plotnine 0.15.0a2__py3-none-any.whl → 0.15.0a4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (70) hide show
  1. plotnine/_mpl/layout_manager/_layout_tree.py +16 -6
  2. plotnine/_utils/__init__.py +7 -103
  3. plotnine/doctools.py +3 -3
  4. plotnine/geoms/annotate.py +10 -10
  5. plotnine/geoms/annotation_logticks.py +5 -8
  6. plotnine/geoms/annotation_stripes.py +4 -6
  7. plotnine/geoms/geom.py +41 -20
  8. plotnine/geoms/geom_abline.py +3 -2
  9. plotnine/geoms/geom_blank.py +0 -3
  10. plotnine/geoms/geom_boxplot.py +4 -4
  11. plotnine/geoms/geom_crossbar.py +3 -3
  12. plotnine/geoms/geom_dotplot.py +1 -1
  13. plotnine/geoms/geom_errorbar.py +2 -2
  14. plotnine/geoms/geom_errorbarh.py +2 -2
  15. plotnine/geoms/geom_hline.py +3 -2
  16. plotnine/geoms/geom_linerange.py +2 -2
  17. plotnine/geoms/geom_map.py +3 -3
  18. plotnine/geoms/geom_path.py +10 -11
  19. plotnine/geoms/geom_point.py +4 -5
  20. plotnine/geoms/geom_pointrange.py +3 -5
  21. plotnine/geoms/geom_polygon.py +2 -3
  22. plotnine/geoms/geom_raster.py +4 -5
  23. plotnine/geoms/geom_rect.py +3 -4
  24. plotnine/geoms/geom_ribbon.py +7 -7
  25. plotnine/geoms/geom_rug.py +1 -1
  26. plotnine/geoms/geom_segment.py +2 -2
  27. plotnine/geoms/geom_smooth.py +3 -3
  28. plotnine/geoms/geom_step.py +2 -2
  29. plotnine/geoms/geom_text.py +2 -3
  30. plotnine/geoms/geom_violin.py +4 -5
  31. plotnine/geoms/geom_vline.py +3 -2
  32. plotnine/guides/guides.py +1 -1
  33. plotnine/layer.py +20 -12
  34. plotnine/mapping/_eval_environment.py +1 -1
  35. plotnine/mapping/aes.py +75 -45
  36. plotnine/scales/scale_color.py +46 -14
  37. plotnine/scales/scale_continuous.py +4 -3
  38. plotnine/scales/scale_datetime.py +28 -14
  39. plotnine/scales/scale_discrete.py +1 -1
  40. plotnine/scales/scale_xy.py +2 -2
  41. plotnine/stats/smoothers.py +19 -19
  42. plotnine/stats/stat.py +15 -25
  43. plotnine/stats/stat_bin.py +2 -5
  44. plotnine/stats/stat_bin_2d.py +7 -9
  45. plotnine/stats/stat_bindot.py +5 -8
  46. plotnine/stats/stat_boxplot.py +5 -5
  47. plotnine/stats/stat_count.py +5 -9
  48. plotnine/stats/stat_density.py +5 -8
  49. plotnine/stats/stat_density_2d.py +11 -8
  50. plotnine/stats/stat_ecdf.py +6 -5
  51. plotnine/stats/stat_ellipse.py +5 -6
  52. plotnine/stats/stat_function.py +6 -8
  53. plotnine/stats/stat_hull.py +2 -3
  54. plotnine/stats/stat_identity.py +1 -2
  55. plotnine/stats/stat_pointdensity.py +4 -7
  56. plotnine/stats/stat_qq.py +45 -20
  57. plotnine/stats/stat_qq_line.py +15 -11
  58. plotnine/stats/stat_quantile.py +6 -7
  59. plotnine/stats/stat_sina.py +12 -14
  60. plotnine/stats/stat_smooth.py +7 -10
  61. plotnine/stats/stat_sum.py +1 -2
  62. plotnine/stats/stat_summary.py +6 -9
  63. plotnine/stats/stat_summary_bin.py +10 -13
  64. plotnine/stats/stat_unique.py +1 -2
  65. plotnine/stats/stat_ydensity.py +7 -10
  66. {plotnine-0.15.0a2.dist-info → plotnine-0.15.0a4.dist-info}/METADATA +4 -4
  67. {plotnine-0.15.0a2.dist-info → plotnine-0.15.0a4.dist-info}/RECORD +70 -70
  68. {plotnine-0.15.0a2.dist-info → plotnine-0.15.0a4.dist-info}/WHEEL +1 -1
  69. {plotnine-0.15.0a2.dist-info → plotnine-0.15.0a4.dist-info}/licenses/LICENSE +0 -0
  70. {plotnine-0.15.0a2.dist-info → plotnine-0.15.0a4.dist-info}/top_level.txt +0 -0
plotnine/mapping/aes.py CHANGED
@@ -8,7 +8,9 @@ from dataclasses import fields
8
8
  from functools import cached_property
9
9
  from typing import TYPE_CHECKING, Any, Dict
10
10
 
