polars-runtime-compat 1.34.0b3__cp39-abi3-manylinux_2_24_aarch64.whl → 1.34.0b4__cp39-abi3-manylinux_2_24_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of polars-runtime-compat might be problematic. Click here for more details.

Files changed (203) hide show
  1. _polars_runtime_compat/_polars_runtime_compat.abi3.so +0 -0
  2. {polars_runtime_compat-1.34.0b3.dist-info → polars_runtime_compat-1.34.0b4.dist-info}/METADATA +1 -1
  3. polars_runtime_compat-1.34.0b4.dist-info/RECORD +6 -0
  4. polars/__init__.py +0 -528
  5. polars/_cpu_check.py +0 -265
  6. polars/_dependencies.py +0 -355
  7. polars/_plr.py +0 -99
  8. polars/_plr.pyi +0 -2496
  9. polars/_reexport.py +0 -23
  10. polars/_typing.py +0 -478
  11. polars/_utils/__init__.py +0 -37
  12. polars/_utils/async_.py +0 -102
  13. polars/_utils/cache.py +0 -176
  14. polars/_utils/cloud.py +0 -40
  15. polars/_utils/constants.py +0 -29
  16. polars/_utils/construction/__init__.py +0 -46
  17. polars/_utils/construction/dataframe.py +0 -1397
  18. polars/_utils/construction/other.py +0 -72
  19. polars/_utils/construction/series.py +0 -560
  20. polars/_utils/construction/utils.py +0 -118
  21. polars/_utils/convert.py +0 -224
  22. polars/_utils/deprecation.py +0 -406
  23. polars/_utils/getitem.py +0 -457
  24. polars/_utils/logging.py +0 -11
  25. polars/_utils/nest_asyncio.py +0 -264
  26. polars/_utils/parquet.py +0 -15
  27. polars/_utils/parse/__init__.py +0 -12
  28. polars/_utils/parse/expr.py +0 -242
  29. polars/_utils/polars_version.py +0 -19
  30. polars/_utils/pycapsule.py +0 -53
  31. polars/_utils/scan.py +0 -27
  32. polars/_utils/serde.py +0 -63
  33. polars/_utils/slice.py +0 -215
  34. polars/_utils/udfs.py +0 -1251
  35. polars/_utils/unstable.py +0 -63
  36. polars/_utils/various.py +0 -782
  37. polars/_utils/wrap.py +0 -25
  38. polars/api.py +0 -370
  39. polars/catalog/__init__.py +0 -0
  40. polars/catalog/unity/__init__.py +0 -19
  41. polars/catalog/unity/client.py +0 -733
  42. polars/catalog/unity/models.py +0 -152
  43. polars/config.py +0 -1571
  44. polars/convert/__init__.py +0 -25
  45. polars/convert/general.py +0 -1046
  46. polars/convert/normalize.py +0 -261
  47. polars/dataframe/__init__.py +0 -5
  48. polars/dataframe/_html.py +0 -186
  49. polars/dataframe/frame.py +0 -12582
  50. polars/dataframe/group_by.py +0 -1067
  51. polars/dataframe/plotting.py +0 -257
  52. polars/datatype_expr/__init__.py +0 -5
  53. polars/datatype_expr/array.py +0 -56
  54. polars/datatype_expr/datatype_expr.py +0 -304
  55. polars/datatype_expr/list.py +0 -18
  56. polars/datatype_expr/struct.py +0 -69
  57. polars/datatypes/__init__.py +0 -122
  58. polars/datatypes/_parse.py +0 -195
  59. polars/datatypes/_utils.py +0 -48
  60. polars/datatypes/classes.py +0 -1213
  61. polars/datatypes/constants.py +0 -11
  62. polars/datatypes/constructor.py +0 -172
  63. polars/datatypes/convert.py +0 -366
  64. polars/datatypes/group.py +0 -130
  65. polars/exceptions.py +0 -230
  66. polars/expr/__init__.py +0 -7
  67. polars/expr/array.py +0 -964
  68. polars/expr/binary.py +0 -346
  69. polars/expr/categorical.py +0 -306
  70. polars/expr/datetime.py +0 -2620
  71. polars/expr/expr.py +0 -11272
  72. polars/expr/list.py +0 -1408
  73. polars/expr/meta.py +0 -444
  74. polars/expr/name.py +0 -321
  75. polars/expr/string.py +0 -3045
  76. polars/expr/struct.py +0 -357
  77. polars/expr/whenthen.py +0 -185
  78. polars/functions/__init__.py +0 -193
  79. polars/functions/aggregation/__init__.py +0 -33
  80. polars/functions/aggregation/horizontal.py +0 -298
  81. polars/functions/aggregation/vertical.py +0 -341
  82. polars/functions/as_datatype.py +0 -848
  83. polars/functions/business.py +0 -138
  84. polars/functions/col.py +0 -384
  85. polars/functions/datatype.py +0 -121
  86. polars/functions/eager.py +0 -524
  87. polars/functions/escape_regex.py +0 -29
  88. polars/functions/lazy.py +0 -2751
  89. polars/functions/len.py +0 -68
  90. polars/functions/lit.py +0 -210
  91. polars/functions/random.py +0 -22
  92. polars/functions/range/__init__.py +0 -19
  93. polars/functions/range/_utils.py +0 -15
  94. polars/functions/range/date_range.py +0 -303
  95. polars/functions/range/datetime_range.py +0 -370
  96. polars/functions/range/int_range.py +0 -348
  97. polars/functions/range/linear_space.py +0 -311
  98. polars/functions/range/time_range.py +0 -287
  99. polars/functions/repeat.py +0 -301
  100. polars/functions/whenthen.py +0 -353
  101. polars/interchange/__init__.py +0 -10
  102. polars/interchange/buffer.py +0 -77
  103. polars/interchange/column.py +0 -190
  104. polars/interchange/dataframe.py +0 -230
  105. polars/interchange/from_dataframe.py +0 -328
  106. polars/interchange/protocol.py +0 -303
  107. polars/interchange/utils.py +0 -170
  108. polars/io/__init__.py +0 -64
  109. polars/io/_utils.py +0 -317
  110. polars/io/avro.py +0 -49
  111. polars/io/clipboard.py +0 -36
  112. polars/io/cloud/__init__.py +0 -17
  113. polars/io/cloud/_utils.py +0 -80
  114. polars/io/cloud/credential_provider/__init__.py +0 -17
  115. polars/io/cloud/credential_provider/_builder.py +0 -520
  116. polars/io/cloud/credential_provider/_providers.py +0 -618
  117. polars/io/csv/__init__.py +0 -9
  118. polars/io/csv/_utils.py +0 -38
  119. polars/io/csv/batched_reader.py +0 -142
  120. polars/io/csv/functions.py +0 -1495
  121. polars/io/database/__init__.py +0 -6
  122. polars/io/database/_arrow_registry.py +0 -70
  123. polars/io/database/_cursor_proxies.py +0 -147
  124. polars/io/database/_executor.py +0 -578
