phylogenie 2.0.4__py3-none-any.whl → 2.0.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,95 +1,84 @@
1
1
  from abc import ABC, abstractmethod
2
+ from collections.abc import Sequence
3
+ from dataclasses import dataclass
2
4
 
3
- from numpy.random import Generator
5
+ import numpy as np
4
6
 
5
7
  from phylogenie.skyline import (
6
8
  SkylineMatrixCoercible,
9
+ SkylineParameter,
7
10
  SkylineParameterLike,
8
11
  SkylineVectorCoercible,
9
12
  skyline_matrix,
10
13
  skyline_parameter,
11
14
  skyline_vector,
12
15
  )
13
- from phylogenie.treesimulator.model import Model
16
+ from phylogenie.treesimulator.model import Model, get_CT_state
14
17
 
15
18
  INFECTIOUS_STATE = "I"
16
19
  EXPOSED_STATE = "E"
17
20
  SUPERSPREADER_STATE = "S"
18
21
 
19
22
 
23
+ @dataclass
20
24
  class Event(ABC):
21
- def __init__(
22
- self,
23
- rate: SkylineParameterLike,
24
- state: str | None = None,
25
- ):
26
- self.rate = skyline_parameter(rate)
27
- self.state = state
25
+ rate: SkylineParameter
26
+ state: str
28
27
 
29
28
  def get_propensity(self, model: Model, time: float) -> float:
30
- return self.rate.get_value_at_time(time) * model.count_leaves(self.state)
29
+ n_individuals = model.count_individuals(self.state)
30
+ rate = self.rate.get_value_at_time(time)
31
+ if rate == np.inf and not n_individuals:
32
+ return 0
33
+ return rate * n_individuals
31
34
 
32
35
  @abstractmethod
33
- def apply(self, rng: Generator, model: Model, time: float) -> None: ...
36
+ def apply(self, model: Model, time: float) -> None: ...
34
37
 
35
38
 
39
+ @dataclass
36
40
  class BirthEvent(Event):
37
- def __init__(
38
- self,
39
- rate: SkylineParameterLike,
40
- state: str | None = None,
41
- child_state: str | None = None,
42
- ):
43
- super().__init__(rate, state)
44
- self.child_state = child_state
41
+ child_state: str
45
42
 
46
- def apply(self, rng: Generator, model: Model, time: float) -> None:
47
- node = model.get_random_leaf(self.state, rng)
48
- model.add_child(node, time, True, self.child_state)
43
+ def apply(self, model: Model, time: float) -> None:
44
+ individual = model.get_random_individual(self.state)
45
+ model.birth_from(individual, self.child_state, time)
49
46
 
50
47
 
51
48
  class DeathEvent(Event):
52
- def apply(self, rng: Generator, model: Model, time: float) -> None:
53
- node = model.get_random_leaf(self.state, rng)
54
- model.remove(node)
49
+ def apply(self, model: Model, time: float) -> None:
50
+ individual = model.get_random_individual(self.state)
51
+ model.remove(individual, time)
55
52
 
56
53
 
54
+ @dataclass
57
55
  class MigrationEvent(Event):
58
- def __init__(self, rate: SkylineParameterLike, state: str, target_state: str):
59
- super().__init__(rate, state)
60
- self.target_state = target_state
56
+ target_state: str
61
57
 
62
- def apply(self, rng: Generator, model: Model, time: float) -> None:
63
- node = model.get_random_leaf(self.state, rng)
64
- model.add_child(node, time, False, self.target_state)
58
+ def apply(self, model: Model, time: float) -> None:
59
+ individual = model.get_random_individual(self.state)
60
+ model.migrate(individual, self.target_state, time)
65
61
 
66
62
 
63
+ @dataclass
67
64
  class SamplingEvent(Event):
68
- def __init__(
69
- self,
70
- rate: SkylineParameterLike,
71
- state: str | None = None,
72
- removal_probability: SkylineParameterLike = 0,
73
- ):
74
- super().__init__(rate, state)
75
- self.removal_probability = skyline_parameter(removal_probability)
65
+ removal_probability: SkylineParameter
76
66
 
