pg-sui 1.6.16a3__py3-none-any.whl → 1.7.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pg_sui-1.6.16a3.dist-info → pg_sui-1.7.0.dist-info}/METADATA +26 -30
- {pg_sui-1.6.16a3.dist-info → pg_sui-1.7.0.dist-info}/RECORD +29 -33
- pgsui/__init__.py +0 -8
- pgsui/_version.py +2 -2
- pgsui/cli.py +577 -125
- pgsui/data_processing/config.py +1 -2
- pgsui/data_processing/containers.py +203 -530
- pgsui/data_processing/transformers.py +44 -20
- pgsui/impute/deterministic/imputers/mode.py +475 -182
- pgsui/impute/deterministic/imputers/ref_allele.py +454 -147
- pgsui/impute/supervised/imputers/hist_gradient_boosting.py +4 -3
- pgsui/impute/supervised/imputers/random_forest.py +3 -2
- pgsui/impute/unsupervised/base.py +1269 -534
- pgsui/impute/unsupervised/callbacks.py +28 -33
- pgsui/impute/unsupervised/imputers/autoencoder.py +870 -841
- pgsui/impute/unsupervised/imputers/vae.py +931 -787
- pgsui/impute/unsupervised/loss_functions.py +156 -202
- pgsui/impute/unsupervised/models/autoencoder_model.py +7 -49
- pgsui/impute/unsupervised/models/vae_model.py +40 -221
- pgsui/impute/unsupervised/nn_scorers.py +53 -13
- pgsui/utils/classification_viz.py +240 -97
- pgsui/utils/misc.py +201 -3
- pgsui/utils/plotting.py +73 -58
- pgsui/utils/pretty_metrics.py +2 -6
- pgsui/utils/scorers.py +39 -0
- pgsui/impute/unsupervised/imputers/nlpca.py +0 -1666
- pgsui/impute/unsupervised/imputers/ubp.py +0 -1660
- pgsui/impute/unsupervised/models/nlpca_model.py +0 -206
- pgsui/impute/unsupervised/models/ubp_model.py +0 -200
- {pg_sui-1.6.16a3.dist-info → pg_sui-1.7.0.dist-info}/WHEEL +0 -0
- {pg_sui-1.6.16a3.dist-info → pg_sui-1.7.0.dist-info}/entry_points.txt +0 -0
- {pg_sui-1.6.16a3.dist-info → pg_sui-1.7.0.dist-info}/licenses/LICENSE +0 -0
- {pg_sui-1.6.16a3.dist-info → pg_sui-1.7.0.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: pg-sui
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.7.0
|
|
4
4
|
Summary: Python machine and deep learning API to impute missing genotypes
|
|
5
5
|
Author-email: "Drs. Bradley T. Martin and Tyler K. Chafin" <evobio721@gmail.com>
|
|
6
6
|
Maintainer-email: "Dr. Bradley T. Martin" <evobio721@gmail.com>
|
|
@@ -49,7 +49,6 @@ Requires-Dist: scikit-learn-intelex; extra == "intel"
|
|
|
49
49
|
Provides-Extra: docs
|
|
50
50
|
Requires-Dist: sphinx; extra == "docs"
|
|
51
51
|
Requires-Dist: sphinx-rtd-theme; extra == "docs"
|
|
52
|
-
Requires-Dist: sphinx_autodoc_typehints; extra == "docs"
|
|
53
52
|
Requires-Dist: sphinxcontrib-napoleon; extra == "docs"
|
|
54
53
|
Requires-Dist: sphinxcontrib-programoutput; extra == "docs"
|
|
55
54
|
Provides-Extra: dev
|
|
@@ -58,7 +57,6 @@ Requires-Dist: wheel; extra == "dev"
|
|
|
58
57
|
Requires-Dist: pytest; extra == "dev"
|
|
59
58
|
Requires-Dist: sphinx; extra == "dev"
|
|
60
59
|
Requires-Dist: sphinx-rtd-theme; extra == "dev"
|
|
61
|
-
Requires-Dist: sphinx-autodoc-typehints; extra == "dev"
|
|
62
60
|
Requires-Dist: sphinxcontrib-napoleon; extra == "dev"
|
|
63
61
|
Requires-Dist: sphinxcontrib-programoutput; extra == "dev"
|
|
64
62
|
Requires-Dist: requests; extra == "dev"
|
|
@@ -71,7 +69,7 @@ Dynamic: license-file
|
|
|
71
69
|
|
|
72
70
|
# PG-SUI
|
|
73
71
|
|
|
74
|
-

|
|
72
|
+

|
|
75
73
|
|
|
76
74
|
Population Genomic Supervised and Unsupervised Imputation.