  125. polars/io/database/_inference.py +0 -314
  126. polars/io/database/_utils.py +0 -144
  127. polars/io/database/functions.py +0 -516
  128. polars/io/delta.py +0 -499
  129. polars/io/iceberg/__init__.py +0 -3
  130. polars/io/iceberg/_utils.py +0 -697
  131. polars/io/iceberg/dataset.py +0 -556
  132. polars/io/iceberg/functions.py +0 -151
  133. polars/io/ipc/__init__.py +0 -8
  134. polars/io/ipc/functions.py +0 -514
  135. polars/io/json/__init__.py +0 -3
  136. polars/io/json/read.py +0 -101
  137. polars/io/ndjson.py +0 -332
  138. polars/io/parquet/__init__.py +0 -17
  139. polars/io/parquet/field_overwrites.py +0 -140
  140. polars/io/parquet/functions.py +0 -722
  141. polars/io/partition.py +0 -491
  142. polars/io/plugins.py +0 -187
  143. polars/io/pyarrow_dataset/__init__.py +0 -5
  144. polars/io/pyarrow_dataset/anonymous_scan.py +0 -109
  145. polars/io/pyarrow_dataset/functions.py +0 -79
  146. polars/io/scan_options/__init__.py +0 -5
  147. polars/io/scan_options/_options.py +0 -59
  148. polars/io/scan_options/cast_options.py +0 -126
  149. polars/io/spreadsheet/__init__.py +0 -6
  150. polars/io/spreadsheet/_utils.py +0 -52
  151. polars/io/spreadsheet/_write_utils.py +0 -647
  152. polars/io/spreadsheet/functions.py +0 -1323
  153. polars/lazyframe/__init__.py +0 -9
  154. polars/lazyframe/engine_config.py +0 -61
  155. polars/lazyframe/frame.py +0 -8564
  156. polars/lazyframe/group_by.py +0 -669
  157. polars/lazyframe/in_process.py +0 -42
  158. polars/lazyframe/opt_flags.py +0 -333
  159. polars/meta/__init__.py +0 -14
  160. polars/meta/build.py +0 -33
  161. polars/meta/index_type.py +0 -27
  162. polars/meta/thread_pool.py +0 -50
  163. polars/meta/versions.py +0 -120
  164. polars/ml/__init__.py +0 -0
  165. polars/ml/torch.py +0 -213
  166. polars/ml/utilities.py +0 -30
  167. polars/plugins.py +0 -155
  168. polars/py.typed +0 -0
  169. polars/pyproject.toml +0 -103
  170. polars/schema.py +0 -265
  171. polars/selectors.py +0 -3117
  172. polars/series/__init__.py +0 -5
  173. polars/series/array.py +0 -776
  174. polars/series/binary.py +0 -254
  175. polars/series/categorical.py +0 -246
  176. polars/series/datetime.py +0 -2275
  177. polars/series/list.py +0 -1087
  178. polars/series/plotting.py +0 -191
  179. polars/series/series.py +0 -9197
  180. polars/series/string.py +0 -2367
  181. polars/series/struct.py +0 -154
  182. polars/series/utils.py +0 -191
  183. polars/sql/__init__.py +0 -7
  184. polars/sql/context.py +0 -677
  185. polars/sql/functions.py +0 -139
  186. polars/string_cache.py +0 -185
  187. polars/testing/__init__.py +0 -13
  188. polars/testing/asserts/__init__.py +0 -9
  189. polars/testing/asserts/frame.py +0 -231
  190. polars/testing/asserts/series.py +0 -219
  191. polars/testing/asserts/utils.py +0 -12
  192. polars/testing/parametric/__init__.py +0 -33
  193. polars/testing/parametric/profiles.py +0 -107
  194. polars/testing/parametric/strategies/__init__.py +0 -22
  195. polars/testing/parametric/strategies/_utils.py +0 -14
  196. polars/testing/parametric/strategies/core.py +0 -615
  197. polars/testing/parametric/strategies/data.py +0 -452
  198. polars/testing/parametric/strategies/dtype.py +0 -436
  199. polars/testing/parametric/strategies/legacy.py +0 -169
  200. polars/type_aliases.py +0 -24
  201. polars_runtime_compat-1.34.0b3.dist-info/RECORD +0 -203
  202. {polars_runtime_compat-1.34.0b3.dist-info → polars_runtime_compat-1.34.0b4.dist-info}/WHEEL +0 -0
  203. {polars_runtime_compat-1.34.0b3.dist-info → polars_runtime_compat-1.34.0b4.dist-info}/licenses/LICENSE +0 -0
polars/convert/general.py DELETED
@@ -1,1046 +0,0 @@
1
- from __future__ import annotations
2
-
3
- import io
4
- import itertools
5
- import re
6
- from collections.abc import Iterable, Sequence
7
- from typing import TYPE_CHECKING, Any, Literal, overload
8
-
9
- import polars._reexport as pl
10
- from polars import functions as F
11
- from polars._dependencies import _check_for_pyarrow
12
- from polars._dependencies import pandas as pd
13
- from polars._dependencies import pyarrow as pa
14
- from polars._utils.construction.dataframe import (
15
- arrow_to_pydf,
16
- dict_to_pydf,
17
- numpy_to_pydf,
18
- pandas_to_pydf,
19
- sequence_to_pydf,
20
- )
21
- from polars._utils.construction.series import arrow_to_pyseries, pandas_to_pyseries
22
- from polars._utils.deprecation import (
23
- deprecate_renamed_parameter,
24
- issue_deprecation_warning,
25
- )
26
- from polars._utils.pycapsule import is_pycapsule, pycapsule_to_frame
27
- from polars._utils.various import (
28
- _cast_repr_strings_with_schema,
29
- issue_warning,
30
- qualified_type_name,
31
- )
32
- from polars._utils.wrap import wrap_df, wrap_s
33
- from polars.datatypes import N_INFER_DEFAULT, Categorical, String
34
- from polars.exceptions import NoDataError
35
-
36
- if TYPE_CHECKING:
37
- from collections.abc import Mapping
38
-
39
- from polars import DataFrame, Series
40
- from polars._dependencies import numpy as np
41
- from polars._dependencies import torch
42
- from polars._typing import (
43
- ArrowArrayExportable,
44
- ArrowStreamExportable,
45
- Orientation,
46
- PolarsDataType,
47
- SchemaDefinition,
48
- SchemaDict,
49
- )
50
- from polars.interchange.protocol import SupportsInterchange
51
-
52
-
53
- def from_dict(
54
- data: Mapping[str, Sequence[object] | Mapping[str, Sequence[object]] | Series],
55
- schema: SchemaDefinition | None = None,
56
- *,
57
- schema_overrides: SchemaDict | None = None,
58
- strict: bool = True,
59
- ) -> DataFrame:
60
- """
61
- Construct a DataFrame from a dictionary of sequences.