77
- def apply(self, rng: Generator, model: Model, time: float) -> None:
78
- node = model.get_random_leaf(self.state, rng)
79
- remove = rng.random() < self.removal_probability.get_value_at_time(time)
80
- model.sample(node, time, remove)
67
+ def apply(self, model: Model, time: float) -> None:
68
+ individual = model.get_random_individual(self.state)
69
+ model.sample(individual, time, self.removal_probability.get_value_at_time(time))
81
70
 
82
71
 
83
72
  def get_canonical_events(
73
+ states: Sequence[str],
84
74
  sampling_rates: SkylineVectorCoercible,
85
75
  birth_rates: SkylineVectorCoercible = 0,
86
76
  death_rates: SkylineVectorCoercible = 0,
87
77
  removal_probabilities: SkylineVectorCoercible = 0,
88
78
  migration_rates: SkylineMatrixCoercible | None = None,
89
79
  birth_rates_among_states: SkylineMatrixCoercible | None = None,
90
- states: list[str] | None = None,
91
80
  ) -> list[Event]:
92
- N = 1 if states is None else len(states)
81
+ N = len(states)
93
82
 
94
83
  birth_rates = skyline_vector(birth_rates, N)
95
84
  death_rates = skyline_vector(death_rates, N)
@@ -97,43 +86,38 @@ def get_canonical_events(
97
86
  removal_probabilities = skyline_vector(removal_probabilities, N)
98
87
 
99
88
  events: list[Event] = []
100
- for i in range(N):
101
- state = None if states is None else states[i]
89
+ for i, state in enumerate(states):
102
90
  events.append(BirthEvent(birth_rates[i], state, state))
103
91
  events.append(DeathEvent(death_rates[i], state))
104
92
  events.append(SamplingEvent(sampling_rates[i], state, removal_probabilities[i]))
105
93
 
106
- if states is not None and migration_rates is not None:
94
+ if migration_rates is not None:
107
95
  migration_rates = skyline_matrix(migration_rates, N, N - 1)
108
96
  for i, state in enumerate(states):
109
97
  for j, other_state in enumerate([s for s in states if s != state]):
110
98
  events.append(MigrationEvent(migration_rates[i, j], state, other_state))
111
- elif migration_rates is not None:
112
- raise ValueError(f"Migration rates require states to be provided.")
113
99
 
114
- if states is not None and birth_rates_among_states is not None:
100
+ if birth_rates_among_states is not None:
115
101
  birth_rates_among_states = skyline_matrix(birth_rates_among_states, N, N - 1)
116
102
  for i, state in enumerate(states):
117
103
  for j, other_state in enumerate([s for s in states if s != state]):
118
104
  events.append(
119
105
  BirthEvent(birth_rates_among_states[i, j], state, other_state)
120
106
  )
121
- elif birth_rates_among_states is not None:
122
- raise ValueError(f"Birth rates among states require states to be provided.")
123
107
 
124
108
  return [event for event in events if event.rate]
125
109
 
126
110
 
127
111
  def get_epidemiological_events(
112
+ states: Sequence[str],
128
113
  sampling_proportions: SkylineVectorCoercible = 1,
129
114
  reproduction_numbers: SkylineVectorCoercible = 0,
130
115
  become_uninfectious_rates: SkylineVectorCoercible = 0,
131
116
  removal_probabilities: SkylineVectorCoercible = 1,
132
117
  migration_rates: SkylineMatrixCoercible | None = None,
133
118
  reproduction_numbers_among_states: SkylineMatrixCoercible | None = None,
134
- states: list[str] | None = None,
135
119
  ) -> list[Event]:
136
- N = 1 if states is None else len(states)
120
+ N = len(states)
137
121
 
138
122
  reproduction_numbers = skyline_vector(reproduction_numbers, N)
139
123
  become_uninfectious_rates = skyline_vector(become_uninfectious_rates, N)
@@ -143,16 +127,14 @@ def get_epidemiological_events(
143
127
  birth_rates = reproduction_numbers * become_uninfectious_rates
144
128
  sampling_rates = become_uninfectious_rates * sampling_proportions
145
129
  death_rates = become_uninfectious_rates - removal_probabilities * sampling_rates
146
- birth_rates_among_states = None
147
- if states is None and reproduction_numbers_among_states is not None:
148
- raise ValueError(
149
- f"Reproduction numbers among states require states to be provided."
150
- )
151
- elif reproduction_numbers_among_states is not None:
152
- birth_rates_among_states = (
130
+ birth_rates_among_states = (
131
+ (
153
132
  skyline_matrix(reproduction_numbers_among_states, N, N - 1)
154
133
  * become_uninfectious_rates
155
134
  )
135
+ if reproduction_numbers_among_states is not None
136
+ else None
137
+ )
156
138
 
