polars-runtime-compat 1.34.0b3__cp39-abi3-manylinux_2_24_aarch64.whl → 1.34.0b4__cp39-abi3-manylinux_2_24_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of polars-runtime-compat might be problematic. Click here for more details.

Files changed (203) hide show
  1. _polars_runtime_compat/_polars_runtime_compat.abi3.so +0 -0
  2. {polars_runtime_compat-1.34.0b3.dist-info → polars_runtime_compat-1.34.0b4.dist-info}/METADATA +1 -1
  3. polars_runtime_compat-1.34.0b4.dist-info/RECORD +6 -0
  4. polars/__init__.py +0 -528
  5. polars/_cpu_check.py +0 -265
  6. polars/_dependencies.py +0 -355
  7. polars/_plr.py +0 -99
  8. polars/_plr.pyi +0 -2496
  9. polars/_reexport.py +0 -23
  10. polars/_typing.py +0 -478
  11. polars/_utils/__init__.py +0 -37
  12. polars/_utils/async_.py +0 -102
  13. polars/_utils/cache.py +0 -176
  14. polars/_utils/cloud.py +0 -40
  15. polars/_utils/constants.py +0 -29
  16. polars/_utils/construction/__init__.py +0 -46
  17. polars/_utils/construction/dataframe.py +0 -1397
  18. polars/_utils/construction/other.py +0 -72
  19. polars/_utils/construction/series.py +0 -560
  20. polars/_utils/construction/utils.py +0 -118
  21. polars/_utils/convert.py +0 -224
  22. polars/_utils/deprecation.py +0 -406
  23. polars/_utils/getitem.py +0 -457
  24. polars/_utils/logging.py +0 -11
  25. polars/_utils/nest_asyncio.py +0 -264
  26. polars/_utils/parquet.py +0 -15
  27. polars/_utils/parse/__init__.py +0 -12
  28. polars/_utils/parse/expr.py +0 -242
  29. polars/_utils/polars_version.py +0 -19
  30. polars/_utils/pycapsule.py +0 -53
  31. polars/_utils/scan.py +0 -27
  32. polars/_utils/serde.py +0 -63
  33. polars/_utils/slice.py +0 -215
  34. polars/_utils/udfs.py +0 -1251
  35. polars/_utils/unstable.py +0 -63
  36. polars/_utils/various.py +0 -782
  37. polars/_utils/wrap.py +0 -25
  38. polars/api.py +0 -370
  39. polars/catalog/__init__.py +0 -0
  40. polars/catalog/unity/__init__.py +0 -19
  41. polars/catalog/unity/client.py +0 -733
  42. polars/catalog/unity/models.py +0 -152
  43. polars/config.py +0 -1571
  44. polars/convert/__init__.py +0 -25
  45. polars/convert/general.py +0 -1046
  46. polars/convert/normalize.py +0 -261
  47. polars/dataframe/__init__.py +0 -5
  48. polars/dataframe/_html.py +0 -186
  49. polars/dataframe/frame.py +0 -12582
  50. polars/dataframe/group_by.py +0 -1067
  51. polars/dataframe/plotting.py +0 -257
  52. polars/datatype_expr/__init__.py +0 -5
  53. polars/datatype_expr/array.py +0 -56
  54. polars/datatype_expr/datatype_expr.py +0 -304
  55. polars/datatype_expr/list.py +0 -18
  56. polars/datatype_expr/struct.py +0 -69
  57. polars/datatypes/__init__.py +0 -122
  58. polars/datatypes/_parse.py +0 -195
  59. polars/datatypes/_utils.py +0 -48
  60. polars/datatypes/classes.py +0 -1213
  61. polars/datatypes/constants.py +0 -11
  62. polars/datatypes/constructor.py +0 -172
  63. polars/datatypes/convert.py +0 -366
  64. polars/datatypes/group.py +0 -130
  65. polars/exceptions.py +0 -230
  66. polars/expr/__init__.py +0 -7
  67. polars/expr/array.py +0 -964
  68. polars/expr/binary.py +0 -346
  69. polars/expr/categorical.py +0 -306
  70. polars/expr/datetime.py +0 -2620
  71. polars/expr/expr.py +0 -11272
  72. polars/expr/list.py +0 -1408
  73. polars/expr/meta.py +0 -444
  74. polars/expr/name.py +0 -321
  75. polars/expr/string.py +0 -3045
  76. polars/expr/struct.py +0 -357
  77. polars/expr/whenthen.py +0 -185