62
-
63
- This operation clones data, unless you pass a `{str: pl.Series,}` dict.
64
-
65
- Parameters
66
- ----------
67
- data : dict of sequences
68
- Two-dimensional data represented as a dictionary. dict must contain
69
- Sequences.
70
- schema : Sequence of str, (str,DataType) pairs, or a {str:DataType,} dict
71
- The DataFrame schema may be declared in several ways:
72
-
73
- * As a dict of {name:type} pairs; if type is None, it will be auto-inferred.
74
- * As a list of column names; in this case types are automatically inferred.
75
- * As a list of (name,type) pairs; this is equivalent to the dictionary form.
76
-
77
- If you supply a list of column names that does not match the names in the
78
- underlying data, the names given here will overwrite them. The number
79
- of names given in the schema should match the underlying data dimensions.
80
- schema_overrides : dict, default None
81
- Support type specification or override of one or more columns; note that
82
- any dtypes inferred from the columns param will be overridden.
83
- strict : bool, default True
84
- Throw an error if any `data` value does not exactly match the given or inferred
85
- data type for that column. If set to `False`, values that do not match the data
86
- type are cast to that data type or, if casting is not possible, set to null
87
- instead.
88
-
89
- Returns
90
- -------
91
- DataFrame
92
-
93
- Examples
94
- --------
95
- >>> df = pl.from_dict({"a": [1, 2], "b": [3, 4]})
96
- >>> df
97
- shape: (2, 2)
98
- ┌─────┬─────┐
99
- │ a ┆ b │
100
- │ --- ┆ --- │
101
- │ i64 ┆ i64 │
102
- ╞═════╪═════╡
103
- │ 1 ┆ 3 │
104
- │ 2 ┆ 4 │
105
- └─────┴─────┘
106
- """
107
- return wrap_df(
108
- dict_to_pydf(
109
- data,
110
- schema=schema,
111
- schema_overrides=schema_overrides,
112
- strict=strict,
113
- )
114
- )
115
-
116
-
117
- def from_dicts(
118
- data: Iterable[Mapping[str, Any]],
119
- schema: SchemaDefinition | None = None,
120
- *,
121
- schema_overrides: SchemaDict | None = None,
122
- strict: bool = True,
123
- infer_schema_length: int | None = N_INFER_DEFAULT,
124
- ) -> DataFrame:
125
- """
126
- Construct a DataFrame from a sequence of dictionaries. This operation clones data.
127
-
128
- Parameters
129
- ----------
130
- data
131
- Sequence with dictionaries mapping column name to value
132
- schema : Sequence of str, (str,DataType) pairs, or a {str:DataType,} dict
133
- The DataFrame schema may be declared in several ways:
134
-
135
- * As a dict of {name:type} pairs; if type is None, it will be auto-inferred.
136
- * As a list of column names; in this case types are automatically inferred.
137
- * As a list of (name,type) pairs; this is equivalent to the dictionary form.
138
-
139
- If a list of column names is supplied that does NOT match the names in the
140
- underlying data, the names given here will overwrite the actual fields in
141
- the order that they appear - however, in this case it is typically clearer
142
- to rename after loading the frame.
143
-
144
- If you want to drop some of the fields found in the input dictionaries, a
145
- *partial* schema can be declared, in which case omitted fields will not be
146
- loaded. Similarly, you can extend the loaded frame with empty columns by
147
- adding them to the schema.
148
- schema_overrides : dict, default None
149
- Support override of inferred types for one or more columns.
150
- strict : bool, default True
151
- Throw an error if any `data` value does not exactly match the given or inferred
152
- data type for that column. If set to `False`, values that do not match the data
153
- type are cast to that data type or, if casting is not possible, set to null
154
- instead.
155
- infer_schema_length
156
- The maximum number of rows to scan for schema inference.
157
- If set to `None`, the full data may be scanned *(this is slow)*.
158
-
159
- Returns
160
- -------
161
- DataFrame
162
-
163
- Examples
164
- --------
165
- >>> data = [{"a": 1, "b": 4}, {"a": 2, "b": 5}, {"a": 3, "b": 6}]
166
- >>> df = pl.from_dicts(data)
167
- >>> df
168
- shape: (3, 2)
169
- ┌─────┬─────┐
170
- │ a ┆ b │
171
- │ --- ┆ --- │
172
- │ i64 ┆ i64 │
173
- ╞═════╪═════╡
174
- │ 1 ┆ 4 │
175
- │ 2 ┆ 5 │
176
- │ 3 ┆ 6 │
177
- └─────┴─────┘
178
-
179
- Declaring a partial `schema` will drop the omitted columns.
180
-
181
- >>> df = pl.from_dicts(data, schema={"a": pl.Int32})
182
- >>> df
183
- shape: (3, 1)
184
- ┌─────┐
185
- │ a │
186
- │ --- │
187
- │ i32 │
188
- ╞═════╡
189
- │ 1 │
190
- │ 2 │
191
- │ 3 │
192
- └─────┘
193
-
194
- Can also use the `schema` param to extend the loaded columns with one
195
- or more additional (empty) columns that are not present in the input dicts:
196
-
197
- >>> pl.from_dicts(
198
- ... data,
199
- ... schema=["a", "b", "c", "d"],
200
- ... schema_overrides={"c": pl.Float64, "d": pl.String},
201
- ... )
202
- shape: (3, 4)
203
- ┌─────┬─────┬──────┬──────┐
204
- │ a ┆ b ┆ c ┆ d │
205
- │ --- ┆ --- ┆ --- ┆ --- │
206
- │ i64 ┆ i64 ┆ f64 ┆ str │
207
- ╞═════╪═════╪══════╪══════╡
208
- │ 1 ┆ 4 ┆ null ┆ null │
209
- │ 2 ┆ 5 ┆ null ┆ null │
210
- │ 3 ┆ 6 ┆ null ┆ null │
211
- └─────┴─────┴──────┴──────┘
212
- """
213
- if not data and not (schema or schema_overrides):
214
- msg = "no data, cannot infer schema"
215
- raise NoDataError(msg)
216
-
217
- return pl.DataFrame(
218
- data,
219
- schema=schema,
220
- schema_overrides=schema_overrides,
221
- strict=strict,
222
- infer_schema_length=infer_schema_length,
223
- )
224
-
225
-
226
- def from_records(
227
- data: Sequence[Any],
228
- schema: SchemaDefinition | None = None,
229
- *,
230
- schema_overrides: SchemaDict | None = None,
231
- strict: bool = True,
232
- orient: Orientation | None = None,
233
- infer_schema_length: int | None = N_INFER_DEFAULT,
234
- ) -> DataFrame:
235
- """
236
- Construct a DataFrame from a sequence of sequences. This operation clones data.
