pg-sui 1.6.16a3__py3-none-any.whl → 1.7.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (33) hide show
  1. {pg_sui-1.6.16a3.dist-info → pg_sui-1.7.0.dist-info}/METADATA +26 -30
  2. {pg_sui-1.6.16a3.dist-info → pg_sui-1.7.0.dist-info}/RECORD +29 -33
  3. pgsui/__init__.py +0 -8
  4. pgsui/_version.py +2 -2
  5. pgsui/cli.py +577 -125
  6. pgsui/data_processing/config.py +1 -2
  7. pgsui/data_processing/containers.py +203 -530
  8. pgsui/data_processing/transformers.py +44 -20
  9. pgsui/impute/deterministic/imputers/mode.py +475 -182
  10. pgsui/impute/deterministic/imputers/ref_allele.py +454 -147
  11. pgsui/impute/supervised/imputers/hist_gradient_boosting.py +4 -3
  12. pgsui/impute/supervised/imputers/random_forest.py +3 -2
  13. pgsui/impute/unsupervised/base.py +1269 -534
  14. pgsui/impute/unsupervised/callbacks.py +28 -33
  15. pgsui/impute/unsupervised/imputers/autoencoder.py +870 -841
  16. pgsui/impute/unsupervised/imputers/vae.py +931 -787
  17. pgsui/impute/unsupervised/loss_functions.py +156 -202
  18. pgsui/impute/unsupervised/models/autoencoder_model.py +7 -49
  19. pgsui/impute/unsupervised/models/vae_model.py +40 -221
  20. pgsui/impute/unsupervised/nn_scorers.py +53 -13
  21. pgsui/utils/classification_viz.py +240 -97
  22. pgsui/utils/misc.py +201 -3
  23. pgsui/utils/plotting.py +73 -58
  24. pgsui/utils/pretty_metrics.py +2 -6
  25. pgsui/utils/scorers.py +39 -0
  26. pgsui/impute/unsupervised/imputers/nlpca.py +0 -1666
  27. pgsui/impute/unsupervised/imputers/ubp.py +0 -1660
  28. pgsui/impute/unsupervised/models/nlpca_model.py +0 -206
  29. pgsui/impute/unsupervised/models/ubp_model.py +0 -200
  30. {pg_sui-1.6.16a3.dist-info → pg_sui-1.7.0.dist-info}/WHEEL +0 -0
  31. {pg_sui-1.6.16a3.dist-info → pg_sui-1.7.0.dist-info}/entry_points.txt +0 -0
  32. {pg_sui-1.6.16a3.dist-info → pg_sui-1.7.0.dist-info}/licenses/LICENSE +0 -0
  33. {pg_sui-1.6.16a3.dist-info → pg_sui-1.7.0.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pg-sui
3
- Version: 1.6.16a3
3
+ Version: 1.7.0
4
4
  Summary: Python machine and deep learning API to impute missing genotypes
5
5
  Author-email: "Drs. Bradley T. Martin and Tyler K. Chafin" <evobio721@gmail.com>
6
6
  Maintainer-email: "Dr. Bradley T. Martin" <evobio721@gmail.com>
@@ -49,7 +49,6 @@ Requires-Dist: scikit-learn-intelex; extra == "intel"
49
49
  Provides-Extra: docs
50
50
  Requires-Dist: sphinx; extra == "docs"
51
51
  Requires-Dist: sphinx-rtd-theme; extra == "docs"
52
- Requires-Dist: sphinx_autodoc_typehints; extra == "docs"
53
52
  Requires-Dist: sphinxcontrib-napoleon; extra == "docs"
54
53
  Requires-Dist: sphinxcontrib-programoutput; extra == "docs"
55
54
  Provides-Extra: dev
@@ -58,7 +57,6 @@ Requires-Dist: wheel; extra == "dev"
58
57
  Requires-Dist: pytest; extra == "dev"
59
58
  Requires-Dist: sphinx; extra == "dev"
60
59
  Requires-Dist: sphinx-rtd-theme; extra == "dev"
61
- Requires-Dist: sphinx-autodoc-typehints; extra == "dev"
62
60
  Requires-Dist: sphinxcontrib-napoleon; extra == "dev"
63
61
  Requires-Dist: sphinxcontrib-programoutput; extra == "dev"
64
62
  Requires-Dist: requests; extra == "dev"
@@ -71,7 +69,7 @@ Dynamic: license-file
71
69
 