|
|
77
75
|
|
|
@@ -89,14 +87,14 @@ Unsupervised imputers include three custom neural network models:
|
|
|
89
87
|
+ VAE models train themselves to reconstruct their input (i.e., the genotypes) [1](#1). To use VAE for imputation, the missing values are masked and the VAE model gets trained to reconstruct only on known values. Once the model is trained, it is then used to predict the missing values.
|
|
90
88
|
+ Autoencoder [2](#2)
|
|
91
89
|
+ A standard autoencoder that trains the input to predict itself [2](#2). As with VAE, missing values are masked and the model gets trained only on known values. Predictions are then made on the missing values.
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
90
|
+
|
|
91
|
+
See the below diagram for an overview of implemented features for each model.
|
|
92
|
+
|
|
93
|
+

|
|
96
94
|
|
|
97
95
|
### Supervised Imputation Methods
|
|
98
96
|
|
|
99
|
-
Supervised methods utilze the scikit-learn's ``IterativeImputer``, which is based on the MICE (Multivariate Imputation by Chained Equations) algorithm [
|
|
97
|
+
Supervised methods utilze the scikit-learn's ``IterativeImputer``, which is based on the MICE (Multivariate Imputation by Chained Equations) algorithm [3](#3), and iterates over each SNP site (i.e., feature) while uses the N nearest neighbor features to inform the imputation. The number of nearest features can be adjusted by users. IterativeImputer currently works with the following scikit-learn classifiers:
|
|
100
98
|
|
|
101
99
|
+ ImputeRandomForest
|
|
102
100
|
+ ImputeHistGradientBoosting
|
|
@@ -166,7 +164,7 @@ from snpio import VCFReader
|
|
|
166
164
|
# Read in VCF alignment.
|
|
167
165
|
# SNPio also supports PHYLIP, STRUCTURE, and GENEPOP input file formats.
|
|
168
166
|
data = VCFReader(
|
|
169
|
-
filename="pgsui/example_data/phylogen_subset14K.vcf.gz,
|
|
167
|
+
filename="pgsui/example_data/phylogen_subset14K.vcf.gz",
|
|
170
168
|
popmapfile="pgsui/example_data/popmaps/phylogen_nomx.popmap", # optional
|
|
171
169
|
force_popmap=True, # optional
|
|
172
170
|
)
|
|
@@ -179,7 +177,7 @@ There are several supported algorithms PG-SUI uses to impute missing data. Each
|
|
|
179
177
|
You can import all the supported methods with the following:
|
|
180
178
|
|
|
181
179
|
``` python
|
|
182
|
-
from pgsui import
|
|
180
|
+
from pgsui import ImputeVAE, ImputeAutoencoder, ImputeRefAllele, ImputeMostFrequent, ImputeRandomForest, ImputeHistGradientBoosting
|
|
183
181
|
```
|
|
184
182
|
|
|
185
183
|
### Unsupervised Imputers
|
|
@@ -192,20 +190,12 @@ vae = ImputeVAE(data) # Variational autoencoder
|
|
|
192
190
|
vae.fit()
|
|
193
191
|
vae_imputed = vae.transform()
|
|
194
192
|
|
|
195
|
-
nlpca = ImputeNLPCA(data) # Nonlinear PCA
|
|
196
|
-
nlpca.fit()
|
|
197
|
-
nlpca_imputed = nlpca.transform()
|
|
198
|
-
|
|
199
|
-
ubp = ImputeUBP(data) # Unsupervised backpropagation
|
|
200
|
-
ubp.fit()
|
|
201
|
-
ubp_imputed = ubp.transform()
|
|
202
|
-
|
|
203
193
|
ae = ImputeAutoencoder(data) # standard autoencoder
|
|
204
194
|
ae.fit()
|
|
205
195
|
ae_imputed = ae.transform()
|
|
206
196
|
```
|
|
207
197
|
|
|
208
|
-
The ``*_imputed`` objects
|
|
198
|
+
The ``*_imputed`` objects are NumPy arrays of IUPAC single-character codes that are compatible with SNPio's ``GenotypeData`` objects.