237
-
238
- Note that this is slower than creating from columnar memory.
239
-
240
- Parameters
241
- ----------
242
- data : Sequence of sequences
243
- Two-dimensional data represented as a sequence of sequences.
244
- schema : Sequence of str, (str,DataType) pairs, or a {str:DataType,} dict
245
- The DataFrame schema may be declared in several ways:
246
-
247
- * As a dict of {name:type} pairs; if type is None, it will be auto-inferred.
248
- * As a list of column names; in this case types are automatically inferred.
249
- * As a list of (name,type) pairs; this is equivalent to the dictionary form.
250
-
251
- If you supply a list of column names that does not match the names in the
252
- underlying data, the names given here will overwrite them. The number
253
- of names given in the schema should match the underlying data dimensions.
254
- schema_overrides : dict, default None
255
- Support type specification or override of one or more columns; note that
256
- any dtypes inferred from the columns param will be overridden.
257
- strict : bool, default True
258
- Throw an error if any `data` value does not exactly match the given or inferred
259
- data type for that column. If set to `False`, values that do not match the data
260
- type are cast to that data type or, if casting is not possible, set to null
261
- instead.
262
- orient : {None, 'col', 'row'}
263
- Whether to interpret two-dimensional data as columns or as rows. If None,
264
- the orientation is inferred by matching the columns and data dimensions. If
265
- this does not yield conclusive results, column orientation is used.
266
- infer_schema_length
267
- The maximum number of rows to scan for schema inference.
268
- If set to `None`, the full data may be scanned *(this is slow)*.
269
-
270
- Returns
271
- -------
272
- DataFrame
273
-
274
- Examples
275
- --------
276
- >>> data = [[1, 2, 3], [4, 5, 6]]
277
- >>> df = pl.from_records(data, schema=["a", "b"])
278
- >>> df
279
- shape: (3, 2)
280
- ┌─────┬─────┐
281
- │ a ┆ b │
282
- │ --- ┆ --- │
283
- │ i64 ┆ i64 │
284
- ╞═════╪═════╡
285
- │ 1 ┆ 4 │
286
- │ 2 ┆ 5 │
287
- │ 3 ┆ 6 │
288
- └─────┴─────┘
289
- """
290
- if not isinstance(data, Sequence):
291
- msg = (
292
- f"expected data of type Sequence, got {type(data).__name__!r}"
293
- "\n\nHint: Try passing your data to the DataFrame constructor instead,"
294
- " e.g. `pl.DataFrame(data)`."
295
- )
296
- raise TypeError(msg)
297
-
298
- return wrap_df(
299
- sequence_to_pydf(
300
- data,
301
- schema=schema,
302
- schema_overrides=schema_overrides,
303
- strict=strict,
304
- orient=orient,
305
- infer_schema_length=infer_schema_length,
306
- )
307
- )
308
-
309
-
310
- def from_numpy(
311
- data: np.ndarray[Any, Any],
312
- schema: SchemaDefinition | None = None,
313
- *,
314
- schema_overrides: SchemaDict | None = None,
315
- orient: Orientation | None = None,
316
- ) -> DataFrame:
317
- """
318
- Construct a DataFrame from a NumPy ndarray. This operation clones data.
319
-
320
- Note that this is slower than creating from columnar memory.
321
-
322
- Parameters
323
- ----------
324
- data : :class:`numpy.ndarray`
325
- Two-dimensional data represented as a NumPy ndarray.
326
- schema : Sequence of str, (str,DataType) pairs, or a {str:DataType,} dict
327
- The DataFrame schema may be declared in several ways:
328
-
329
- * As a dict of {name:type} pairs; if type is None, it will be auto-inferred.
330
- * As a list of column names; in this case types are automatically inferred.
331
- * As a list of (name,type) pairs; this is equivalent to the dictionary form.
332
-
333
- If you supply a list of column names that does not match the names in the
334
- underlying data, the names given here will overwrite them. The number
335
- of names given in the schema should match the underlying data dimensions.
336
- schema_overrides : dict, default None
337
- Support type specification or override of one or more columns; note that
338
- any dtypes inferred from the columns param will be overridden.
339
- orient : {None, 'col', 'row'}
340
- Whether to interpret two-dimensional data as columns or as rows. If None,
341
- the orientation is inferred by matching the columns and data dimensions. If
342
- this does not yield conclusive results, column orientation is used.
343
-
344
- Returns
345
- -------
346
- DataFrame
347
-
348
- Examples
349
- --------
350
- >>> import numpy as np
351
- >>> data = np.array([[1, 2, 3], [4, 5, 6]])
352
- >>> df = pl.from_numpy(data, schema=["a", "b"], orient="col")
353
- >>> df
354
- shape: (3, 2)
355
- ┌─────┬─────┐
356
- │ a ┆ b │
357
- │ --- ┆ --- │
358
- │ i64 ┆ i64 │
359
- ╞═════╪═════╡
360
- │ 1 ┆ 4 │
361
- │ 2 ┆ 5 │
362
- │ 3 ┆ 6 │
363
- └─────┴─────┘
364
- """
365
- return wrap_df(
366
- numpy_to_pydf(
367
- data=data,
368
- schema=schema,
369
- schema_overrides=schema_overrides,
370
- orient=orient,
371
- )
372
- )
373
-
374
-
375
- def from_torch(
376
- tensor: torch.Tensor,
377
- schema: SchemaDefinition | None = None,
378
- *,
379
- schema_overrides: SchemaDict | None = None,
380
- orient: Orientation | None = None,
381
- force: bool = False,
382
- ) -> DataFrame:
383
- """
384
- Construct a DataFrame from a PyTorch Tensor.
385
-
386
- Parameters
387
- ----------
388
- tensor : :class:`torch.Tensor`
389
- A PyTorch `Tensor` object of one or more dimensions.
390
- schema : Sequence of str, (str,DataType) pairs, or a {str:DataType,} dict
391
- The DataFrame schema may be declared in several ways:
392
-
393
- * As a dict of {name:type} pairs; if type is None, it will be auto-inferred.