157
139
  return get_canonical_events(
158
140
  states=states,
@@ -166,15 +148,15 @@ def get_epidemiological_events(
166
148
 
167
149
 
168
150
  def get_FBD_events(
151
+ states: Sequence[str],
169
152
  diversification: SkylineVectorCoercible = 0,
170
153
  turnover: SkylineVectorCoercible = 0,
171
154
  sampling_proportions: SkylineVectorCoercible = 1,
172
155
  removal_probabilities: SkylineVectorCoercible = 0,
173
156
  migration_rates: SkylineMatrixCoercible | None = None,
174
157
  diversification_between_types: SkylineMatrixCoercible | None = None,
175
- states: list[str] | None = None,
176
158
  ) -> list[Event]:
177
- N = 1 if states is None else len(states)
159
+ N = len(states)
178
160
 
179
161
  diversification = skyline_vector(diversification, N)
180
162
  turnover = skyline_vector(turnover, N)
@@ -185,15 +167,11 @@ def get_FBD_events(
185
167
  death_rates = turnover * birth_rates
186
168
  sampling_rates_dividend = 1 - removal_probabilities * sampling_proportions
187
169
  sampling_rates = sampling_proportions * death_rates / sampling_rates_dividend
188
- birth_rates_among_states = None
189
- if states is None and diversification_between_types is not None:
190
- raise ValueError(
191
- f"Diversification rates among states require states to be provided."
192
- )
193
- elif diversification_between_types is not None:
194
- birth_rates_among_states = (
195
- skyline_matrix(diversification_between_types, N, N - 1) + death_rates
196
- )
170
+ birth_rates_among_states = (
171
+ (skyline_matrix(diversification_between_types, N, N - 1) + death_rates)
172
+ if diversification_between_types is not None
173
+ else None
174
+ )
197
175
 
198
176
  return get_canonical_events(
199
177
  states=states,
@@ -212,6 +190,7 @@ def get_BD_events(
212
190
  sampling_proportion: SkylineParameterLike = 1,
213
191
  ) -> list[Event]:
214
192
  return get_epidemiological_events(
193
+ states=[INFECTIOUS_STATE],
215
194
  reproduction_numbers=reproduction_number,
216
195
  become_uninfectious_rates=1 / infectious_period,
217
196
  sampling_proportions=sampling_proportion,
@@ -253,3 +232,40 @@ def get_BDSS_events(
253
232
  become_uninfectious_rates=1 / infectious_period,
254
233
  sampling_proportions=sampling_proportion,
255
234
  )
235
+
236
+
237
+ def get_contact_tracing_events(
238
+ events: Sequence[Event],
239
+ samplable_states_after_notification: Sequence[str] | None = None,
240
+ sampling_rate_after_notification: SkylineParameterLike = np.inf,
241
+ contacts_removal_probability: SkylineParameterLike = 1,
242
+ ) -> list[Event]:
243
+ ct_events = list(events)
244
+ for event in events:
245
+ if isinstance(event, MigrationEvent):
246
+ ct_events.append(
247
+ MigrationEvent(
248
+ event.rate,
249
+ get_CT_state(event.state),
250
+ get_CT_state(event.target_state),
251
+ )
252
+ )
253
+ elif isinstance(event, BirthEvent):
254
+ ct_events.append(
255
+ BirthEvent(event.rate, get_CT_state(event.state), event.child_state)
256
+ )
257
+
258
+ for state in (
259
+ samplable_states_after_notification
260
+ if samplable_states_after_notification is not None
261
+ else [e.state for e in events]
262
+ ):
263
+ ct_events.append(
264
+ SamplingEvent(
265
+ skyline_parameter(sampling_rate_after_notification),
266
+ get_CT_state(state),
267
+ skyline_parameter(contacts_removal_probability),
268
+ )
269
+ )
270
+
271
+ return ct_events
@@ -3,9 +3,10 @@ from collections.abc import Sequence
3
3
  import numpy as np
4
4
  from numpy.random import default_rng
5
5
 