|
|
209
199
|
|
|
210
200
|
### Supervised Imputers
|
|
211
201
|
|
|
@@ -259,19 +249,18 @@ Recent releases add explicit switches for the simulated-missingness workflow sha
|
|
|
259
249
|
|
|
260
250
|
+ ``--sim-strategy`` selects one of ``random``, ``random_weighted``, ``random_weighted_inv``, ``nonrandom``, ``nonrandom_weighted``.
|
|
261
251
|
+ ``--sim-prop`` sets the proportion of observed calls to temporarily mask when building the evaluation set.
|
|
262
|
-
+ ``--simulate-missing`` disables simulated masking entirely (store-false flag); omit it to inherit preset/YAML defaults or re-enable via ``--set sim.simulate_missing=True``.
|
|
263
252
|
|
|
264
253
|
Example:
|
|
265
254
|
|
|
266
255
|
``` shell
|
|
267
256
|
pg-sui \
|
|
268
|
-
--
|
|
257
|
+
--input data.vcf.gz \
|
|
269
258
|
--popmap pops.popmap \
|
|
270
|
-
--models
|
|
259
|
+
--models ImputeVAE ImputeAutoencoder \
|
|
271
260
|
--preset balanced \
|
|
272
261
|
--sim-strategy random_weighted_inv \
|
|
273
|
-
--sim-prop 0.
|
|
274
|
-
--prefix
|
|
262
|
+
--sim-prop 0.3 \
|
|
263
|
+
--prefix ae_and_vae \
|
|
275
264
|
--n-jobs 4 \
|
|
276
265
|
--tune-n-trials 100 \
|
|
277
266
|
--set tune.enabled=True
|
|
@@ -279,14 +268,21 @@ pg-sui \
|
|
|
279
268
|
|
|
280
269
|
CLI overrides cascade into every selected model, so a single invocation can evaluate multiple imputers with a consistent simulation strategy and output prefix.
|
|
281
270
|
|
|
271
|
+
STRUCTURE inputs accept a few extra flags for parsing metadata:
|
|
272
|
+
|
|
273
|
+
``` shell
|
|
274
|
+
pg-sui \
|
|
275
|
+
--input data.str \
|
|
276
|
+
--format structure \
|
|
277
|
+
--structure-has-popids \
|
|
278
|
+
--structure-allele-start-col 2 \
|
|
279
|
+
--structure-allele-encoding '{"1":"A","2":"C","3":"G","4":"T","-9":"N"}'
|
|
280
|
+
```
|
|
281
|
+
|
|
282
282
|
## References
|
|
283
283
|
|
|
284
284
|
1. Kingma, D.P. & Welling, M. (2013). Auto-encoding variational bayes. In: Proceedings of the International Conference on Learning Representations (ICLR). arXiv:1312.6114 [stat.ML].
|
|
285
285
|
|
|
286
286
|
2. Hinton, G.E., & Salakhutdinov, R.R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507.
|
|
287
287
|
|
|
288
|
-
3.
|
|
289
|
-
|
|
290
|
-
4. Gashler, M. S., Smith, M. R., Morris, R., & Martinez, T. (2016). Missing value imputation with unsupervised backpropagation. Computational Intelligence, 32(2), 196-215.
|
|
291
|
-
|
|
292
|
-
5. Stef van Buuren, Karin Groothuis-Oudshoorn (2011). mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software 45: 1-67.
|
|
288
|
+
3. Stef van Buuren, Karin Groothuis-Oudshoorn (2011). mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software 45: 1-67.
|
|
@@ -1,11 +1,11 @@
|
|
|
1
|
-
pg_sui-1.