394
- * As a list of column names; in this case types are automatically inferred.
395
- * As a list of (name,type) pairs; this is equivalent to the dictionary form.
396
-
397
- If you supply a list of column names that does not match the names in the
398
- underlying data, the names given here will overwrite them. The number
399
- of names given in the schema should match the underlying data dimensions.
400
- schema_overrides : dict, default None
401
- Support type specification or override of one or more columns; note that
402
- any dtypes inferred from the columns param will be overridden.
403
- orient : {None, 'col', 'row'}
404
- Whether to interpret two-dimensional data as columns or as rows. If None,
405
- the orientation is inferred by matching the columns and data dimensions. If
406
- this does not yield conclusive results, column orientation is used.
407
- force : bool
408
- If False, the conversion is performed only if the Tensor is on CPU, does not
409
- require grad, does not have its conjugate bit set, and is of a dtype (and
410
- layout) that NumPy supports; this will typically be zero-copy. If True, it
411
- is equivalent to calling `.detach().cpu().resolve_conj().resolve_neg()`
412
- before passing the Tensor to Polars.
413
-
414
- Returns
415
- -------
416
- DataFrame
417
-
418
- Examples
419
- --------
420
- >>> import torch
421
- >>> data = torch.tensor(
422
- ... [
423
- ... [1234.5, 200.0, 3000.5],
424
- ... [8000.0, 500.5, 6000.0],
425
- ... ]
426
- ... )
427
- >>> df = pl.from_torch(
428
- ... data,
429
- ... schema=["colx", "coly", "colz"],
430
- ... schema_overrides={"colz": pl.Float64},
431
- ... )
432
- >>> df
433
- shape: (2, 3)
434
- ┌────────┬───────┬────────┐
435
- │ colx ┆ coly ┆ colz │
436
- │ --- ┆ --- ┆ --- │
437
- │ f32 ┆ f32 ┆ f64 │
438
- ╞════════╪═══════╪════════╡
439
- │ 1234.5 ┆ 200.0 ┆ 3000.5 │
440
- │ 8000.0 ┆ 500.5 ┆ 6000.0 │
441
- └────────┴───────┴────────┘
442
- """
443
- return wrap_df(
444
- numpy_to_pydf(
445
- data=tensor.numpy(force=force),
446
- schema=schema,
447
- schema_overrides=schema_overrides,
448
- orient=orient,
449
- )
450
- )
451
-
452
-
453
- # Note: we cannot @overload the typing (Series vs DataFrame) here, as pyarrow
454
- # does not (yet?) implement any support for type hints; attempts to hint here
455
- # will simply result in mypy inferring "Any", which isn't at all useful...
456
-
457
-
458
- def from_arrow(
459
- data: (
460
- pa.Table
461
- | pa.Array
462
- | pa.ChunkedArray
463
- | pa.RecordBatch
464
- | Iterable[pa.RecordBatch | pa.Table]
465
- | ArrowArrayExportable
466
- | ArrowStreamExportable
467
- ),
468
- schema: SchemaDefinition | None = None,
469
- *,
470
- schema_overrides: SchemaDict | None = None,
471
- rechunk: bool = True,
472
- ) -> DataFrame | Series:
473
- """
474
- Create a DataFrame or Series from an Arrow Table or Array.
475
-
476
- This operation will be zero copy for the most part. Types that are not
477
- supported by Polars may be cast to the closest supported type.
478
-
479
- Hint: You can also directly pass arrow tables to `pl.DataFrame()` / arrow
480
- arrays to `pl.Series()` if the output type is known to avoid typing issues.
481
-
482
- Parameters
483
- ----------
484
- data : :class:`pyarrow.Table`, :class:`pyarrow.Array`, one or more :class:`pyarrow.RecordBatch`
485
- Data representing an Arrow Table, Array, sequence of RecordBatches or Tables, or other
486
- object that supports the Arrow PyCapsule interface.
487
- schema : Sequence of str, (str,DataType) pairs, or a {str:DataType,} dict
488
- The DataFrame schema may be declared in several ways:
489
-
490
- * As a dict of {name:type} pairs; if type is None, it will be auto-inferred.
491
- * As a list of column names; in this case types are automatically inferred.
492
- * As a list of (name,type) pairs; this is equivalent to the dictionary form.
493
-
494
- If you supply a list of column names that does not match the names in the
495
- underlying data, the names given here will overwrite them. The number
496
- of names given in the schema should match the underlying data dimensions.
497
- schema_overrides : dict, default None
498
- Support type specification or override of one or more columns; note that
499
- any dtypes inferred from the schema param will be overridden.
500
- rechunk : bool, default True
501
- Make sure that all data is in contiguous memory.
502
-
503
- Returns
504
- -------
505
- DataFrame or Series
506
-
507
- Examples
508
- --------
509
- Constructing a DataFrame from an Arrow Table:
510
-
511
- >>> import pyarrow as pa
512
- >>> data = pa.table({"a": [1, 2, 3], "b": [4, 5, 6]})
513
- >>> pl.from_arrow(data)
514
- shape: (3, 2)
515
- ┌─────┬─────┐
516
- │ a ┆ b │
517
- │ --- ┆ --- │
518
- │ i64 ┆ i64 │
519
- ╞═════╪═════╡
520
- │ 1 ┆ 4 │
521
- │ 2 ┆ 5 │
522
- │ 3 ┆ 6 │
523
- └─────┴─────┘
524
-
525
- Constructing a Series from an Arrow Array:
526
-
527
- >>> import pyarrow as pa
528
- >>> data = pa.array([1, 2, 3])
529
- >>> pl.from_arrow(data, schema={"s": pl.Int32})
530
- shape: (3,)
531
- Series: 's' [i32]
532
- [
533
- 1
534
- 2
535
- 3
536
- ]
537
- """ # noqa: W505
538
- if is_pycapsule(data) and not _check_for_pyarrow(data):
539
- return pycapsule_to_frame(
540
- data,
541
- schema=schema,
542
- schema_overrides=schema_overrides,
543
- rechunk=rechunk,
544
- )
545
-
546
- elif isinstance(data, (pa.Table, pa.RecordBatch)):
547
- return wrap_df(
548
- arrow_to_pydf(
549
- data=data,
550
- rechunk=rechunk,
551
- schema=schema,
552
- schema_overrides=schema_overrides,
553
- )
554
- )
555
- elif isinstance(data, (pa.Array, pa.ChunkedArray)):
556
- name = getattr(data, "_name", "") or ""
557
- s = wrap_s(arrow_to_pyseries(name, data, rechunk=rechunk))
558
- s = pl.DataFrame(
559
- data=s,
560
- schema=schema,
561
- schema_overrides=schema_overrides,
562
- ).to_series()
563
- return s if (name or schema or schema_overrides) else s.alias("")
564
-
565
- elif not data:
566
- return pl.DataFrame(
567
- schema=schema,
568
- schema_overrides=schema_overrides,
569
- )
570
-
571
- if isinstance(data, Iterable):
572
- pa_table = pa.Table.from_batches(
573
- itertools.chain.from_iterable(
574
- (b.to_batches() if isinstance(b, pa.Table) else [b]) for b in data
575
- )
576
- )
577
- return wrap_df(
578
- arrow_to_pydf(
579
- data=pa_table,
580
- rechunk=rechunk,
581
- schema=schema,
582
- schema_overrides=schema_overrides,
583
- )
584
- )
585
-
586
- msg = f"expected PyArrow Table, Array, or one or more RecordBatches; got {qualified_type_name(data)!r}"
587
- raise TypeError(msg)
588
-
589
-
590
- @overload
591
- def from_pandas(
592
- data: pd.DataFrame,
593
- *,
594
- schema_overrides: SchemaDict | None = ...,
595
- rechunk: bool = ...,
596
- nan_to_null: bool = ...,
597
- include_index: bool = ...,
598
- ) -> DataFrame: ...