  78. polars/functions/__init__.py +0 -193
  79. polars/functions/aggregation/__init__.py +0 -33
  80. polars/functions/aggregation/horizontal.py +0 -298
  81. polars/functions/aggregation/vertical.py +0 -341
  82. polars/functions/as_datatype.py +0 -848
  83. polars/functions/business.py +0 -138
  84. polars/functions/col.py +0 -384
  85. polars/functions/datatype.py +0 -121
  86. polars/functions/eager.py +0 -524
  87. polars/functions/escape_regex.py +0 -29
  88. polars/functions/lazy.py +0 -2751
  89. polars/functions/len.py +0 -68
  90. polars/functions/lit.py +0 -210
  91. polars/functions/random.py +0 -22
  92. polars/functions/range/__init__.py +0 -19
  93. polars/functions/range/_utils.py +0 -15
  94. polars/functions/range/date_range.py +0 -303
  95. polars/functions/range/datetime_range.py +0 -370
  96. polars/functions/range/int_range.py +0 -348
  97. polars/functions/range/linear_space.py +0 -311
  98. polars/functions/range/time_range.py +0 -287
  99. polars/functions/repeat.py +0 -301
  100. polars/functions/whenthen.py +0 -353
  101. polars/interchange/__init__.py +0 -10
  102. polars/interchange/buffer.py +0 -77
  103. polars/interchange/column.py +0 -190
  104. polars/interchange/dataframe.py +0 -230
  105. polars/interchange/from_dataframe.py +0 -328
  106. polars/interchange/protocol.py +0 -303
  107. polars/interchange/utils.py +0 -170
  108. polars/io/__init__.py +0 -64
  109. polars/io/_utils.py +0 -317
  110. polars/io/avro.py +0 -49
  111. polars/io/clipboard.py +0 -36
  112. polars/io/cloud/__init__.py +0 -17
  113. polars/io/cloud/_utils.py +0 -80
  114. polars/io/cloud/credential_provider/__init__.py +0 -17
  115. polars/io/cloud/credential_provider/_builder.py +0 -520
  116. polars/io/cloud/credential_provider/_providers.py +0 -618
  117. polars/io/csv/__init__.py +0 -9
  118. polars/io/csv/_utils.py +0 -38
  119. polars/io/csv/batched_reader.py +0 -142
  120. polars/io/csv/functions.py +0 -1495
  121. polars/io/database/__init__.py +0 -6
  122. polars/io/database/_arrow_registry.py +0 -70
  123. polars/io/database/_cursor_proxies.py +0 -147
  124. polars/io/database/_executor.py +0 -578
  125. polars/io/database/_inference.py +0 -314
  126. polars/io/database/_utils.py +0 -144
  127. polars/io/database/functions.py +0 -516
  128. polars/io/delta.py +0 -499
  129. polars/io/iceberg/__init__.py +0 -3
  130. polars/io/iceberg/_utils.py +0 -697
  131. polars/io/iceberg/dataset.py +0 -556
  132. polars/io/iceberg/functions.py +0 -151
  133. polars/io/ipc/__init__.py +0 -8
  134. polars/io/ipc/functions.py +0 -514
  135. polars/io/json/__init__.py +0 -3
  136. polars/io/json/read.py +0 -101
  137. polars/io/ndjson.py +0 -332
  138. polars/io/parquet/__init__.py +0 -17
  139. polars/io/parquet/field_overwrites.py +0 -140
  140. polars/io/parquet/functions.py +0 -722
  141. polars/io/partition.py +0 -491
  142. polars/io/plugins.py +0 -187
  143. polars/io/pyarrow_dataset/__init__.py +0 -5
  144. polars/io/pyarrow_dataset/anonymous_scan.py +0 -109
  145. polars/io/pyarrow_dataset/functions.py +0 -79
  146. polars/io/scan_options/__init__.py +0 -5
  147. polars/io/scan_options/_options.py +0 -59
  148. polars/io/scan_options/cast_options.py +0 -126
  149. polars/io/spreadsheet/__init__.py +0 -6
  150. polars/io/spreadsheet/_utils.py +0 -52
  151. polars/io/spreadsheet/_write_utils.py +0 -647
  152. polars/io/spreadsheet/functions.py +0 -1323
  153. polars/lazyframe/__init__.py +0 -9