6
+ from phylogenie.skyline import SkylineParameterLike
6
7
  from phylogenie.tree import Tree
7
- from phylogenie.treesimulator.events import Event
8
- from phylogenie.treesimulator.model import Model
8
+ from phylogenie.treesimulator.events import Event, get_contact_tracing_events
9
+ from phylogenie.treesimulator.model import Model, is_CT_state
9
10
 
10
11
 
11
12
  def simulate_tree(
@@ -15,6 +16,11 @@ def simulate_tree(
15
16
  max_time: float = np.inf,
16
17
  init_state: str | None = None,
17
18
  sampling_probability_at_present: float = 0.0,
19
+ notification_probability: float = 0,
20
+ max_notified_contacts: int = 1,
21
+ samplable_states_after_notification: Sequence[str] | None = None,
22
+ sampling_rate_after_notification: SkylineParameterLike = np.inf,
23
+ contacts_removal_probability: SkylineParameterLike = 1,
18
24
  max_tries: int | None = None,
19
25
  seed: int | None = None,
20
26
  ) -> Tree | None:
@@ -23,15 +29,19 @@ def simulate_tree(
23
29
  if max_tips is None and max_time == np.inf:
24
30
  raise ValueError("Either max_tips or max_time must be specified.")
25
31
 
32
+ if notification_probability:
33
+ events = get_contact_tracing_events(
34
+ events,
35
+ samplable_states_after_notification,
36
+ sampling_rate_after_notification,
37
+ contacts_removal_probability,
38
+ )
39
+
26
40
  n_tries = 0
27
- states = [e.state for e in events if e.state is not None]
28
- init_state = (
29
- init_state
30
- if init_state is not None
31
- else str(rng.choice(states)) if states else None
32
- )
41
+ root_states = [e.state for e in events if not is_CT_state(e.state)]
33
42
  while max_tries is None or n_tries < max_tries:
34
- model = Model(init_state)
43
+ root_state = init_state if init_state is not None else rng.choice(root_states)
44
+ model = Model(root_state, max_notified_contacts, notification_probability, rng)
35
45
  current_time = 0.0
36
46
  change_times = sorted(set(t for e in events for t in e.rate.change_times))
37
47
  next_change_time = change_times.pop(0) if change_times else np.inf
@@ -39,6 +49,13 @@ def simulate_tree(
39
49
 
40
50
  while current_time < max_time and (n_tips is None or model.n_sampled < n_tips):
41
51
  rates = [e.get_propensity(model, current_time) for e in events]
52
+
53
+ instantaneous_events = [e for e, r in zip(events, rates) if r == np.inf]
54
+ if instantaneous_events:
55
+ event = instantaneous_events[rng.integers(len(instantaneous_events))]
56
+ event.apply(model, current_time)
57
+ continue
58
+
42
59
  if not any(rates):
43
60
  break
44
61
 
@@ -52,11 +69,11 @@ def simulate_tree(
52
69
  continue
53
70
 
54
71
  event_idx = np.searchsorted(np.cumsum(rates) / sum(rates), rng.random())
55
- events[int(event_idx)].apply(rng, model, current_time)
72
+ events[int(event_idx)].apply(model, current_time)
56
73
 
57
- for leaf in model.get_leaves():
74
+ for individual in model.get_population():
58
75
  if rng.random() < sampling_probability_at_present:
59
- model.sample(leaf, current_time, True)
76
+ model.sample(individual, current_time, 1)
60
77
 
61
78
  if model.n_sampled >= min_tips and (
62
79
  max_tips is None or model.n_sampled <= max_tips
@@ -1,71 +1,125 @@
1
1
  from collections import defaultdict
2
+ from dataclasses import dataclass, field
3
+ from typing import ClassVar
2
4
 