11
+ import numpy as np
11
12
  import pandas as pd
13
+ from mizani._colors.utils import is_color_tuple
12
14
 
13
15
  from ..iapi import labels_view
14
16
  from .evaluation import after_stat, stage
@@ -538,23 +540,23 @@ def make_labels(mapping: dict[str, Any] | aes) -> labels_view:
538
540
  )
539
541
 
540
542
 
541
- def is_valid_aesthetic(value: Any, ae: str) -> bool:
543
+ class RepeatAesthetic:
542
544
  """
543
- Return True if `value` looks valid.
545
+ Repeat an Aeshetic a given number of times
544
546
 
545
- Parameters
546
- ----------
547
- value :
548
- Value to check
549
- ae :
550
- Aesthetic name
547
+ The methods in this class know how to create sequences of aesthetics
548
+ whose values may not be scalar.
551
549
 
552
- Notes
553
- -----
554
- There are no guarantees that he value is spot on
555
- valid.
550
+ Some aesthetics may have valid values that are not scalar. e.g.
551
+ sequences. Inserting one of such a value in a dataframe as a column
552
+ would either lead to the wrong input or fail. The s
556
553
  """
557
- if ae == "linetype":
554
+
555
+ @staticmethod
556
+ def linetype(value: Any, n: int) -> Sequence[Any]:
557
+ """
558
+ Repeat linetypes
559
+ """
558
560
  named = {
559
561
  "solid",
560
562
  "dashed",
@@ -569,47 +571,75 @@ def is_valid_aesthetic(value: Any, ae: str) -> bool:
569
571
  "",
570
572
  }
571
573
  if value in named:
572
- return True
574
+ return [value] * n
573
575
 
574
576
  # tuple of the form (offset, (on, off, on, off, ...))
575
577
  # e.g (0, (1, 2))
576
- conditions = [
577
- isinstance(value, tuple),
578
- isinstance(value[0], int),
579
- isinstance(value[1], tuple),
580
- len(value[1]) % 2 == 0,
581
- all(isinstance(x, int) for x in value[1]),
582
- ]
583
- return all(conditions)
584
-
585
- elif ae == "shape":
578
+ if (
579
+ isinstance(value, tuple)
580
+ and isinstance(value[0], int)
581
+ and isinstance(value[1], tuple)
582
+ and len(value[1]) % 2 == 0
583
+ and all(isinstance(x, int) for x in value[1])
584
+ ):
585
+ return [value] * n
586
+
587
+ raise ValueError(f"{value} is not a known linetype.")
588
+
589
+ @staticmethod
590
+ def color(value: Any, n: int) -> Sequence[Any]:
591
+ """
592
+ Repeat colors
593
+ """
586
594
  if isinstance(value, str):
587
- return True
595
+ return [value] * n
596
+ if is_color_tuple(value):
597
+ return [tuple(value)] * n
598
+
599
+ raise ValueError(f"{value} is not a known color.")
600
+
601
+ fill = color
588
602
 