  154. polars/lazyframe/engine_config.py +0 -61
  155. polars/lazyframe/frame.py +0 -8564
  156. polars/lazyframe/group_by.py +0 -669
  157. polars/lazyframe/in_process.py +0 -42
  158. polars/lazyframe/opt_flags.py +0 -333
  159. polars/meta/__init__.py +0 -14
  160. polars/meta/build.py +0 -33
  161. polars/meta/index_type.py +0 -27
  162. polars/meta/thread_pool.py +0 -50
  163. polars/meta/versions.py +0 -120
  164. polars/ml/__init__.py +0 -0
  165. polars/ml/torch.py +0 -213
  166. polars/ml/utilities.py +0 -30
  167. polars/plugins.py +0 -155
  168. polars/py.typed +0 -0
  169. polars/pyproject.toml +0 -103
  170. polars/schema.py +0 -265
  171. polars/selectors.py +0 -3117
  172. polars/series/__init__.py +0 -5
  173. polars/series/array.py +0 -776
  174. polars/series/binary.py +0 -254
  175. polars/series/categorical.py +0 -246
  176. polars/series/datetime.py +0 -2275
  177. polars/series/list.py +0 -1087
  178. polars/series/plotting.py +0 -191
  179. polars/series/series.py +0 -9197
  180. polars/series/string.py +0 -2367
  181. polars/series/struct.py +0 -154
  182. polars/series/utils.py +0 -191
  183. polars/sql/__init__.py +0 -7
  184. polars/sql/context.py +0 -677
  185. polars/sql/functions.py +0 -139
  186. polars/string_cache.py +0 -185
  187. polars/testing/__init__.py +0 -13
  188. polars/testing/asserts/__init__.py +0 -9
  189. polars/testing/asserts/frame.py +0 -231
  190. polars/testing/asserts/series.py +0 -219
  191. polars/testing/asserts/utils.py +0 -12
  192. polars/testing/parametric/__init__.py +0 -33
  193. polars/testing/parametric/profiles.py +0 -107
  194. polars/testing/parametric/strategies/__init__.py +0 -22
  195. polars/testing/parametric/strategies/_utils.py +0 -14
  196. polars/testing/parametric/strategies/core.py +0 -615
  197. polars/testing/parametric/strategies/data.py +0 -452
  198. polars/testing/parametric/strategies/dtype.py +0 -436
  199. polars/testing/parametric/strategies/legacy.py +0 -169
  200. polars/type_aliases.py +0 -24
  201. polars_runtime_compat-1.34.0b3.dist-info/RECORD +0 -203
  202. {polars_runtime_compat-1.34.0b3.dist-info → polars_runtime_compat-1.34.0b4.dist-info}/WHEEL +0 -0
  203. {polars_runtime_compat-1.34.0b3.dist-info → polars_runtime_compat-1.34.0b4.dist-info}/licenses/LICENSE +0 -0
@@ -1,341 +0,0 @@
1
- from __future__ import annotations
2
-
3
- from typing import TYPE_CHECKING
4
-
5
- import polars.functions as F
6
-
7
- if TYPE_CHECKING:
8
- from polars import Expr
9
-
10
-
11
- def all(*names: str, ignore_nulls: bool = True) -> Expr:
12
- """
13
- Either return an expression representing all columns, or evaluate a bitwise AND operation.
14
-
15
- If no arguments are passed, this function is syntactic sugar for `col("*")`.
16
- Otherwise, this function is syntactic sugar for `col(names).all()`.
17
-
18
- Parameters
19
- ----------
20
- *names
21
- Name(s) of the columns to use in the aggregation.
22
- ignore_nulls
23
-
24
- * If set to `True` (default), null values are ignored. If there
25
- are no non-null values, the output is `True`.
26
- * If set to `False`, `Kleene logic`_ is used to deal with nulls:
27
- if the column contains any null values and no `False` values,
28
- the output is null.
29
-
30
- .. _Kleene logic: https://en.wikipedia.org/wiki/Three-valued_logic
31
-
32
- See Also
33
- --------
34
- all_horizontal
35
-
36
- Examples
37
- --------
38
- Selecting all columns.