3
5
  from numpy.random import Generator, default_rng
4
6
 
5
7
  from phylogenie.tree import Tree
6
8
 
9
+ CT_POSTFIX = "-CT"
7
10
 
8
- class Model:
9
- def __init__(self, init_state: str | None = None):
10
- self._next_id = 0
11
- self._n_sampled = 0
12
- self._leaves: dict[str, Tree] = {}
13
- self._leaf2state: dict[str, str | None] = {}
14
- self._state2leaves: dict[str | None, set[str]] = defaultdict(set)
15
- self._tree = self._get_new_node(init_state, None)
16
11
 
17
- @property
18
- def next_id(self) -> int:
19
- self._next_id += 1
20
- return self._next_id
12
+ def get_CT_state(state: str) -> str:
13
+ return f"{state}{CT_POSTFIX}"
14
+
15
+
16
+ def is_CT_state(state: str) -> bool:
17
+ return state.endswith(CT_POSTFIX)
18
+
19
+
20
+ @dataclass
21
+ class Individual:
22
+ node: Tree
23
+ state: str
24
+ id: int = field(init=False)
25
+ _id_counter: ClassVar[int] = 0
26
+
27
+ def __post_init__(self):
28
+ Individual._id_counter += 1
29
+ self.id = Individual._id_counter
30
+
31
+
32
+ class Model:
33
+ def __init__(
34
+ self,
35
+ init_state: str,
36
+ max_notified_contacts: int = 1,
37
+ notification_probability: float = 0,
38
+ rng: int | Generator | None = None,
39
+ ):
40
+ self._next_node_id = 0
41
+ self._population: dict[int, Individual] = {}
42
+ self._states: dict[str, set[int]] = defaultdict(set)
43
+ self._contacts: dict[int, list[Individual]] = defaultdict(list)
44
+ self._sampled: set[str] = set()
45
+ self._tree = self._get_new_individual(init_state).node
46
+ self._max_notified_contacts = max_notified_contacts
47
+ self._notification_probability = notification_probability
48
+ self._rng = rng if isinstance(rng, Generator) else default_rng(rng)
21
49
 
22
50
  @property
23
51
  def n_sampled(self) -> int:
24
- return self._n_sampled
25
-
26
- def _get_new_node(self, state: str | None, branch_length: float | None) -> Tree:
27
- id = str(self.next_id) if state is None else f"{self.next_id}|{state}"
28
- node = Tree(id, branch_length)
29
- if branch_length is None:
30
- self._leaves[id] = node
31
- self._leaf2state[id] = state
32
- self._state2leaves[state].add(id)
33
- return node
34
-
35
- def remove(self, node_id: str) -> None:
36
- self._state2leaves[self._leaf2state[node_id]].remove(node_id)
37
- self._leaf2state.pop(node_id, None)
38
- self._leaves.pop(node_id)
39
-
40
- def add_child(
41
- self,
42
- node_id: str,
43
- time: float,
44
- stem: bool,
45
- state: str | None,
46
- branch_length: float | None = None,
47
- ) -> None:
48
- node = self._leaves[node_id]
52
+ return len(self._sampled)
53
+
54
+ def _get_new_node(self, state: str) -> Tree:
55
+ self._next_node_id += 1
56
+ return Tree(f"{self._next_node_id}|{state}")
57
+
58
+ def _get_new_individual(self, state: str) -> Individual:
59
+ individual = Individual(self._get_new_node(state), state)
60
+ self._population[individual.id] = individual
61
+ self._states[state].add(individual.id)
62
+ return individual
63
+
64
+ def _set_branch_length(self, node: Tree, time: float) -> None:
49
65
  if node.branch_length is not None:
50
- raise ValueError("Cannot add a child to a node with a set branch length.")
51
- node.add_child(self._get_new_node(state, branch_length))
52
- if stem:
53
- node.add_child(self._get_new_node(self._leaf2state[node.id], None))
66
+ raise ValueError(f"Branch length of node {node.id} is already set.")
54
67
  node.branch_length = (
55
68
  time if node.parent is None else time - node.parent.get_time()
56
69
  )
57
- self.remove(node_id)
58
70
 