|
|
2
|
-
pgsui/__init__.py,sha256=
|
|
3
|
-
pgsui/_version.py,sha256=
|
|
4
|
-
pgsui/cli.py,sha256=
|
|
1
|
+
pg_sui-1.7.0.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
|
|
2
|
+
pgsui/__init__.py,sha256=6tzbl-QrduagDbNmXkohCKkcZEbuePLCW07QfN_rIZ8,1263
|
|
3
|
+
pgsui/_version.py,sha256=oGRWiKvEGHesjf5wCNHGVlYfAA3dInDJeL5EiMaru6A,704
|
|
4
|
+
pgsui/cli.py,sha256=oSL_2jpb2VhLgWjsVIv09zMLadXQqeNS7qF3E-qDOzc,47940
|
|
5
5
|
pgsui/data_processing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
6
|
-
pgsui/data_processing/config.py,sha256=
|
|
7
|
-
pgsui/data_processing/containers.py,sha256=
|
|
8
|
-
pgsui/data_processing/transformers.py,sha256=
|
|
6
|
+
pgsui/data_processing/config.py,sha256=_I9Kagr93HiILMk6tXQP3CvM2qT3_eBUYi4nmbNGhUM,20364
|
|
7
|
+
pgsui/data_processing/containers.py,sha256=VpwPsQDB6IrUlWPqp_0rXHRPEveT2Zj71SUBrSmQk9E,38331
|
|
8
|
+
pgsui/data_processing/transformers.py,sha256=Bzmapf9G0qC41o7qOYmAJhBnxnhbcdVK6z2t7ToDwuY,33522
|
|
9
9
|
pgsui/electron/bootstrap.py,sha256=wnrXgX-hiqrMMFE9WGoD-UC8zeK2ZP6Kupu68PodVWI,1185
|
|
10
10
|
pgsui/electron/launch.py,sha256=M60o_jub77kJL-B9d_sMB7LYuTzWlOnQXR09efmCX2o,1715
|
|
11
11
|
pgsui/electron/package.json,sha256=12hbBq7xincW5V4645TTC58jfkA2rPgFP_eLb_WbhKo,372
|
|
@@ -43,39 +43,35 @@ pgsui/example_data/vcf_files/phylogen_subset14K.vcf.gz,sha256=B9sxdIGPSbw4m4MTX_
|
|
|
43
43
|
pgsui/example_data/vcf_files/phylogen_subset14K.vcf.gz.tbi,sha256=0gHDvboDAEZLQbXdYfUOiJL3oDOr1mOlaQxdlcz_erg,106087
|
|
44
44
|
pgsui/impute/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
45
45
|
pgsui/impute/deterministic/imputers/allele_freq.py,sha256=tqaMggiNs6hxs4CN3No2d5llmmIPt0jQhHT0mHry2IM,29573
|
|
46
|
-
pgsui/impute/deterministic/imputers/mode.py,sha256=
|
|
46
|
+
pgsui/impute/deterministic/imputers/mode.py,sha256=3gx4gYIQ9WaxHpWmSs41aoMGhd_8aDngO5ZZj5w_mNU,46682
|
|
47
47
|
pgsui/impute/deterministic/imputers/nmf.py,sha256=171_TTDZAe1NFjbmKQTOlPDe_rA1aO8q2Th5z0w2RU8,8086
|
|
48
48
|
pgsui/impute/deterministic/imputers/phylo.py,sha256=uN86_L2TeiUFOZLdU8pwymRiQf0SI7Sl6SAnCbAywVQ,38873
|
|
49
|
-
pgsui/impute/deterministic/imputers/ref_allele.py,sha256=
|
|
49
|
+
pgsui/impute/deterministic/imputers/ref_allele.py,sha256=vVDDd5FPVxmiDT6atKJ5qKW8SJN17OzPvN9VwZGV5qU,40268
|
|
50
50
|
pgsui/impute/supervised/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
51
51
|
pgsui/impute/supervised/base.py,sha256=A92x1pS8DO0OwbhQem3KBAMbWs368KJcVl88zJ7wE10,13756
|
|
52
52
|
pgsui/impute/supervised/imputers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
53
|
-
pgsui/impute/supervised/imputers/hist_gradient_boosting.py,sha256=
|
|
54
|
-
pgsui/impute/supervised/imputers/random_forest.py,sha256
|
|
53
|
+
pgsui/impute/supervised/imputers/hist_gradient_boosting.py,sha256=lWd4h1UZdYinsvj2dyQLymDrs0f8XWmxzCMKhEG3OlE,11538