603
+ @staticmethod
604
+ def shape(value: Any, n: int) -> Any:
605
+ """
606
+ Repeat shapes
607
+ """
608
+ if isinstance(value, str):
609
+ return [value] * n
589
610
  # tuple of the form (numsides, style, angle)
590
611
  # where style is in the range [0, 3]
591
612
  # e.g (4, 1, 45)
592
- conditions = [
593
- isinstance(value, tuple),
594
- all(isinstance(x, int) for x in value),
595
- 0 <= value[1] < 3,
596
- ]
597
- return all(conditions)
598
-
599
- elif ae in {"color", "fill"}:
600
- if isinstance(value, str):
601
- return True
602
- with suppress(TypeError):
603
- if isinstance(value, (tuple, list)) and all(
604
- 0 <= x <= 1 for x in value
605
- ):
606
- return True
607
- return False
613
+ if (
614
+ isinstance(value, tuple)
615
+ and all(isinstance(x, int) for x in value)
616
+ and 0 <= value[1] < 3
617
+ ):
618
+ return [value] * n
619
+
620
+ if is_shape_points(value):
621
+ return [tuple(value)] * n
622
+
623
+ raise ValueError(f"{value} is not a know shape.")
608
624
 
609
- # For any other aesthetics we return False to allow
610
- # for special cases to be discovered and then coded
611
- # for appropriately.
612
- return False
625
+
626
+ def is_shape_points(obj: Any) -> bool:
627
+ """
628
+ Return True if obj is like Sequence[tuple[float, float]]
629
+ """
630
+
631
+ def is_numeric(obj) -> bool:
632
+ """
633
+ Return True if obj is a python or numpy float or integer
634
+ """
635
+ return isinstance(obj, (float, int, np.floating, np.integer))
636
+
637
+ if not iter(obj):
638
+ return False
639
+ try:
640
+ return all(is_numeric(a) and is_numeric(b) for a, b in obj)
641
+ except TypeError:
642
+ return False
613
643
 
614
644
 
615
645
  def has_groups(data: pd.DataFrame) -> bool:
@@ -1,6 +1,6 @@
1
1
  from __future__ import annotations
2
2
 
3
- from dataclasses import KW_ONLY, InitVar, dataclass
3
+ from dataclasses import KW_ONLY, InitVar, dataclass, field
4
4
  from typing import Literal, Sequence
5
5
  from warnings import warn
6
6
 
@@ -50,34 +50,66 @@ class scale_color_hue(_scale_color_discrete):
50
50
  Qualitative color scale with evenly spaced hues
51
51
  """
52
52
 
53
- h: InitVar[float] = 0.01
53
+ h: InitVar[float | tuple[float, float]] = 15
54
54
  """
55
- Hue. Must be in the range [0, 1]
55
+ Hue. If a float, it is the first hue value, in the range `[0, 360]`.
56
+ The range of the palette will be `[first, first + 360)`.
57
+
58
+ If a tuple, it is the range `[first, last)` of the hues.
56
59
  """
57
60
 
58
- l: InitVar[float] = 0.6
61
+ c: InitVar[float] = 100
59
62
  """
60
- Lightness. Must be in the range [0, 1]
63
+ Chroma. Must be in the range `[0, 100]`
61
64
  """
62
65
 
63
- s: InitVar[float] = 0.65
66
+ l: InitVar[float] = 65
64
67
  """
65
- Saturation. Must be in the range [0, 1]
68
+ Lightness. Must be in the range [0, 100]
66
69
  """
67
70
 
68
- color_space: InitVar[Literal["hls", "hsluv"]] = "hls"
71
+ direction: InitVar[Literal[1, -1]] = 1
69
72
  """
70
- Color space to use. Should be one of
71
- [hls](https://en.wikipedia.org/wiki/HSL_and_HSV)
72
- or [hsluv](https://www.hsluv.org/).
73
- https://www.hsluv.org/
73
+ The order of colours in the scale. If -1 the order
74
+ of colours is reversed. The default is 1.
74
75
  """
75
76
 