72
70
  # PG-SUI
73
71
 
74
- ![PG-SUI Logo](https://github.com/btmartin721/PG-SUI/blob/master/img/pgsui-logo-faded.png)
72
+ ![PG-SUI Logo: Stylized blue and purple gradient design with faded appearance representing PG-SUI - Population Genomic Supervised and Unsupervised Imputation](https://github.com/btmartin721/PG-SUI/blob/master/img/pgsui-logo-faded.png)
75
73
 
76
74
  Population Genomic Supervised and Unsupervised Imputation.
77
75
 
@@ -89,14 +87,14 @@ Unsupervised imputers include three custom neural network models:
89
87
  + VAE models train themselves to reconstruct their input (i.e., the genotypes) [1](#1). To use VAE for imputation, the missing values are masked and the VAE model gets trained to reconstruct only on known values. Once the model is trained, it is then used to predict the missing values.
90
88
  + Autoencoder [2](#2)
91
89
  + A standard autoencoder that trains the input to predict itself [2](#2). As with VAE, missing values are masked and the model gets trained only on known values. Predictions are then made on the missing values.
92
- + Non-linear Principal Component Analysis (NLPCA) [3](#3)
93
- + NLPCA initializes random, reduced-dimensional input, then trains itself by using the known values (i.e., genotypes) as targets and refining the random input until it accurately predicts the genotype output [3](#3). The trained model can then predict the missing values.
94
- + Unsupervised Backpropagation (UBP) [4](#4)
95
- + UBP is an extension of NLPCA that runs over three phases [4](#4). Phase 1 refines the randomly generated, reduced-dimensional input in a single layer perceptron neural network to obtain good initial input values. Phase 2 uses the refined reduced-dimensional input from phase 1 as input into a multi-layer perceptron (MLP), but in Phase 2 only the neural network weights are refined. Phase three uses an MLP to refine both the weights and the reduced-dimensional input. Once the model is trained, it can be used to predict the missing values.
90
+
91
+ See the below diagram for an overview of implemented features for each model.
92
+
93
+ ![Side-by-side comparison of two neural network architectures for genomic imputation. Left diagram with blue boxes shows ImputeAutoencoder workflow: input genotypes with missing data encoded as 0=REF, 1=HET, 2=ALT, -9 or -1=Missing flows through gamma Schedule, Encoder Network, Latent Space, Decoder Network, Reconstruction Loss, to produce Imputed Genotype Output. Right diagram with orange boxes shows ImputeVAE architecture: genotype input flows through Encoder Network to Mean and Log Variance outputs, then Sampling with Reparameterization, KL-beta Schedule, KL Divergence Loss, Decoder Network, Reconstruction Loss, producing Imputed Genotype Output. Both models output refilled missing values. The comparison illustrates how the autoencoder differs from VAE through additional scheduled parameters and loss components in the variational model.](./img/autoencoder_vae_model_diagrams.png)
96
94
 
97
95
  ### Supervised Imputation Methods
98
96
 
99
- Supervised methods utilze the scikit-learn's ``IterativeImputer``, which is based on the MICE (Multivariate Imputation by Chained Equations) algorithm [5](#5), and iterates over each SNP site (i.e., feature) while uses the N nearest neighbor features to inform the imputation. The number of nearest features can be adjusted by users. IterativeImputer currently works with the following scikit-learn classifiers:
97
+ Supervised methods utilze the scikit-learn's ``IterativeImputer``, which is based on the MICE (Multivariate Imputation by Chained Equations) algorithm [3](#3), and iterates over each SNP site (i.e., feature) while uses the N nearest neighbor features to inform the imputation. The number of nearest features can be adjusted by users. IterativeImputer currently works with the following scikit-learn classifiers:
100
98
 