|
|
54
|
+
pgsui/impute/supervised/imputers/random_forest.py,sha256=--8p81vs4E9di9MXQThYthEZ_LFfB7ibdQ2-aUR1e0s,10423
|
|
55
55
|
pgsui/impute/unsupervised/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
56
|
-
pgsui/impute/unsupervised/base.py,sha256=
|
|
57
|
-
pgsui/impute/unsupervised/callbacks.py,sha256=
|
|
58
|
-
pgsui/impute/unsupervised/loss_functions.py,sha256=
|
|
59
|
-
pgsui/impute/unsupervised/nn_scorers.py,sha256
|
|
56
|
+
pgsui/impute/unsupervised/base.py,sha256=fPd552zfupvOssg_do_jRuzlhxZ6qwd-UkVrLYpDwN4,72591
|
|
57
|
+
pgsui/impute/unsupervised/callbacks.py,sha256=Ixt6Lp_DDNQIkw5lQzesyt8rj4aE1adEWa2YpSJg7C4,4827
|
|
58
|
+
pgsui/impute/unsupervised/loss_functions.py,sha256=aGDEHm2BIriz1R91fiRucOOlsiQ6MZgHG6bIvOiE3Cg,7724
|
|
59
|
+
pgsui/impute/unsupervised/nn_scorers.py,sha256=Ica6Vp3WQKAoXN4VOQtnyfACC-eHswCOKJq302Wwao8,11587
|
|
60
60
|
pgsui/impute/unsupervised/imputers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
61
|
-
pgsui/impute/unsupervised/imputers/autoencoder.py,sha256=
|
|
62
|
-
pgsui/impute/unsupervised/imputers/
|
|
63
|
-
pgsui/impute/unsupervised/imputers/ubp.py,sha256=sBJ9VSW2tTzXVjnXogjhuj6GixRaH0HcQ2B7cK4y6tw,71361
|
|
64
|
-
pgsui/impute/unsupervised/imputers/vae.py,sha256=hK3ZOxyLjQqm-3Hcq2BMUZOghsJiDGYNRQjqA7zoncs,54713
|
|
61
|
+
pgsui/impute/unsupervised/imputers/autoencoder.py,sha256=eFlzwnPlSXiYluFRd6Wolfd4-wKh3dmGxqet-g19pmw,54429
|
|
62
|
+
pgsui/impute/unsupervised/imputers/vae.py,sha256=SiJXxTQYq8z_gEIUrB7IiQS5cRvGY9VtTI_jXLqb0ds,57814
|
|
65
63
|
pgsui/impute/unsupervised/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
66
|
-
pgsui/impute/unsupervised/models/autoencoder_model.py,sha256=
|
|
67
|
-
pgsui/impute/unsupervised/models/
|
|
68
|
-
pgsui/impute/unsupervised/models/ubp_model.py,sha256=4guGkQzCTIsDnImOjJV5kG1xc1ST9oO4aUeXrSBSpQg,8491
|
|
69
|
-
pgsui/impute/unsupervised/models/vae_model.py,sha256=hMG7K1OR95qLEEcprGSzIoTIISXHSu2yWDy6QkG93Lg,15576
|
|
64
|
+
pgsui/impute/unsupervised/models/autoencoder_model.py,sha256=nsUUvs4O6DuFgZj_Op9U5gJqf2-vGTfZZ6wuJqiYLHk,10575
|
|
65
|
+
pgsui/impute/unsupervised/models/vae_model.py,sha256=PqcnqaLdnSN3ngoKmD1sUnn6SeV5nhmeLVYxmGIWf0M,5348
|
|
70
66
|
pgsui/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
71
|
-
pgsui/utils/classification_viz.py,sha256=
|
|
67
|
+
pgsui/utils/classification_viz.py,sha256=R5_wSp6tE1rKCVU7dXLDR2vI3gqm32QrEvGrWHoXjSI,27139
|
|
72
68
|
pgsui/utils/logging_utils.py,sha256=o_ElRL05B_DrbALYkuW8s_azfKQiN8kJ4oXwshyIMyI,521
|
|
73
|
-
pgsui/utils/misc.py,sha256=
|
|
74
|
-
pgsui/utils/plotting.py,sha256=
|
|
75
|
-
pgsui/utils/pretty_metrics.py,sha256=
|
|
76
|
-
pgsui/utils/scorers.py,sha256=
|
|
77
|
-
pg_sui-1.
|
|
78
|
-
pg_sui-1.
|
|
79
|
-
pg_sui-1.
|
|
80
|
-
pg_sui-1.
|
|
81
|
-
pg_sui-1.