76
- def __post_init__(self, h, l, s, color_space):
77
+ _: KW_ONLY
78
+
79
+ s: None = field(default=None, repr=False)
80
+ """
81
+ Not being use and will be removed in a future version
82
+ """
83
+ color_space: None = field(default=None, repr=False)
84
+ """
85
+ Not being use and will be removed in a future version
86
+ """
87
+
88
+ def __post_init__(self, h, c, l, direction):
77
89
  from mizani.palettes import hue_pal
78
90
 
91
+ if (s := self.s) is not None:
92
+ warn(
93
+ f"You used {s=} for the saturation which has been ignored. "
94
+ f"{self.__class__.__name__} now works in HCL colorspace. "
95
+ f"Using `s` in future versions will throw an exception.",
96
+ FutureWarning,
97
+ )
98
+ del self.s
99
+
100
+ if (color_space := self.color_space) is not None:
101
+ warn(
102
+ f"You used {color_space=} to select a color_space and it "
103
+ f"has been ignored. {self.__class__.__name__} now only works "
104
+ f"in HCL colorspace. Using `color_space` in future versions "
105
+ "will throw an exception.",
106
+ FutureWarning,
107
+ )
108
+ del self.color_space
109
+
79
110
  super().__post_init__()
80
- self.palette = hue_pal(h, l, s, color_space=color_space)
111
+ self.palette = hue_pal(h, c, l, direction)
112
+ self.palette.h
81
113
 
82
114
 
83
115
  @dataclass
@@ -2,7 +2,7 @@ from __future__ import annotations
2
2
 
3
3
  from contextlib import suppress
4
4
  from dataclasses import dataclass
5
- from typing import TYPE_CHECKING, Sequence
5
+ from typing import TYPE_CHECKING, Sequence, cast
6
6
  from warnings import warn
7
7
 
8
8
  import numpy as np
@@ -387,14 +387,15 @@ class scale_continuous(
387
387
  limits = self.final_limits
388
388
 
389
389
  x = self.oob(self.rescaler(x, _from=limits))
390
+ na_value = cast("float", self.na_value)
390
391
 
391
392
  uniq = np.unique(x)
392
393
  pal = np.asarray(self.palette(uniq))
393
394
  scaled = pal[match(x, uniq)]
394
395
  if scaled.dtype.kind == "U":
395
- scaled = [self.na_value if x == "nan" else x for x in scaled]
396
+ scaled = [na_value if x == "nan" else x for x in scaled]
396
397
  else:
397
- scaled[pd.isna(scaled)] = self.na_value
398
+ scaled[pd.isna(scaled)] = na_value
398
399
  return scaled
399
400
 
400
401
  def get_breaks(
@@ -2,6 +2,7 @@ from __future__ import annotations
2
2
 
3
3
  from dataclasses import KW_ONLY, InitVar, dataclass
4
4
  from typing import TYPE_CHECKING
5
+ from warnings import warn
5
6
 
6
7
  from ._runtime_typing import TransUser # noqa: TCH001
7
8
  from .scale_continuous import scale_continuous
@@ -20,24 +21,21 @@ class scale_datetime(scale_continuous):
20
21
  """
21
22
  A string giving the distance between major breaks.
22
23
  For example `'2 weeks'`, `'5 years'`. If specified,
23
- `date_breaks` takes precedence over
24
- `breaks`.
24
+ `date_breaks` takes precedence over `breaks`.
25
25
  """
26
26
 
27
27
  date_labels: InitVar[str | None] = None
28
28
  """
29
29
  Format string for the labels.
30
30
  See [strftime](:ref:`strftime-strptime-behavior`).
31
- If specified, `date_labels` takes precedence over
32
- `labels`.
31
+ If specified, `date_labels` takes precedence over `labels`.
33
32
  """
34
33
 
35
34
  date_minor_breaks: InitVar[str | None] = None
36
35
  """
37
36
  A string giving the distance between minor breaks.
38
37
  For example `'2 weeks'`, `'5 years'`. If specified,
39
- `date_minor_breaks` takes precedence over
40
- `minor_breaks`.
38
+ `date_minor_breaks` takes precedence over `minor_breaks`.
41
39
  """
42
40
 