599
-
600
-
601
- @overload
602
- def from_pandas(
603
- data: pd.Series[Any] | pd.Index[Any] | pd.DatetimeIndex,
604
- *,
605
- schema_overrides: SchemaDict | None = ...,
606
- rechunk: bool = ...,
607
- nan_to_null: bool = ...,
608
- include_index: Literal[False] = ...,
609
- ) -> Series: ...
610
-
611
-
612
- @overload
613
- def from_pandas(
614
- data: pd.Series[Any],
615
- *,
616
- schema_overrides: SchemaDict | None = ...,
617
- rechunk: bool = ...,
618
- nan_to_null: bool = ...,
619
- include_index: Literal[True],
620
- ) -> DataFrame: ...
621
-
622
-
623
- def from_pandas(
624
- data: pd.DataFrame | pd.Series[Any] | pd.Index[Any] | pd.DatetimeIndex,
625
- *,
626
- schema_overrides: SchemaDict | None = None,
627
- rechunk: bool = True,
628
- nan_to_null: bool = True,
629
- include_index: bool = False,
630
- ) -> DataFrame | Series:
631
- """
632
- Construct a Polars DataFrame or Series from a pandas DataFrame, Series, or Index.
633
-
634
- This operation may clone data. If you want to ensure that in-place modifications
635
- of the output don't affect the input, you may want to consider one of the following:
636
-
637
- - Enable `Copy-On-Write <https://pandas.pydata.org/docs/dev/user_guide/copy_on_write.html>`_
638
- in pandas.
639
- - Call :meth:`DataFrame.clone` on the output of `from_pandas`.
640
-
641
- This requires that :mod:`pandas` and :mod:`pyarrow` are installed.
642
-
643
- Parameters
644
- ----------
645
- data : :class:`pandas.DataFrame` or :class:`pandas.Series` or :class:`pandas.Index`
646
- Data represented as a pandas DataFrame, Series, or Index.
647
- schema_overrides : dict, default None
648
- Support override of inferred types for one or more columns.
649
- rechunk : bool, default True
650
- Make sure that all data is in contiguous memory.
651
- nan_to_null : bool, default True
652
- If data contains `NaN` values PyArrow will convert the `NaN` to `None`
653
- include_index : bool, default False
654
- Load any non-default pandas indexes as columns.
655
-
656
- .. note::
657
- If the input is a pandas ``DataFrame`` and has a nameless index
658
- which just enumerates the rows, then it will not be included in the
659
- result, regardless of this parameter. If you want to be sure to include it,
660
- please call ``.reset_index()`` prior to calling this function.
661
-
662
- Returns
663
- -------
664
- DataFrame
665
-
666
- Examples
667
- --------
668
- Constructing a :class:`DataFrame` from a :class:`pandas.DataFrame`:
669
-
670
- >>> import pandas as pd
671
- >>> pd_df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=["a", "b", "c"])
672
- >>> df = pl.from_pandas(pd_df)
673
- >>> df
674
- shape: (2, 3)
675
- ┌─────┬─────┬─────┐
676
- │ a ┆ b ┆ c │
677
- │ --- ┆ --- ┆ --- │
678
- │ i64 ┆ i64 ┆ i64 │
679
- ╞═════╪═════╪═════╡
680
- │ 1 ┆ 2 ┆ 3 │
681
- │ 4 ┆ 5 ┆ 6 │
682
- └─────┴─────┴─────┘
683
-
684
- Constructing a Series from a :class:`pandas.Series`:
685
-
686
- >>> import pandas as pd
687
- >>> pd_series = pd.Series([1, 2, 3], name="pd")
688
- >>> df = pl.from_pandas(pd_series)
689
- >>> df
690
- shape: (3,)
691
- Series: 'pd' [i64]
692
- [
693
- 1
694
- 2
695
- 3
696
- ]
697
- """
698
- if include_index and isinstance(data, pd.Series):
699
- data = data.reset_index()
700
-
701
- if isinstance(data, (pd.Series, pd.Index, pd.DatetimeIndex)):
702
- return wrap_s(pandas_to_pyseries("", data, nan_to_null=nan_to_null))
703
- elif isinstance(data, pd.DataFrame):
704
- return wrap_df(
705
- pandas_to_pydf(
706
- data,
707
- schema_overrides=schema_overrides,
708
- rechunk=rechunk,
709
- nan_to_null=nan_to_null,
710
- include_index=include_index,
711
- )
712
- )
713
- else:
714
- msg = f"expected pandas DataFrame or Series, got {qualified_type_name(data)!r}"
715
- raise TypeError(msg)
716
-
717
-
718
- @deprecate_renamed_parameter("tbl", "data", version="0.20.17")
719
- def from_repr(data: str) -> DataFrame | Series:
720
- """
721
- Construct a Polars DataFrame or Series from its string representation.
722
-
723
- .. versionchanged:: 0.20.17
724
- The `tbl` parameter was renamed to `data`.
725
-
726
- Parameters
727
- ----------
728
- data
729
- A string containing a polars DataFrame or Series repr; does not need
730
- to be trimmed of whitespace (or leading prompts) as the repr will be
731
- found/extracted automatically.