39
-
40
- >>> df = pl.DataFrame(
41
- ... {
42
- ... "a": [True, False, True],
43
- ... "b": [False, False, False],
44
- ... }
45
- ... )
46
- >>> df.select(pl.all().sum())
47
- shape: (1, 2)
48
- ┌─────┬─────┐
49
- │ a ┆ b │
50
- │ --- ┆ --- │
51
- │ u32 ┆ u32 │
52
- ╞═════╪═════╡
53
- │ 2 ┆ 0 │
54
- └─────┴─────┘
55
-
56
- Evaluate bitwise AND for a column.
57
-
58
- >>> df.select(pl.all("a"))
59
- shape: (1, 1)
60
- ┌───────┐
61
- │ a │
62
- │ --- │
63
- │ bool │
64
- ╞═══════╡
65
- │ false │
66
- └───────┘
67
- """ # noqa: W505
68
- if not names:
69
- return F.col("*")
70
-
71
- return F.col(*names).all(ignore_nulls=ignore_nulls)
72
-
73
-
74
- def any(*names: str, ignore_nulls: bool = True) -> Expr | bool | None:
75
- """
76
- Evaluate a bitwise OR operation.
77
-
78
- Syntactic sugar for `col(names).any()`.
79
-
80
- See Also
81
- --------
82
- any_horizontal
83
-
84
- Parameters
85
- ----------
86
- *names
87
- Name(s) of the columns to use in the aggregation.
88
- ignore_nulls
89
-
90
- * If set to `True` (default), null values are ignored. If there
91
- are no non-null values, the output is `False`.
92
- * If set to `False`, `Kleene logic`_ is used to deal with nulls:
93
- if the column contains any null values and no `True` values,
94
- the output is null.
95
-
96
- .. _Kleene logic: https://en.wikipedia.org/wiki/Three-valued_logic
97
-
98
- Examples
99
- --------
100
- >>> df = pl.DataFrame(
101
- ... {
102
- ... "a": [True, False, True],
103
- ... "b": [False, False, False],
104
- ... }
105
- ... )
106
- >>> df.select(pl.any("a"))
107
- shape: (1, 1)
108
- ┌──────┐
109
- │ a │
110
- │ --- │
111
- │ bool │
112
- ╞══════╡
113
- │ true │
114
- └──────┘
115
- """
116
- return F.col(*names).any(ignore_nulls=ignore_nulls)
117
-
118
-
119
- def max(*names: str) -> Expr:
120
- """
121
- Get the maximum value.
122
-
123
- Syntactic sugar for `col(names).max()`.
124
-
125
- Parameters
126
- ----------
127
- *names
128
- Name(s) of the columns to use in the aggregation.
129
-
130
- See Also
131
- --------
132
- max_horizontal
133
-
134
- Examples
135
- --------
136
- Get the maximum value of a column.
137
-
138
- >>> df = pl.DataFrame(
139
- ... {
140
- ... "a": [1, 8, 3],
141
- ... "b": [4, 5, 2],
142
- ... "c": ["foo", "bar", "foo"],
143
- ... }
144
- ... )
145
- >>> df.select(pl.max("a"))
146
- shape: (1, 1)
147
- ┌─────┐
148
- │ a │
149
- │ --- │
150
- │ i64 │
151
- ╞═════╡
152
- │ 8 │
153
- └─────┘
154
-
155
- Get the maximum value of multiple columns.
156
-
157
- >>> df.select(pl.max("^a|b$"))
158
- shape: (1, 2)
159
- ┌─────┬─────┐
160
- │ a ┆ b │
161
- │ --- ┆ --- │
162
- │ i64 ┆ i64 │
163
- ╞═════╪═════╡
164
- │ 8 ┆ 5 │
165
- └─────┴─────┘
166
- >>> df.select(pl.max("a", "b"))
167
- shape: (1, 2)
168
- ┌─────┬─────┐
169
- │ a ┆ b │
170
- │ --- ┆ --- │
171
- │ i64 ┆ i64 │
172
- ╞═════╪═════╡
173
- │ 8 ┆ 5 │
174
- └─────┴─────┘
175
- """
176
- return F.col(*names).max()
177
-
178
-
179
- def min(*names: str) -> Expr:
180
- """
181
- Get the minimum value.
182
-
183
- Syntactic sugar for `col(names).min()`.
184
-
185
- Parameters
186
- ----------
187
- *names
188
- Name(s) of the columns to use in the aggregation.
189
-
190
- See Also
191
- --------
192
- min_horizontal
193
-
194
- Examples
195
- --------
196
- Get the minimum value of a column.