43
41
  _: KW_ONLY
@@ -80,22 +78,38 @@ class scale_datetime(scale_continuous):
80
78
  date_labels: str | None,
81
79
  date_minor_breaks: str | None,
82
80
  ):
83
- from mizani.breaks import breaks_date as breaks_func
84
- from mizani.labels import label_date as labels_func
81
+ from mizani.breaks import breaks_date_width
82
+ from mizani.labels import label_date
85
83
 
86
84
  if date_breaks is not None:
87
- self.breaks = breaks_func(date_breaks) # pyright: ignore
85
+ self.breaks = breaks_date_width(date_breaks) # pyright: ignore[reportAttributeAccessIssue]
88
86
  elif isinstance(self.breaks, str):
89
- self.breaks = breaks_func(width=self.breaks) # pyright: ignore
87
+ warn(
88
+ "Passing a string to `breaks` will not work in "
89
+ f"future versions. Use `date_breaks={self.breaks!r}`",
90
+ FutureWarning,
91
+ )
92
+ self.breaks = breaks_date_width(width=self.breaks) # pyright: ignore[reportAttributeAccessIssue]
90
93
 
91
94
  if date_labels is not None:
92
- self.labels = labels_func(date_labels) # pyright: ignore
95
+ self.labels = label_date(fmt=date_labels) # pyright: ignore[reportAttributeAccessIssue]
93
96
  elif isinstance(self.labels, str):
94
- self.labels = labels_func(width=self.labels) # pyright: ignore
97
+ warn(
98
+ "Passing a string to `labels` will not work in "
99
+ f"future versions. Use `date_labels={self.labels!r}`",
100
+ FutureWarning,
101
+ )
102
+ self.labels = label_date(fmt=self.labels) # pyright: ignore[reportAttributeAccessIssue]
95
103
 
96
104
  if date_minor_breaks is not None:
97
- self.minor_breaks = breaks_func(date_minor_breaks) # pyright: ignore
105
+ self.minor_breaks = breaks_date_width(date_minor_breaks) # pyright: ignore[reportAttributeAccessIssue]
98
106
  elif isinstance(self.minor_breaks, str):
99
- self.minor_breaks = breaks_func(width=self.minor_breaks) # pyright: ignore
107
+ warn(
108
+ "Passing a string to `minor_breaks` will not work in "
109
+ "future versions. "
110
+ f"Use `date_minor_breaks={self.minor_breaks!r}`",
111
+ FutureWarning,
112
+ )
113
+ self.minor_breaks = breaks_date_width(width=self.minor_breaks) # pyright: ignore[reportAttributeAccessIssue]
100
114
 
101
115
  scale_continuous.__post_init__(self)
@@ -156,7 +156,7 @@ class scale_discrete(
156
156
  range = self.dimension(limits=limits)
157
157
 
158
158
  breaks_d = self.get_breaks(limits)
159
- breaks = self.map(pd.Categorical(breaks_d))
159
+ breaks = self.map(pd.Categorical(breaks_d)) # pyright: ignore[reportArgumentType]
160
160
  minor_breaks = []
161
161
  labels = self.get_labels(breaks_d)
162
162
 
@@ -213,7 +213,7 @@ class scale_x_discrete(scale_position_discrete):
213
213
  Discrete x position
214
214
  """
215
215
 
216
- _aesthetics = ["x", "xmin", "xmax", "xend"]
216
+ _aesthetics = ["x", "xmin", "xmax", "xend", "xintercept"]
217
217
 
218
218
 
219
219
  @dataclass(kw_only=True)
@@ -222,7 +222,7 @@ class scale_y_discrete(scale_position_discrete):
222
222
  Discrete y position
223
223
  """
224
224
 
225
- _aesthetics = ["y", "ymin", "ymax", "yend"]
225
+ _aesthetics = ["y", "ymin", "ymax", "yend", "yintercept"]
226
226
 