59
- def sample(self, node_id: str, time: float, remove: bool) -> None:
60
- self.add_child(node_id, time, not remove, self._leaf2state[node_id], 0.0)
61
- self._n_sampled += 1
71
+ def _stem(self, individual: Individual, time: float) -> None:
72
+ self._set_branch_length(individual.node, time)
73
+ stem_node = self._get_new_node(individual.state)
74
+ individual.node.add_child(stem_node)
75
+ individual.node = stem_node
76
+
77
+ def remove(self, id: int, time: float) -> None:
78
+ individual = self._population[id]
79
+ self._set_branch_length(individual.node, time)
80
+ state = individual.state
81
+ self._population.pop(id)
82
+ self._states[state].remove(id)
83
+
84
+ def migrate(self, id: int, state: str, time: float) -> None:
85
+ individual = self._population[id]
86
+ self._states[individual.state].remove(id)
87
+ individual.state = state
88
+ self._states[state].add(id)
89
+ self._stem(individual, time)
90
+
91
+ def birth_from(self, id: int, state: str, time: float) -> None:
92
+ individual = self._population[id]
93
+ new_individual = self._get_new_individual(state)
94
+ individual.node.add_child(new_individual.node)
95
+ self._stem(individual, time)
96
+ self._contacts[id].append(new_individual)
97
+ self._contacts[new_individual.id].append(individual)
98
+
99
+ def sample(self, id: int, time: float, removal_probability: float) -> None:
100
+ individual = self._population[id]
101
+ if self._rng.random() < removal_probability:
102
+ self._sampled.add(individual.node.id)
103
+ self.remove(id, time)
104
+ else:
105
+ sample_node = self._get_new_node(individual.state)
106
+ sample_node.branch_length = 0.0
107
+ self._sampled.add(sample_node.id)
108
+ individual.node.add_child(sample_node)
109
+ self._stem(individual, time)
110
+
111
+ for contact in self._contacts[id][-self._max_notified_contacts :]:
112
+ if (
113
+ contact.id in self._population
114
+ and not is_CT_state(contact.state)
115
+ and self._rng.random() < self._notification_probability
116
+ ):
117
+ self.migrate(contact.id, get_CT_state(contact.state), time)
62
118
 
63
119
  def get_sampled_tree(self) -> Tree:
64
120
  tree = self._tree.copy()
65
121
  for node in list(tree.postorder_traversal()):
66
- if node.branch_length is None or (
67
- node.branch_length > 0 and not node.children
68
- ):
122
+ if node.id not in self._sampled and not node.children:
69
123
  if node.parent is None:
70
124
  raise ValueError("No samples in the tree.")
71
125
  else:
@@ -83,18 +137,18 @@ class Model:
83
137
  node.parent.children.remove(node)
84
138
  return tree
85
139
 
86
- def get_random_leaf(
87
- self, state: str | None = None, rng: int | Generator | None = None
88
- ) -> str:
89
- rng = rng if isinstance(rng, Generator) else default_rng(rng)
140
+ def get_full_tree(self) -> Tree:
141
+ return self._tree.copy()
142
+
143
+ def get_random_individual(self, state: str | None = None) -> int:
90
144
  if state is None:
91
- return rng.choice(list(self._leaves))
92
- return rng.choice(list(self._state2leaves[state]))
145
+ return self._rng.choice(list(self._population))
146
+ return self._rng.choice(list(self._states[state]))
93
147
 
94
- def get_leaves(self) -> list[str]:
95
- return list(self._leaves)
148
+ def get_population(self) -> list[int]:
149
+ return list(self._population)
96
150
 
97
- def count_leaves(self, state: str | None = None) -> int:
151
+ def count_individuals(self, state: str | None = None) -> int:
98
152
  if state is None:
99
- return len(self._leaves)
100
- return len(self._state2leaves[state])
153
+ return len(self._population)
154
+ return len(self._states[state])
phylogenie/typeguards.py CHANGED
@@ -1,42 +1,42 @@
1
1
  from collections.abc import Sequence
2
- from typing import TypeGuard
2
+ from typing import Any, TypeGuard
3
3
 
4
4
  import phylogenie.typings as pgt
5
5
 
6
6
 
7
- def is_many(x: object) -> TypeGuard[pgt.Many[object]]:
7
+ def is_many(x: Any) -> TypeGuard[pgt.Many[Any]]:
8
8
  return isinstance(x, Sequence) and not isinstance(x, str)
9
9
 