101
99
  + ImputeRandomForest
102
100
  + ImputeHistGradientBoosting
@@ -166,7 +164,7 @@ from snpio import VCFReader
166
164
  # Read in VCF alignment.
167
165
  # SNPio also supports PHYLIP, STRUCTURE, and GENEPOP input file formats.
168
166
  data = VCFReader(
169
- filename="pgsui/example_data/phylogen_subset14K.vcf.gz,
167
+ filename="pgsui/example_data/phylogen_subset14K.vcf.gz",
170
168
  popmapfile="pgsui/example_data/popmaps/phylogen_nomx.popmap", # optional
171
169
  force_popmap=True, # optional
172
170
  )
@@ -179,7 +177,7 @@ There are several supported algorithms PG-SUI uses to impute missing data. Each
179
177
  You can import all the supported methods with the following:
180
178
 
181
179
  ``` python
182
- from pgsui import ImputeUBP, ImputeVAE, ImputeNLPCA, ImputeAutoencoder, ImputeRefAllele, ImputeMostFrequent, ImputeRandomForest, ImputeHistGradientBoosting
180
+ from pgsui import ImputeVAE, ImputeAutoencoder, ImputeRefAllele, ImputeMostFrequent, ImputeRandomForest, ImputeHistGradientBoosting
183
181
  ```
184
182
 
185
183
  ### Unsupervised Imputers
@@ -192,20 +190,12 @@ vae = ImputeVAE(data) # Variational autoencoder
192
190
  vae.fit()
193
191
  vae_imputed = vae.transform()
194
192
 
195
- nlpca = ImputeNLPCA(data) # Nonlinear PCA
196
- nlpca.fit()
197
- nlpca_imputed = nlpca.transform()
198
-
199
- ubp = ImputeUBP(data) # Unsupervised backpropagation
200
- ubp.fit()
201
- ubp_imputed = ubp.transform()
202
-
203
193
  ae = ImputeAutoencoder(data) # standard autoencoder
204
194
  ae.fit()
205
195
  ae_imputed = ae.transform()
206
196
  ```
207
197
 
208
- The ``*_imputed`` objects will be NumPy arrays that are compatible with SNPio's ``GenotypeData`` objects.
198
+ The ``*_imputed`` objects are NumPy arrays of IUPAC single-character codes that are compatible with SNPio's ``GenotypeData`` objects.
209
199
 
210
200
  ### Supervised Imputers
211
201
 
@@ -259,19 +249,18 @@ Recent releases add explicit switches for the simulated-missingness workflow sha
259
249
 
260
250
  + ``--sim-strategy`` selects one of ``random``, ``random_weighted``, ``random_weighted_inv``, ``nonrandom``, ``nonrandom_weighted``.
261
251
  + ``--sim-prop`` sets the proportion of observed calls to temporarily mask when building the evaluation set.
262
- + ``--simulate-missing`` disables simulated masking entirely (store-false flag); omit it to inherit preset/YAML defaults or re-enable via ``--set sim.simulate_missing=True``.
263
252
 
264
253
  Example:
265
254
 
266
255
  ``` shell
267
256
  pg-sui \
268
- --vcf data.vcf.gz \
257
+ --input data.vcf.gz \
269
258
  --popmap pops.popmap \
270
- --models ImputeUBP ImputeVAE \
259
+ --models ImputeVAE ImputeAutoencoder \
271
260
  --preset balanced \
272
261
  --sim-strategy random_weighted_inv \
273
- --sim-prop 0.25 \
274
- --prefix ubp_and_vae \
262
+ --sim-prop 0.3 \
263
+ --prefix ae_and_vae \
275
264
  --n-jobs 4 \
276
265
  --tune-n-trials 100 \
277
266
  --set tune.enabled=True
@@ -279,14 +268,21 @@ pg-sui \
279
268
 
280
269
  CLI overrides cascade into every selected model, so a single invocation can evaluate multiple imputers with a consistent simulation strategy and output prefix.
281
270
 