732
-
733
- Notes
734
- -----
735
- This function handles the default UTF8_FULL (and UTF8_FULL_CONDENSED) DataFrame
736
- tables, with or without rounded corners. Truncated columns/rows are omitted,
737
- wrapped headers are accounted for, and dtypes are automatically identified.
738
-
739
- Currently compound/nested dtypes such as List and Struct are not supported;
740
- neither are Object dtypes. The DuckDB table/relation repr is also compatible
741
- with this function.
742
-
743
- See Also
744
- --------
745
- polars.DataFrame.to_init_repr
746
- polars.Series.to_init_repr
747
-
748
- Examples
749
- --------
750
- From DataFrame table repr:
751
-
752
- >>> df = pl.from_repr(
753
- ... '''
754
- ... Out[3]:
755
- ... shape: (1, 5)
756
- ... ┌───────────┬────────────┬───┬───────┬────────────────────────────────┐
757
- ... │ source_ac ┆ source_cha ┆ … ┆ ident ┆ timestamp │
758
- ... │ tor_id ┆ nnel_id ┆ ┆ --- ┆ --- │
759
- ... │ --- ┆ --- ┆ ┆ str ┆ datetime[μs, Asia/Tokyo] │
760
- ... │ i32 ┆ i64 ┆ ┆ ┆ │
761
- ... ╞═══════════╪════════════╪═══╪═══════╪════════════════════════════════╡
762
- ... │ 123456780 ┆ 9876543210 ┆ … ┆ a:b:c ┆ 2023-03-25 10:56:59.663053 JST │
763
- ... │ … ┆ … ┆ … ┆ … ┆ … │
764
- ... │ 803065983 ┆ 2055938745 ┆ … ┆ x:y:z ┆ 2023-03-25 12:38:18.050545 JST │
765
- ... └───────────┴────────────┴───┴───────┴────────────────────────────────┘
766
- ... '''
767
- ... )
768
- >>> df
769
- shape: (2, 4)
770
- ┌─────────────────┬───────────────────┬───────┬────────────────────────────────┐
771
- │ source_actor_id ┆ source_channel_id ┆ ident ┆ timestamp │
772
- │ --- ┆ --- ┆ --- ┆ --- │
773
- │ i32 ┆ i64 ┆ str ┆ datetime[μs, Asia/Tokyo] │
774
- ╞═════════════════╪═══════════════════╪═══════╪════════════════════════════════╡
775
- │ 123456780 ┆ 9876543210 ┆ a:b:c ┆ 2023-03-25 10:56:59.663053 JST │
776
- │ 803065983 ┆ 2055938745 ┆ x:y:z ┆ 2023-03-25 12:38:18.050545 JST │
777
- └─────────────────┴───────────────────┴───────┴────────────────────────────────┘
778
-
779
- From Series repr:
780
-
781
- >>> s = pl.from_repr(
782
- ... '''
783
- ... shape: (3,)
784
- ... Series: 's' [bool]
785
- ... [
786
- ... true
787
- ... false
788
- ... true
789
- ... ]
790
- ... '''
791
- ... )
792
- >>> s.to_list()
793
- [True, False, True]
794
- """
795
- # find DataFrame table...
796
- m = re.search(r"([┌╭].*?[┘╯])", data, re.DOTALL)
797
- if m is not None:
798
- return _from_dataframe_repr(m)
799
-
800
- # ...or Series in the given string
801
- m = re.search(
802
- pattern=r"(?:shape: (\(\d+,\))\n.*?)?Series:\s+([^\n]+)\s+\[([^\n]+)](.*)",
803
- string=data,
804
- flags=re.DOTALL,
805
- )
806
- if m is not None:
807
- return _from_series_repr(m)
808
-
809
- msg = "input string does not contain DataFrame or Series"
810
- raise ValueError(msg)
811
-
812
-
813
- def _from_dataframe_repr(m: re.Match[str]) -> DataFrame:
814
- """Reconstruct a DataFrame from a regex-matched table repr."""
815
- from polars.datatypes.convert import dtype_short_repr_to_dtype
816
- from polars.io.database._inference import dtype_from_database_typename
817
-
818
- def _dtype_from_name(tp: str | None) -> PolarsDataType | None:
819
- return (
820
- None
821
- if tp is None
822
- else (
823
- dtype_short_repr_to_dtype(tp)
824
- or dtype_from_database_typename(tp, raise_unmatched=False)
825
- )
826
- )
827
-
828
- # extract elements from table structure
829
- lines = m.group().split("\n")[1:-1]
830
- rows = [
831
- [re.sub(r"^[\W+]*│", "", elem).strip() for elem in row]
832
- for row in [re.split("[│┆|]", row.lstrip("#. ").rstrip("│ ")) for row in lines]
833
- if len(row) > 1 or not re.search("├[╌┼]+┤", row[0])
834
- ]
835
-
836
- # determine beginning/end of the header block
837
- table_body_start = 2
838
- found_header_divider = False
839
- for idx, (elem, *_) in enumerate(rows):
840
- if re.match(r"^\W*[╞]", elem):
841
- found_header_divider = True
842
- table_body_start = idx
843
- break
844
-
845
- # handle headers with wrapped column names and determine headers/dtypes
846
- header_rows = rows[:table_body_start]
847
- header_block: list[Sequence[str]]
848
- if (
849
- not found_header_divider
850
- and len(header_rows) == 2
851
- and not any("---" in h for h in header_rows)
852
- ):
853
- header_block = list(zip(*header_rows))
854
- else:
855
- header_block = ["".join(h).split("---") for h in zip(*header_rows)]
856
-
857
- dtypes: list[str | None]
858
- if all(len(h) == 1 for h in header_block):
859
- headers = [h[0] for h in header_block]
860
- dtypes = [None] * len(headers)
861
- else:
862
- headers, dtypes = (list(h) for h in itertools.zip_longest(*header_block))
863
-
864
- body = rows[table_body_start + 1 :]
865
- if not headers[0] and not dtypes[0]:
866
- body = [row[1:] for row in body]
867
- headers = headers[1:]
868
- dtypes = dtypes[1:]
869
-
870
- no_dtypes = all(d is None for d in dtypes)
871
-
872
- # transpose rows into columns, detect/omit truncated columns
873
- coldata = list(zip(*(row for row in body if not all((e == "…") for e in row))))
874
- for el in ("…", "..."):
875
- if el in headers:
876
- idx = headers.index(el)
877
- for table_elem in (headers, dtypes):
878
- table_elem.pop(idx)
879
- if coldata:
880
- coldata.pop(idx)
881
-
882
- # init cols as String Series, handle "null" -> None, create schema from repr dtype
883
- data = [
884
- pl.Series([(None if v in ("null", "NULL") else v) for v in cd], dtype=String)
885
- for cd in coldata
886
- ]
887
- schema = dict(zip(headers, (_dtype_from_name(d) for d in dtypes)))
888
- if schema and data and (n_extend_cols := (len(schema) - len(data))) > 0:
889
- empty_data = [None] * len(data[0])
890
- data.extend((pl.Series(empty_data, dtype=String)) for _ in range(n_extend_cols))
891
-
892
- for dtype in set(schema.values()):
893
- if dtype is not None and (dtype.is_nested() or dtype.is_object()):
894
- msg = (
895
- f"`from_repr` does not support data type {dtype.base_type().__name__!r}"
896
- )
897
- raise NotImplementedError(msg)
898
-
899
- # construct DataFrame from string series and cast from repr to native dtype
900
- df = pl.DataFrame(data=data, orient="col", schema=list(schema))
901
- if no_dtypes:
902
- if df.is_empty():
903
- # if no dtypes *and* empty, default to string
904
- return df.with_columns(F.all().cast(String))
905
- else:
906
- # otherwise, take a trip through our CSV inference logic
907
- if all(tp == String for tp in df.schema.values()):
908
- from polars.io import read_csv
909
-
910
- buf = io.BytesIO()
911
- df.write_csv(file=buf)
912
- buf.seek(0)
913
- df = read_csv(
914
- buf,
915
- new_columns=df.columns,
916
- try_parse_dates=True,
917
- infer_schema_length=None,
918
- )
919
- return df
920
- elif schema and not data:
921
- return df.cast(schema) # type: ignore[arg-type]
922
- else:
923
- return _cast_repr_strings_with_schema(df, schema)
924
-
925
-
926
- def _from_series_repr(m: re.Match[str]) -> Series:
927
- """Reconstruct a Series from a regex-matched series repr."""