|
|
69
|
+
pgsui/utils/misc.py,sha256=AzXJfq3W6uDbB-sqUOu3288ODkRXDK4PPdzTFeWKLOU,8943
|
|
70
|
+
pgsui/utils/plotting.py,sha256=hXbi5xFW2DHSTzT03wuwDIVNgWtzVuF4qImv_xhHoD4,43473
|
|
71
|
+
pgsui/utils/pretty_metrics.py,sha256=d3UaEcG1ilRmiVQ0wQ-Eu_6LMPv0BmEPqTBw8orgNpo,9796
|
|
72
|
+
pgsui/utils/scorers.py,sha256=jL0oZWRwXF0rIZs-lXt1bXN09vEi0JXR0lnaa9S3udA,14423
|
|
73
|
+
pg_sui-1.7.0.dist-info/METADATA,sha256=K6HpOveKHbAZTmCMH2QSz-3VG0uDdaUVhsXvazRsTnY,12004
|
|
74
|
+
pg_sui-1.7.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
75
|
+
pg_sui-1.7.0.dist-info/entry_points.txt,sha256=xidyl6yqQv7oj3XSzZC6Vv9l7aNgbHi_pjv-dJjGJds,129
|
|
76
|
+
pg_sui-1.7.0.dist-info/top_level.txt,sha256=87-oDpfY6sDY_uN-OM2lcnrgPesifhzwqFOajp9ukz0,6
|
|
77
|
+
pg_sui-1.7.0.dist-info/RECORD,,
|
pgsui/__init__.py
CHANGED
|
@@ -6,10 +6,8 @@ from pgsui.data_processing.containers import (
|
|
|
6
6
|
AutoencoderConfig,
|
|
7
7
|
HGBConfig,
|
|
8
8
|
MostFrequentConfig,
|
|
9
|
-
NLPCAConfig,
|
|
10
9
|
RefAlleleConfig,
|
|
11
10
|
RFConfig,
|
|
12
|
-
UBPConfig,
|
|
13
11
|
VAEConfig,
|
|
14
12
|
)
|
|
15
13
|
from pgsui.impute.deterministic.imputers.mode import ImputeMostFrequent
|
|
@@ -19,23 +17,17 @@ from pgsui.impute.supervised.imputers.hist_gradient_boosting import (
|
|
|
19
17
|
)
|
|
20
18
|
from pgsui.impute.supervised.imputers.random_forest import ImputeRandomForest
|
|
21
19
|
from pgsui.impute.unsupervised.imputers.autoencoder import ImputeAutoencoder
|
|
22
|
-
from pgsui.impute.unsupervised.imputers.nlpca import ImputeNLPCA
|
|
23
|
-
from pgsui.impute.unsupervised.imputers.ubp import ImputeUBP
|
|
24
20
|
from pgsui.impute.unsupervised.imputers.vae import ImputeVAE
|
|
25
21
|
|
|
26
22
|
__all__ = [
|
|
27
23
|
"ImputeAutoencoder", # Unsupervised imputer classes
|
|
28
24
|
"ImputeVAE",
|
|
29
|
-
"ImputeNLPCA",
|
|
30
|
-
"ImputeUBP",
|
|
31
25
|
"ImputeRandomForest", # Supervised imputer classes
|
|
32
26
|
"ImputeHistGradientBoosting",
|
|
33
27
|
"ImputeRefAllele", # Deterministic imputer classes
|
|
34
28
|
"ImputeMostFrequent",
|
|
35
29
|
"AutoencoderConfig", # Unsupervised imputer configs
|
|
36
30
|
"VAEConfig",
|
|
37
|
-
"NLPCAConfig",
|
|
38
|
-
"UBPConfig",
|
|
39
31
|
"MostFrequentConfig", # Deterministic imputer configs
|
|
40
32
|
"RefAlleleConfig",
|
|
41
33
|
"RFConfig", # Supervised imputer configs
|
pgsui/_version.py
CHANGED
|
@@ -28,7 +28,7 @@ version_tuple: VERSION_TUPLE
|
|
|
28
28
|
commit_id: COMMIT_ID
|
|
29
29
|
__commit_id__: COMMIT_ID
|
|
30
30
|
|
|
31
|
-
__version__ = version = '1.
|
|
32
|
-
__version_tuple__ = version_tuple = (1,
|
|
31
|
+
__version__ = version = '1.7.0'
|
|
32
|
+
__version_tuple__ = version_tuple = (1, 7, 0)
|
|
33
33
|
|
|
34
34
|
__commit_id__ = commit_id = None
|