10
10
 
11
- def is_many_scalars(x: object) -> TypeGuard[pgt.Many[pgt.Scalar]]:
11
+ def is_many_scalars(x: Any) -> TypeGuard[pgt.Many[pgt.Scalar]]:
12
12
  return is_many(x) and all(isinstance(i, pgt.Scalar) for i in x)
13
13
 
14
14
 
15
- def is_many_ints(x: object) -> TypeGuard[pgt.Many[int]]:
15
+ def is_many_ints(x: Any) -> TypeGuard[pgt.Many[int]]:
16
16
  return is_many(x) and all(isinstance(i, int) for i in x)
17
17
 
18
18
 
19
- def is_one_or_many_scalars(x: object) -> TypeGuard[pgt.OneOrManyScalars]:
19
+ def is_one_or_many_scalars(x: Any) -> TypeGuard[pgt.OneOrManyScalars]:
20
20
  return isinstance(x, pgt.Scalar) or is_many_scalars(x)
21
21
 
22
22
 
23
- def is_many_one_or_many_scalars(x: object) -> TypeGuard[pgt.Many[pgt.OneOrManyScalars]]:
23
+ def is_many_one_or_many_scalars(x: Any) -> TypeGuard[pgt.Many[pgt.OneOrManyScalars]]:
24
24
  return is_many(x) and all(is_one_or_many_scalars(i) for i in x)
25
25
 
26
26
 
27
- def is_many_2D_scalars(x: object) -> TypeGuard[pgt.Many2DScalars]:
27
+ def is_many_2D_scalars(x: Any) -> TypeGuard[pgt.Many2DScalars]:
28
28
  return is_many(x) and all(is_many_scalars(i) for i in x)
29
29
 
30
30
 
31
- def is_one_or_many_2D_scalars(x: object) -> TypeGuard[pgt.OneOrMany2DScalars]:
31
+ def is_one_or_many_2D_scalars(x: Any) -> TypeGuard[pgt.OneOrMany2DScalars]:
32
32
  return isinstance(x, pgt.Scalar) or is_many_2D_scalars(x)
33
33
 
34
34
 
35
35
  def is_many_one_or_many_2D_scalars(
36
- x: object,
36
+ x: Any,
37
37
  ) -> TypeGuard[pgt.Many[pgt.OneOrMany2DScalars]]:
38
38
  return is_many(x) and all(is_one_or_many_2D_scalars(i) for i in x)
39
39
 
40
40
 
41
- def is_many_3D_scalars(x: object) -> TypeGuard[pgt.Many3DScalars]:
41
+ def is_many_3D_scalars(x: Any) -> TypeGuard[pgt.Many3DScalars]:
42
42
  return is_many(x) and all(is_many_2D_scalars(i) for i in x)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: phylogenie
3
- Version: 2.0.4
3
+ Version: 2.0.6
4
4
  Summary: Generate phylogenetic datasets with minimal setup effort
5
5
  Author: Gabriele Marino
6
6
  Author-email: gabmarino.8601@gmail.com
@@ -45,7 +45,7 @@ Phylogenie comes packed with useful features, including:
45
45
  Simply specify the number of cores to use, and Phylogenie handles multiprocessing automatically.
46
46
 
47
47
  - **Pre-implemented parameterizations** 🎯
48
- Include canonical, fossilized birth-death, epidemiological, birth-death with exposed-infectious (BDEI), birth-death with superspreading (BDSS), and more.
48
+ Include canonical, fossilized birth-death, epidemiological, birth-death with exposed-infectious (BDEI), birth-death with superspreading (BDSS), and contact tracing (CT).
49
49
 