271
+ STRUCTURE inputs accept a few extra flags for parsing metadata:
272
+
273
+ ``` shell
274
+ pg-sui \
275
+ --input data.str \
276
+ --format structure \
277
+ --structure-has-popids \
278
+ --structure-allele-start-col 2 \
279
+ --structure-allele-encoding '{"1":"A","2":"C","3":"G","4":"T","-9":"N"}'
280
+ ```
281
+
282
282
  ## References
283
283
 
284
284
  1. Kingma, D.P. & Welling, M. (2013). Auto-encoding variational bayes. In: Proceedings of the International Conference on Learning Representations (ICLR). arXiv:1312.6114 [stat.ML].
285
285
 
286
286
  2. Hinton, G.E., & Salakhutdinov, R.R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507.
287
287
 
288
- 3. Scholz, M., Kaplan, F., Guy, C. L., Kopka, J., & Selbig, J. (2005). Non-linear PCA: a missing data approach. Bioinformatics, 21(20), 3887-3895.
289
-
290
- 4. Gashler, M. S., Smith, M. R., Morris, R., & Martinez, T. (2016). Missing value imputation with unsupervised backpropagation. Computational Intelligence, 32(2), 196-215.
291
-
292
- 5. Stef van Buuren, Karin Groothuis-Oudshoorn (2011). mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software 45: 1-67.
288
+ 3. Stef van Buuren, Karin Groothuis-Oudshoorn (2011). mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software 45: 1-67.
@@ -1,11 +1,11 @@
1
- pg_sui-1.6.16a3.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
2
- pgsui/__init__.py,sha256=wQFzVX6vh8aUva1LCvP42jS7rcKCpkaU52YfZIy61q8,1493
3
- pgsui/_version.py,sha256=Ob9Wzde013P9zPCsc2eaS--ZJQaRFPqutqIvBNJDnP4,714
4
- pgsui/cli.py,sha256=F6v7Bv073NgH3Ku_Lb6DSciTCLzM_o49ktrKnjkiHJg,30229
1
+ pg_sui-1.7.0.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
2
+ pgsui/__init__.py,sha256=6tzbl-QrduagDbNmXkohCKkcZEbuePLCW07QfN_rIZ8,1263
3
+ pgsui/_version.py,sha256=oGRWiKvEGHesjf5wCNHGVlYfAA3dInDJeL5EiMaru6A,704
4
+ pgsui/cli.py,sha256=oSL_2jpb2VhLgWjsVIv09zMLadXQqeNS7qF3E-qDOzc,47940
5
5
  pgsui/data_processing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
- pgsui/data_processing/config.py,sha256=g5G7pjWG4uU2BRvBu_DpO0J_4X1Foa11X69imBWjaKA,20483
7
- pgsui/data_processing/containers.py,sha256=mtVExBEQQXCID_TbngxY23I690d09WIzmJBdVa7HIo0,51513
8
- pgsui/data_processing/transformers.py,sha256=kdwOTmfDjgQ3RmiwQIK7LYL4vQUpgA4bob7NHYgnYRM,30998
6
+ pgsui/data_processing/config.py,sha256=_I9Kagr93HiILMk6tXQP3CvM2qT3_eBUYi4nmbNGhUM,20364
7
+ pgsui/data_processing/containers.py,sha256=VpwPsQDB6IrUlWPqp_0rXHRPEveT2Zj71SUBrSmQk9E,38331
8
+ pgsui/data_processing/transformers.py,sha256=Bzmapf9G0qC41o7qOYmAJhBnxnhbcdVK6z2t7ToDwuY,33522
9
9
  pgsui/electron/bootstrap.py,sha256=wnrXgX-hiqrMMFE9WGoD-UC8zeK2ZP6Kupu68PodVWI,1185
10
10
  pgsui/electron/launch.py,sha256=M60o_jub77kJL-B9d_sMB7LYuTzWlOnQXR09efmCX2o,1715
11
11
  pgsui/electron/package.json,sha256=12hbBq7xincW5V4645TTC58jfkA2rPgFP_eLb_WbhKo,372
@@ -43,39 +43,35 @@ pgsui/example_data/vcf_files/phylogen_subset14K.vcf.gz,sha256=B9sxdIGPSbw4m4MTX_
43
43
  pgsui/example_data/vcf_files/phylogen_subset14K.vcf.gz.tbi,sha256=0gHDvboDAEZLQbXdYfUOiJL3oDOr1mOlaQxdlcz_erg,106087
44
44
  pgsui/impute/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
45
45
  pgsui/impute/deterministic/imputers/allele_freq.py,sha256=tqaMggiNs6hxs4CN3No2d5llmmIPt0jQhHT0mHry2IM,29573