928
- from polars.datatypes.convert import dtype_short_repr_to_dtype
929
-
930
- shape = m.groups()[0]
931
- name = m.groups()[1][1:-1]
932
- length = int(shape[1:-2] if shape else -1)
933
- dtype = dtype_short_repr_to_dtype(m.groups()[2])
934
-
935
- if length == 0:
936
- string_values = []
937
- else:
938
- string_values = [
939
- v.strip()
940
- for v in re.findall(r"[\s>#]*(?:\t|\s{2,})([^\n]*)\n", m.groups()[-1])
941
- ]
942
- if string_values == ["[", "]"]:
943
- string_values = []
944
- else:
945
- start: int | None = None
946
- end: int | None = None
947
- for idx, v in enumerate(string_values):
948
- if start is None and v.lstrip("#> ") == "[":
949
- start = idx
950
- if v.lstrip("#> ") == "]":
951
- end = idx
952
- if start is not None and end is not None:
953
- string_values = string_values[start + 1 : end]
954
-
955
- values = string_values[:length] if length > 0 else string_values
956
- values = [(None if v == "null" else v) for v in values if v not in ("…", "...")]
957
-
958
- if not values:
959
- return pl.Series(name=name, values=values, dtype=dtype)
960
- else:
961
- srs = pl.Series(name=name, values=values, dtype=String)
962
- if dtype is None:
963
- return srs
964
- elif dtype in (Categorical, String):
965
- return srs.str.replace('^"(.*)"$', r"$1").cast(dtype)
966
-
967
- return _cast_repr_strings_with_schema(
968
- srs.to_frame(), schema={srs.name: dtype}
969
- ).to_series()
970
-
971
-
972
- def from_dataframe(
973
- df: SupportsInterchange | ArrowArrayExportable | ArrowStreamExportable,
974
- *,
975
- allow_copy: bool | None = None,
976
- rechunk: bool = True,
977
- ) -> DataFrame:
978
- """
979
- Build a Polars DataFrame from any dataframe supporting the PyCapsule Interface.
980
-
981
- .. versionchanged:: 1.23.0
982
-
983
- `from_dataframe` uses the PyCapsule Interface instead of the Dataframe
984
- Interchange Protocol for conversion, only using the latter as a fallback.
985
-
986
- Parameters
987
- ----------
988
- df
989
- Object supporting the dataframe PyCapsule Interface.
990
- allow_copy
991
- Allow memory to be copied to perform the conversion. If set to False, may cause
992
- conversions that are not zero-copy to fail.
993
-
994
- .. deprecated: 1.23.0
995
- `allow_copy` is deprecated and will be removed in a future version.
996
- rechunk : bool, default True
997
- Make sure that all data is in contiguous memory.
998
-
999
- Notes
1000
- -----
1001
- - Details on the PyCapsule Interface:
1002
- https://arrow.apache.org/docs/format/CDataInterface/PyCapsuleInterface.html.
1003
- - Details on the Python dataframe interchange protocol:
1004
- https://data-apis.org/dataframe-protocol/latest/index.html.
1005
- Using a dedicated function like :func:`from_pandas` or :func:`from_arrow` is
1006
- a more efficient method of conversion.
1007
-
1008
- Examples
1009
- --------
1010
- Convert a pandas dataframe to Polars.
1011
-
1012
- >>> import pandas as pd
1013
- >>> df_pd = pd.DataFrame({"a": [1, 2], "b": [3.0, 4.0], "c": ["x", "y"]})
1014
- >>> pl.from_dataframe(df_pd)
1015
- shape: (2, 3)
1016
- ┌─────┬─────┬─────┐
1017
- │ a ┆ b ┆ c │
1018
- │ --- ┆ --- ┆ --- │
1019
- │ i64 ┆ f64 ┆ str │
1020
- ╞═════╪═════╪═════╡
1021
- │ 1 ┆ 3.0 ┆ x │
1022
- │ 2 ┆ 4.0 ┆ y │
1023
- └─────┴─────┴─────┘
1024
- """
1025
- if allow_copy is not None:
1026
- issue_deprecation_warning(
1027
- "`allow_copy` is deprecated and will be removed in a future version.",
1028
- version="1.23",
1029
- )
1030
- else:
1031
- allow_copy = True
1032
- if is_pycapsule(df):
1033
- try:
1034
- return pycapsule_to_frame(df, rechunk=rechunk)
1035
- except Exception as exc:
1036
- issue_warning(
1037
- f"Failed to convert dataframe using PyCapsule Interface with exception: {exc!r}.\n"
1038
- "Falling back to Dataframe Interchange Protocol, which is known to be less robust.",
1039
- UserWarning,
1040
- )
1041
- from polars.interchange.from_dataframe import from_dataframe
1042
-
1043
- result = from_dataframe(df, allow_copy=allow_copy) # type: ignore[arg-type]
1044
- if rechunk:
1045
- return result.rechunk()
1046
- return result