227
227
 
228
228
  # Not part of the user API
@@ -17,7 +17,7 @@ if TYPE_CHECKING:
17
17
  from plotnine.mapping import Environment
18
18
 
19
19
 
20
- def predictdf(data, xseq, **params) -> pd.DataFrame:
20
+ def predictdf(data, xseq, params) -> pd.DataFrame:
21
21
  """
22
22
  Make prediction on the data
23
23
 
@@ -49,21 +49,21 @@ def predictdf(data, xseq, **params) -> pd.DataFrame:
49
49
  if not callable(method):
50
50
  msg = (
51
51
  "'method' should either be a string or a function"
52
- "with the signature `func(data, xseq, **params)`"
52
+ "with the signature `func(data, xseq, params)`"
53
53
  )
54
54
  raise PlotnineError(msg)
55
55
 
56
- return method(data, xseq, **params)
56
+ return method(data, xseq, params)
57
57
 
58
58
 
59
- def lm(data, xseq, **params) -> pd.DataFrame:
59
+ def lm(data, xseq, params) -> pd.DataFrame:
60
60
  """
61
61
  Fit OLS / WLS if data has weight
62
62
  """
63
63
  import statsmodels.api as sm
64
64
 
65
65
  if params["formula"]:
66
- return lm_formula(data, xseq, **params)
66
+ return lm_formula(data, xseq, params)
67
67
 
68
68
  X = sm.add_constant(data["x"])
69
69
  Xseq = sm.add_constant(xseq)
@@ -96,7 +96,7 @@ def lm(data, xseq, **params) -> pd.DataFrame:
96
96
  return data
97
97
 
98
98
 
99
- def lm_formula(data, xseq, **params) -> pd.DataFrame:
99
+ def lm_formula(data, xseq, params) -> pd.DataFrame:
100
100
  """
101
101
  Fit OLS / WLS using a formula
102
102
  """
@@ -140,14 +140,14 @@ def lm_formula(data, xseq, **params) -> pd.DataFrame:
140
140
  return data
141
141
 
142
142
 
143
- def rlm(data, xseq, **params) -> pd.DataFrame:
143
+ def rlm(data, xseq, params) -> pd.DataFrame:
144
144
  """
145
145
  Fit RLM
146
146
  """
147
147
  import statsmodels.api as sm
148
148
 
149
149
  if params["formula"]:
150
- return rlm_formula(data, xseq, **params)
150
+ return rlm_formula(data, xseq, params)
151
151
 
152
152
  X = sm.add_constant(data["x"])
153
153
  Xseq = sm.add_constant(xseq)
@@ -170,7 +170,7 @@ def rlm(data, xseq, **params) -> pd.DataFrame:
170
170
  return data
171
171
 
172
172
 
173
- def rlm_formula(data, xseq, **params) -> pd.DataFrame:
173
+ def rlm_formula(data, xseq, params) -> pd.DataFrame:
174
174
  """
175
175
  Fit RLM using a formula
176
176
  """
@@ -196,14 +196,14 @@ def rlm_formula(data, xseq, **params) -> pd.DataFrame:
196
196
  return data
197
197
 
198
198
 
199
- def gls(data, xseq, **params) -> pd.DataFrame:
199
+ def gls(data, xseq, params) -> pd.DataFrame:
200
200
  """
201
201
  Fit GLS
202
202
  """
203
203
  import statsmodels.api as sm
204
204
 
205
205
  if params["formula"]:
206
- return gls_formula(data, xseq, **params)
206
+ return gls_formula(data, xseq, params)
207
207
 
208
208
  X = sm.add_constant(data["x"])
209
209
  Xseq = sm.add_constant(xseq)
@@ -227,7 +227,7 @@ def gls(data, xseq, **params) -> pd.DataFrame:
227
227
  return data
228
228
 
229
229
 
230
- def gls_formula(data, xseq, **params):
230
+ def gls_formula(data, xseq, params):
231
231
  """
232
232
  Fit GLL using a formula
233
233
  """
@@ -258,14 +258,14 @@ def gls_formula(data, xseq, **params):
258
258
  return data
259
259
 