46
- pgsui/impute/deterministic/imputers/mode.py,sha256=lQmrOYEyfQidqGaG86QB5HeM66IeOFLK1UoCvh-iDno,35049
46
+ pgsui/impute/deterministic/imputers/mode.py,sha256=3gx4gYIQ9WaxHpWmSs41aoMGhd_8aDngO5ZZj5w_mNU,46682
47
47
  pgsui/impute/deterministic/imputers/nmf.py,sha256=171_TTDZAe1NFjbmKQTOlPDe_rA1aO8q2Th5z0w2RU8,8086
48
48
  pgsui/impute/deterministic/imputers/phylo.py,sha256=uN86_L2TeiUFOZLdU8pwymRiQf0SI7Sl6SAnCbAywVQ,38873
49
- pgsui/impute/deterministic/imputers/ref_allele.py,sha256=OGdv4n1avIArItZ-V0kqX2g4OOZc2felh7HM1ikY2iU,28075
49
+ pgsui/impute/deterministic/imputers/ref_allele.py,sha256=vVDDd5FPVxmiDT6atKJ5qKW8SJN17OzPvN9VwZGV5qU,40268
50
50
  pgsui/impute/supervised/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
51
51
  pgsui/impute/supervised/base.py,sha256=A92x1pS8DO0OwbhQem3KBAMbWs368KJcVl88zJ7wE10,13756
52
52
  pgsui/impute/supervised/imputers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
53
- pgsui/impute/supervised/imputers/hist_gradient_boosting.py,sha256=5LZsee2R9tbshmgVvLDIjGDihiQPvp9XfbaGwzL35E8,11509
54
- pgsui/impute/supervised/imputers/random_forest.py,sha256=jpeaLjhzYrwRPc9nPasLgwOqBoHlBlymHMc3x5OkBWA,10393
53
+ pgsui/impute/supervised/imputers/hist_gradient_boosting.py,sha256=lWd4h1UZdYinsvj2dyQLymDrs0f8XWmxzCMKhEG3OlE,11538
54
+ pgsui/impute/supervised/imputers/random_forest.py,sha256=--8p81vs4E9di9MXQThYthEZ_LFfB7ibdQ2-aUR1e0s,10423
55
55
  pgsui/impute/unsupervised/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
56
- pgsui/impute/unsupervised/base.py,sha256=DqgP8QNKmbUaljzx_lWC_zFuWTUO3iiRseYTQEWNG0Q,46945
57
- pgsui/impute/unsupervised/callbacks.py,sha256=jkxncpKNRdssImv4N5c-Hq8VcA07QvxLoct7EqDW9RE,5026
58
- pgsui/impute/unsupervised/loss_functions.py,sha256=f18uQnerj0KF9xcU2I1_Y2OCKKguXXaEDaYhJg0XElY,10089
59
- pgsui/impute/unsupervised/nn_scorers.py,sha256=-rl5MBJm2GN6E1wPBIe1wMgdrHEHhYooUUxVbfcf1Z8,9758
56
+ pgsui/impute/unsupervised/base.py,sha256=fPd552zfupvOssg_do_jRuzlhxZ6qwd-UkVrLYpDwN4,72591
57
+ pgsui/impute/unsupervised/callbacks.py,sha256=Ixt6Lp_DDNQIkw5lQzesyt8rj4aE1adEWa2YpSJg7C4,4827
58
+ pgsui/impute/unsupervised/loss_functions.py,sha256=aGDEHm2BIriz1R91fiRucOOlsiQ6MZgHG6bIvOiE3Cg,7724
59
+ pgsui/impute/unsupervised/nn_scorers.py,sha256=Ica6Vp3WQKAoXN4VOQtnyfACC-eHswCOKJq302Wwao8,11587
60
60
  pgsui/impute/unsupervised/imputers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
61
- pgsui/impute/unsupervised/imputers/autoencoder.py,sha256=k8GJ80hysAteT-QUmRRtWfPcvH-QjUFHrWBZGVuFH1c,57872
62
- pgsui/impute/unsupervised/imputers/nlpca.py,sha256=AChGz0Gp9Yt0qF8vtrDI4t5iIr70LQRb-8pFGQBYLZo,69086
63
- pgsui/impute/unsupervised/imputers/ubp.py,sha256=sBJ9VSW2tTzXVjnXogjhuj6GixRaH0HcQ2B7cK4y6tw,71361
64
- pgsui/impute/unsupervised/imputers/vae.py,sha256=hK3ZOxyLjQqm-3Hcq2BMUZOghsJiDGYNRQjqA7zoncs,54713
61
+ pgsui/impute/unsupervised/imputers/autoencoder.py,sha256=eFlzwnPlSXiYluFRd6Wolfd4-wKh3dmGxqet-g19pmw,54429
62
+ pgsui/impute/unsupervised/imputers/vae.py,sha256=SiJXxTQYq8z_gEIUrB7IiQS5cRvGY9VtTI_jXLqb0ds,57814
65
63
  pgsui/impute/unsupervised/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
66
- pgsui/impute/unsupervised/models/autoencoder_model.py,sha256=mHmfTkldJNpN7Dy7RTS2RnkE2L_K1rChNjpjDvzRlEQ,12333
