cands=None):
927
+ """
928
+ Display the support graph of the profile (restricted to ``curr_cands``) using the ``cmap``. See :class:`.SupportGraph`.
929
+ """
930
+
931
+ cmap = cmap if cmap is not None else self.cmap
932
+ SupportGraph.from_profile(self, cmap=cmap).display(curr_cands=curr_cands)
933
+
934
+ def to_preflib_instance(self):
935
+ """
936
+ Returns an instance of the ``OrdinalInstance`` class from the ``preflibtools`` package. See ``pref_voting.io.writers.to_preflib_instance``.
937
+
938
+ """
939
+ from pref_voting.io.writers import to_preflib_instance
940
+
941
+ return to_preflib_instance(self)
942
+
943
+ @classmethod
944
+ def from_preflib(
945
+ cls,
946
+ instance_or_preflib_file,
947
+ include_cmap=False):
948
+ """
949
+ Convert an preflib OrdinalInstance or file to a Profile. See ``pref_voting.io.readers.from_preflib``.
950
+
951
+ """
952
+ from pref_voting.io.readers import preflib_to_profile
953
+
954
+ return preflib_to_profile(
955
+ instance_or_preflib_file,
956
+ include_cmap=include_cmap,
957
+ as_linear_profile=False)
958
+
959
+ def write(
960
+ self,
961
+ filename,
962
+ file_format="preflib",
963
+ csv_format="candidate_columns"):
964
+ """
965
+ Write a profile to a file. See ``pref_voting.io.writers.write``.
966
+ """
967
+ from pref_voting.io.writers import write
968
+
969
+ return write(
970
+ self,
971
+ filename,
972
+ file_format=file_format,
973
+ csv_format=csv_format)
974
+
975
+ @classmethod
976
+ def read(
977
+ cls,
978
+ filename,
979
+ file_format="preflib",
980
+ csv_format="candidate_columns",
981
+ cand_type=None,
982
+ items_to_skip=None):
983
+ """
984
+ Read a profile from a file. See ``pref_voting.io.readers.read``.
985
+
986
+ """
987
+ from pref_voting.io.readers import read
988
+
989
+ return read(
990
+ filename,
991
+ file_format=file_format,
992
+ csv_format=csv_format,
993
+ cand_type=cand_type,
994
+ items_to_skip=items_to_skip,
995
+ as_linear_profile=False,
996
+ )
997
+
998
+ def to_latex(self, cmap=None, curr_cands=None):
999
+ """
1000
+ Returns a LaTeX table representation of the profile with ties.
1001
+
1002
+ :param cmap: Dictionary mapping candidates to their names/labels. If None, use self.cmap.
1003
+ :param curr_cands: List of candidates to include in the table. If None, use all candidates.
1004
+ :return: A string containing the LaTeX table.
1005
+ """
1006
+ cmap = self.cmap if cmap is None else cmap
1007
+ curr_cands = self.candidates if curr_cands is None else curr_cands
1008
+
1009
+ prof = copy.deepcopy(self)
1010
+ prof.remove_empty_rankings()
1011
+
1012
+ _rankings = copy.deepcopy(prof._rankings)
1013
+
1014
+ if len(_rankings) == 0: # if there are no rankings, return an empty string
1015
+ return ""
1016
+
1017
+ _rankings = [r.normalize_ranks() or r for r in _rankings ]
1018
+
1019
+ latex = "\\begin{tabular}{" + "c" * len(_rankings) + "}\n"
1020
+ latex += " & ".join(["$" + str(count) + "$" for count in self.rcounts]) + "\\\\\n"
1021
+ latex += "\\hline\n"
1022
+
1023
+ max_rank = max(max(ranking.rmap.values()) for ranking in _rankings)
1024
+
1025
+ for rank in range(1, max_rank + 1):
1026
+ row = []
1027
+ for ranking in _rankings:
1028
+ tied_cands = sorted([cmap[c] for c in curr_cands if c in ranking.rmap and ranking.rmap[c] == rank])
1029
+ if tied_cands:
1030
+ row.append("$" + ",".join(tied_cands) + "$")
1031
+ else:
1032
+ prev_cands = [c for c in curr_cands if c in ranking.rmap and ranking.rmap[c] < rank]
1033
+ if prev_cands:
1034
+ row.append(" ")
1035
+ else:
1036
+ row.append("$\\cdots$")
1037
+ latex += " & ".join(row) + "\\\\\n"
1038
+
1039
+ latex += "\\end{tabular}"
1040
+ return latex
1041
+
1042
+ def __eq__(self, other_prof):
1043
+ """
1044
+ Returns true if two profiles are equal. Two profiles are equal if they have the same rankings. Note that we ignore the cmaps.
1045
+ """
1046
+
1047
+ rankings = self.rankings
1048
+ other_rankings = other_prof.rankings[:] # make a copy
1049
+ for r1 in rankings:
1050
+ for i, r2 in enumerate(other_rankings):
1051
+ if r1 == r2:
1052
+ # Remove the matched item to handle duplicates
1053
+ del other_rankings[i]
1054
+ break
1055
+ else:
1056
+ # If we didn't find a match for r1, the profiles are not identical
1057
+ return False
1058
+
1059
+ return not other_rankings
1060
+
1061
+
1062
+ def __add__(self, other_prof):
1063
+ """
1064
+ Returns the sum of two profiles. The sum of two profiles is the profile that contains all the rankings from the first in addition to all the rankings from the second profile.
1065
+
1066
+ Note: the cmaps of the profiles are ignored.
1067
+ """
1068
+
1069
+ return ProfileWithTies(self._rankings + other_prof._rankings, rcounts=self.rcounts + other_prof.rcounts, candidates = sorted(list(set(self.candidates +other_prof.candidates))))