197
-
198
- >>> df = pl.DataFrame(
199
- ... {
200
- ... "a": [1, 8, 3],
201
- ... "b": [4, 5, 2],
202
- ... "c": ["foo", "bar", "foo"],
203
- ... }
204
- ... )
205
- >>> df.select(pl.min("a"))
206
- shape: (1, 1)
207
- ┌─────┐
208
- │ a │
209
- │ --- │
210
- │ i64 │
211
- ╞═════╡
212
- │ 1 │
213
- └─────┘
214
-
215
- Get the minimum value of multiple columns.
216
-
217
- >>> df.select(pl.min("^a|b$"))
218
- shape: (1, 2)
219
- ┌─────┬─────┐
220
- │ a ┆ b │
221
- │ --- ┆ --- │
222
- │ i64 ┆ i64 │
223
- ╞═════╪═════╡
224
- │ 1 ┆ 2 │
225
- └─────┴─────┘
226
- >>> df.select(pl.min("a", "b"))
227
- shape: (1, 2)
228
- ┌─────┬─────┐
229
- │ a ┆ b │
230
- │ --- ┆ --- │
231
- │ i64 ┆ i64 │
232
- ╞═════╪═════╡
233
- │ 1 ┆ 2 │
234
- └─────┴─────┘
235
- """
236
- return F.col(*names).min()
237
-
238
-
239
- def sum(*names: str) -> Expr:
240
- """
241
- Sum all values.
242
-
243
- Syntactic sugar for `col(name).sum()`.
244
-
245
- Parameters
246
- ----------
247
- *names
248
- Name(s) of the columns to use in the aggregation.
249
-
250
- Notes
251
- -----
252
- If there are no non-null values, then the output is `0`.
253
- If you would prefer empty sums to return `None`, you can
254
- use `pl.when(pl.col(name).count()>0).then(pl.sum(name))` instead
255
- of `pl.sum(name)`.
256
-
257
- See Also
258
- --------
259
- sum_horizontal
260
-
261
- Examples
262
- --------
263
- Sum a column.
264
-
265
- >>> df = pl.DataFrame(
266
- ... {
267
- ... "a": [1, 2],
268
- ... "b": [3, 4],
269
- ... "c": [5, 6],
270
- ... }
271
- ... )
272
- >>> df.select(pl.sum("a"))
273
- shape: (1, 1)
274
- ┌─────┐
275
- │ a │
276
- │ --- │
277
- │ i64 │
278
- ╞═════╡
279
- │ 3 │
280
- └─────┘
281
-
282
- Sum multiple columns.
283
-
284
- >>> df.select(pl.sum("a", "c"))
285
- shape: (1, 2)
286
- ┌─────┬─────┐
287
- │ a ┆ c │
288
- │ --- ┆ --- │
289
- │ i64 ┆ i64 │
290
- ╞═════╪═════╡
291
- │ 3 ┆ 11 │
292
- └─────┴─────┘
293
- >>> df.select(pl.sum("^.*[bc]$"))
294
- shape: (1, 2)
295
- ┌─────┬─────┐
296
- │ b ┆ c │
297
- │ --- ┆ --- │
298
- │ i64 ┆ i64 │
299
- ╞═════╪═════╡
300
- │ 7 ┆ 11 │
301
- └─────┴─────┘
302
- """
303
- return F.col(*names).sum()
304
-
305
-
306
- def cum_sum(*names: str) -> Expr:
307
- """
308
- Cumulatively sum all values.
309
-
310
- Syntactic sugar for `col(names).cum_sum()`.
311
-
312
- Parameters
313
- ----------
314
- *names
315
- Name(s) of the columns to use in the aggregation.
316
-
317
- See Also
318
- --------
319
- cumsum_horizontal
320
-
321
- Examples
322
- --------
323
- >>> df = pl.DataFrame(
324
- ... {
325
- ... "a": [1, 2, 3],
326
- ... "b": [4, 5, 6],
327
- ... }
328
- ... )
329
- >>> df.select(pl.cum_sum("a"))
330
- shape: (3, 1)
331
- ┌─────┐
332
- │ a │
333
- │ --- │
334
- │ i64 │
335
- ╞═════╡
336
- │ 1 │
337
- │ 3 │
338
- │ 6 │
339
- └─────┘
340
- """
341
- return F.col(*names).cum_sum()