67
- pgsui/impute/unsupervised/models/nlpca_model.py,sha256=1NathvhsirBtd9UcmeJzRoVf7oi7PfDmRpt18Di63Cg,8021
68
- pgsui/impute/unsupervised/models/ubp_model.py,sha256=4guGkQzCTIsDnImOjJV5kG1xc1ST9oO4aUeXrSBSpQg,8491
69
- pgsui/impute/unsupervised/models/vae_model.py,sha256=hMG7K1OR95qLEEcprGSzIoTIISXHSu2yWDy6QkG93Lg,15576
64
+ pgsui/impute/unsupervised/models/autoencoder_model.py,sha256=nsUUvs4O6DuFgZj_Op9U5gJqf2-vGTfZZ6wuJqiYLHk,10575
65
+ pgsui/impute/unsupervised/models/vae_model.py,sha256=PqcnqaLdnSN3ngoKmD1sUnn6SeV5nhmeLVYxmGIWf0M,5348
70
66
  pgsui/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
71
- pgsui/utils/classification_viz.py,sha256=WkGQkEIkpTMLQvGdGoU53kn1iNUO9ipeg5stSY1rcFg,22012
67
+ pgsui/utils/classification_viz.py,sha256=R5_wSp6tE1rKCVU7dXLDR2vI3gqm32QrEvGrWHoXjSI,27139
72
68
  pgsui/utils/logging_utils.py,sha256=o_ElRL05B_DrbALYkuW8s_azfKQiN8kJ4oXwshyIMyI,521
73
- pgsui/utils/misc.py,sha256=Mw5CsspFJkDAcCRufk-lO7fKyVoYK7PRYXkLXKswUjI,3065
74
- pgsui/utils/plotting.py,sha256=d5CTzGIpanu3j6rEB6fq_F1g8w_A2Ti_XiedRjIFFII,42444
75
- pgsui/utils/pretty_metrics.py,sha256=dtN7Ohcx3qJYCw4JeJCXvthGDdSV7bgE8v6EGwHSAE0,9862
76
- pgsui/utils/scorers.py,sha256=sL2upL2ZZMFBTMM4DiGiWeXrqc_fp1RRbleYCnuRUhw,12564
77
- pg_sui-1.6.16a3.dist-info/METADATA,sha256=G87-keKhu56QhKFiAeGQVSD36EH_W2uNf9u4wciAsmU,12320
78
- pg_sui-1.6.16a3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
79
- pg_sui-1.6.16a3.dist-info/entry_points.txt,sha256=xidyl6yqQv7oj3XSzZC6Vv9l7aNgbHi_pjv-dJjGJds,129
80
- pg_sui-1.6.16a3.dist-info/top_level.txt,sha256=87-oDpfY6sDY_uN-OM2lcnrgPesifhzwqFOajp9ukz0,6
81
- pg_sui-1.6.16a3.dist-info/RECORD,,
69
+ pgsui/utils/misc.py,sha256=AzXJfq3W6uDbB-sqUOu3288ODkRXDK4PPdzTFeWKLOU,8943
70
+ pgsui/utils/plotting.py,sha256=hXbi5xFW2DHSTzT03wuwDIVNgWtzVuF4qImv_xhHoD4,43473
71
+ pgsui/utils/pretty_metrics.py,sha256=d3UaEcG1ilRmiVQ0wQ-Eu_6LMPv0BmEPqTBw8orgNpo,9796
72
+ pgsui/utils/scorers.py,sha256=jL0oZWRwXF0rIZs-lXt1bXN09vEi0JXR0lnaa9S3udA,14423
73
+ pg_sui-1.7.0.dist-info/METADATA,sha256=K6HpOveKHbAZTmCMH2QSz-3VG0uDdaUVhsXvazRsTnY,12004
74
+ pg_sui-1.7.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
75
+ pg_sui-1.7.0.dist-info/entry_points.txt,sha256=xidyl6yqQv7oj3XSzZC6Vv9l7aNgbHi_pjv-dJjGJds,129
76
+ pg_sui-1.7.0.dist-info/top_level.txt,sha256=87-oDpfY6sDY_uN-OM2lcnrgPesifhzwqFOajp9ukz0,6
77
+ pg_sui-1.7.0.dist-info/RECORD,,
pgsui/__init__.py CHANGED
@@ -6,10 +6,8 @@ from pgsui.data_processing.containers import (
6
6
  AutoencoderConfig,
7
7
  HGBConfig,
8
8
  MostFrequentConfig,
9
- NLPCAConfig,
10
9
  RefAlleleConfig,
11
10
  RFConfig,
12
- UBPConfig,
13
11
  VAEConfig,
14
12
  )
15
13
  from pgsui.impute.deterministic.imputers.mode import ImputeMostFrequent
@@ -19,23 +17,17 @@ from pgsui.impute.supervised.imputers.hist_gradient_boosting import (
19
17
  )
20
18
  from pgsui.impute.supervised.imputers.random_forest import ImputeRandomForest
21
19
  from pgsui.impute.unsupervised.imputers.autoencoder import ImputeAutoencoder
22
- from pgsui.impute.unsupervised.imputers.nlpca import ImputeNLPCA
23
- from pgsui.impute.unsupervised.imputers.ubp import ImputeUBP
24
20
  from pgsui.impute.unsupervised.imputers.vae import ImputeVAE
25
21
 