260
260
 
261
- def glm(data, xseq, **params) -> pd.DataFrame:
261
+ def glm(data, xseq, params) -> pd.DataFrame:
262
262
  """
263
263
  Fit GLM
264
264
  """
265
265
  import statsmodels.api as sm
266
266
 
267
267
  if params["formula"]:
268
- return glm_formula(data, xseq, **params)
268
+ return glm_formula(data, xseq, params)
269
269
 
270
270
  X = sm.add_constant(data["x"])
271
271
  Xseq = sm.add_constant(xseq)
@@ -292,7 +292,7 @@ def glm(data, xseq, **params) -> pd.DataFrame:
292
292
  return data
293
293
 
294
294
 
295
- def glm_formula(data, xseq, **params):
295
+ def glm_formula(data, xseq, params):
296
296
  """
297
297
  Fit with GLM formula
298
298
  """
@@ -321,7 +321,7 @@ def glm_formula(data, xseq, **params):
321
321
  return data
322
322
 
323
323
 
324
- def lowess(data, xseq, **params) -> pd.DataFrame:
324
+ def lowess(data, xseq, params) -> pd.DataFrame:
325
325
  """
326
326
  Lowess fitting
327
327
  """
@@ -351,7 +351,7 @@ def lowess(data, xseq, **params) -> pd.DataFrame:
351
351
  return data
352
352
 
353
353
 
354
- def loess(data, xseq, **params) -> pd.DataFrame:
354
+ def loess(data, xseq, params) -> pd.DataFrame:
355
355
  """
356
356
  Loess smoothing
357
357
  """
@@ -402,7 +402,7 @@ def loess(data, xseq, **params) -> pd.DataFrame:
402
402
  return data
403
403
 
404
404
 
405
- def mavg(data, xseq, **params) -> pd.DataFrame:
405
+ def mavg(data, xseq, params) -> pd.DataFrame:
406
406
  """
407
407
  Fit moving average
408
408
  """
@@ -426,7 +426,7 @@ def mavg(data, xseq, **params) -> pd.DataFrame:
426
426
  return data
427
427
 
428
428
 
429
- def gpr(data, xseq, **params):
429
+ def gpr(data, xseq, params):
430
430
  """
431
431
  Fit gaussian process
432
432
  """
plotnine/stats/stat.py CHANGED
@@ -195,9 +195,9 @@ class stat(ABC, metaclass=Register):
195
195
 
196
196
  return data
197
197
 
198
- def setup_params(self, data: pd.DataFrame) -> dict[str, Any]:
198
+ def setup_params(self, data: pd.DataFrame):
199
199
  """
200
- Override this to verify or adjust parameters
200
+ Override this to verify and/or adjust parameters
201
201
 
202
202
  Parameters
203
203
  ----------
@@ -209,7 +209,6 @@ class stat(ABC, metaclass=Register):
209
209
  out :
210
210
  Parameters used by the stats.
211
211
  """
212
- return self.params
213
212
 
214
213
  def setup_data(self, data: pd.DataFrame) -> pd.DataFrame:
215
214
  """
@@ -227,9 +226,7 @@ class stat(ABC, metaclass=Register):
227
226
  """
228
227
  return data
229
228
 
230
- def finish_layer(
231
- self, data: pd.DataFrame, params: dict[str, Any]
232
- ) -> pd.DataFrame:
229
+ def finish_layer(self, data: pd.DataFrame) -> pd.DataFrame:
233
230
  """
234
231
  Modify data after the aesthetics have been mapped
235
232
 
@@ -257,9 +254,8 @@ class stat(ABC, metaclass=Register):
257
254
  """
258
255
  return data
259
256
 