50
50
  - **Skyline parameter support** 🪜
51
51
  Support for piece-wise constant parameters.
@@ -0,0 +1,28 @@
1
+ phylogenie/__init__.py,sha256=1w_0H9lg7hI3b-NLjKuzc34GbJJGyjLq9LrlogecTzI,1759
2
+ phylogenie/generators/__init__.py,sha256=zsOxy28-9j9alOQLIgrOAFfmM58NNHO_NEtW-KXQXAY,888
3
+ phylogenie/generators/alisim.py,sha256=dDqlSwLDbRE2u5SZlsq1mArobTBtuk0aeXY3m1N-bWA,2374
4
+ phylogenie/generators/configs.py,sha256=5ZWdKhRUjlNifw7QKXbooKV1fElqfCk_jBGxfcjh8do,969
5
+ phylogenie/generators/dataset.py,sha256=k6RYJpgxOL8a_yMq98WUF-dcJv8TwxaWnde0k13M4J0,2525
6
+ phylogenie/generators/factories.py,sha256=O8wqL-PvZps0Dq6mQa_PTi4vBvky5LkQIy1jjfOUm-4,6944
7
+ phylogenie/generators/trees.py,sha256=jukaVXGcPGzDBEYMGJ1MKqWt4XbAB5EEfuHXDpwKTqM,9173
8
+ phylogenie/generators/typeguards.py,sha256=Qph6ZnQ7wDMUNvB0VWQKlq42f8wkKOnM42cfMqhNov4,862
9
+ phylogenie/io.py,sha256=ZXlofnSh7FX5UJiP0svRHrTraMSNgKa1GiAv0bMz7jU,2854
10
+ phylogenie/main.py,sha256=4mhy3qmCPrGUm7QHAZjuLoR39eiFnhdw-C0mPh3lzxU,1264
11
+ phylogenie/msa.py,sha256=JDGyZUsAq6-m-SQjoCDjAkAZIxfgyl_PDIhdYn5HOow,2064
12
+ phylogenie/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
+ phylogenie/skyline/__init__.py,sha256=7pF4CUb4ZCLzNYJNhOjpuTOLTRhlK7L6ugfccNqjIGo,620
14
+ phylogenie/skyline/matrix.py,sha256=Gl8OgKjtieG0NwPYiPimKI36gefV8fm_OeorjdXxPTs,9146
15
+ phylogenie/skyline/parameter.py,sha256=EM9qlPt0JhMBy3TbztM0dj24BaGNEy8KWKdTObDKhbI,4644
16
+ phylogenie/skyline/vector.py,sha256=bJP7_FNX_Klt6wXqsyfj0KX3VNj6-dIhzCKSJuQcOV0,7115
17
+ phylogenie/tree.py,sha256=34gcxUoTGfj72EbIlpnrhWGnNFppUVjms3XEn1ZS3-g,1997
18
+ phylogenie/treesimulator/__init__.py,sha256=INPU9LrPdUmt3dYGzWDRoRKrPR9xENcHu44pJVUbyNA,525
19
+ phylogenie/treesimulator/events.py,sha256=X3_0U9qqMpYgh6-7TwQEnlUipANkHz6QTCXlm-qXFQk,9524
20
+ phylogenie/treesimulator/gillespie.py,sha256=Fn-PyVICx3pWtpHko7rf6omf_kqOkkpebSJy56oPKnQ,3216
21
+ phylogenie/treesimulator/model.py,sha256=XpzAicmg2O6K0Trk5YolH-B_HJZxoSauF2wZOMqp-Iw,5559
22
+ phylogenie/typeguards.py,sha256=JtqmbEWJZBRHbWgCvcl6nrWm3VcBfzRbklbTBYHItn0,1325
23
+ phylogenie/typings.py,sha256=O1X6lGKTjJ2YJz3ApQ-rYb_tEJNUIcHdUIeYlSM4s5o,500
24
+ phylogenie-2.0.6.dist-info/LICENSE.txt,sha256=NUrDqElK-eD3I0WqC004CJsy6cs0JgsAoebDv_42-pw,1071
25
+ phylogenie-2.0.6.dist-info/METADATA,sha256=AkoTSMmVcV2sFdsnGm-ldW_Oj25C83T5_1V2-nF8KUc,5472
26
+ phylogenie-2.0.6.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
27
+ phylogenie-2.0.6.dist-info/entry_points.txt,sha256=Rt6_usN0FkBX1ZfiqCirjMN9FKOgFLG8rydcQ8kugeE,51
28
+ phylogenie-2.0.6.dist-info/RECORD,,