26
22
  __all__ = [
27
23
  "ImputeAutoencoder", # Unsupervised imputer classes
28
24
  "ImputeVAE",
29
- "ImputeNLPCA",
30
- "ImputeUBP",
31
25
  "ImputeRandomForest", # Supervised imputer classes
32
26
  "ImputeHistGradientBoosting",
33
27
  "ImputeRefAllele", # Deterministic imputer classes
34
28
  "ImputeMostFrequent",
35
29
  "AutoencoderConfig", # Unsupervised imputer configs
36
30
  "VAEConfig",
37
- "NLPCAConfig",
38
- "UBPConfig",
39
31
  "MostFrequentConfig", # Deterministic imputer configs
40
32
  "RefAlleleConfig",
41
33
  "RFConfig", # Supervised imputer configs
pgsui/_version.py CHANGED
@@ -28,7 +28,7 @@ version_tuple: VERSION_TUPLE
28
28
  commit_id: COMMIT_ID
29
29
  __commit_id__: COMMIT_ID
30
30
 
31
- __version__ = version = '1.6.16a3'
32
- __version_tuple__ = version_tuple = (1, 6, 16, 'a3')
31
+ __version__ = version = '1.7.0'
32
+ __version_tuple__ = version_tuple = (1, 7, 0)
33
33
 
34
34
  __commit_id__ = commit_id = None