260
- @classmethod
261
257
  def compute_layer(
262
- cls, data: pd.DataFrame, params: dict[str, Any], layout: Layout
258
+ self, data: pd.DataFrame, layout: Layout
263
259
  ) -> pd.DataFrame:
264
260
  """
265
261
  Calculate statistics for this layers
@@ -275,22 +271,20 @@ class stat(ABC, metaclass=Register):
275
271
  ----------
276
272
  data :
277
273
  Data points for all objects in a layer.
278
- params :
279
- Stat parameters
280
274
  layout :
281
275
  Panel layout information
282
276
  """
283
277
  check_required_aesthetics(
284
- cls.REQUIRED_AES,
285
- list(data.columns) + list(params.keys()),
286
- cls.__name__,
278
+ self.REQUIRED_AES,
279
+ list(data.columns) + list(self.params.keys()),
280
+ self.__class__.__name__,
287
281
  )
288
282
 
289
283
  data = remove_missing(
290
284
  data,
291
- na_rm=params.get("na_rm", False),
292
- vars=list(cls.REQUIRED_AES | cls.NON_MISSING_AES),
293
- name=cls.__name__,
285
+ na_rm=self.params.get("na_rm", False),
286
+ vars=list(self.REQUIRED_AES | self.NON_MISSING_AES),
287
+ name=self.__class__.__name__,
294
288
  finite=True,
295
289
  )
296
290
 
@@ -304,14 +298,11 @@ class stat(ABC, metaclass=Register):
304
298
  if len(pdata) == 0:
305
299
  return pdata
306
300
  pscales = layout.get_scales(pdata["PANEL"].iloc[0])
307
- return cls.compute_panel(pdata, pscales, **params)
301
+ return self.compute_panel(pdata, pscales)
308
302
 
309
303
  return groupby_apply(data, "PANEL", fn)
310
304
 
311
- @classmethod
312
- def compute_panel(
313
- cls, data: pd.DataFrame, scales: pos_scales, **params: Any
314
- ):
305
+ def compute_panel(self, data: pd.DataFrame, scales: pos_scales):
315
306
  """
316
307
  Calculate the statistics for all the groups
317
308
 
@@ -341,7 +332,7 @@ class stat(ABC, metaclass=Register):
341
332
 
342
333
  stats = []
343
334
  for _, old in data.groupby("group"):
344
- new = cls.compute_group(old, scales, **params)
335
+ new = self.compute_group(old, scales)
345
336
  new.reset_index(drop=True, inplace=True)
346
337
  unique = uniquecols(old)
347
338
  missing = unique.columns.difference(new.columns)
@@ -365,9 +356,8 @@ class stat(ABC, metaclass=Register):
365
356
  # it completely.
366
357
  return stats
367
358
 
368
- @classmethod
369
359
  def compute_group(
370
- cls, data: pd.DataFrame, scales: pos_scales, **params: Any
360
+ self, data: pd.DataFrame, scales: pos_scales
371
361
  ) -> pd.DataFrame:
372
362
  """
373
363
  Calculate statistics for the group
@@ -390,7 +380,7 @@ class stat(ABC, metaclass=Register):
390
380
  Parameters
391
381
  """
392
382
  msg = "{} should implement this method."
393
- raise NotImplementedError(msg.format(cls.__name__))
383
+ raise NotImplementedError(msg.format(self.__class__.__name__))
394
384
 
395
385
  def __radd__(self, other: ggplot) -> ggplot:
396
386
  """
@@ -100,7 +100,6 @@ class stat_bin(stat):
100
100
  and params["binwidth"] is None
101
101
  and params["bins"] is None
102
102
  ):
103
- params = params.copy()
104
103
  params["bins"] = freedman_diaconis_bins(data["x"])
105
104
  msg = (
106
105
  "'stat_bin()' using 'bins = {}'. "
@@ -108,10 +107,8 @@ class stat_bin(stat):
108
107
  )
109
108
  warn(msg.format(params["bins"]), PlotnineWarning)
110
109
 
111
- return params
112
-
113
- @classmethod
114
- def compute_group(cls, data, scales, **params):
110
+ def compute_group(self, data, scales):
111
+ params = self.params
115
112
  if params["breaks"] is not None:
116
113
  breaks = np.asarray(params["breaks"])
117
114
  if hasattr(scales.x, "transform"):