pg-sui 1.0.2.1__py3-none-any.whl → 1.6.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pg-sui might be problematic. Click here for more details.
- {pg_sui-1.0.2.1.dist-info → pg_sui-1.6.8.dist-info}/METADATA +51 -70
- pg_sui-1.6.8.dist-info/RECORD +78 -0
- {pg_sui-1.0.2.1.dist-info → pg_sui-1.6.8.dist-info}/WHEEL +1 -1
- pg_sui-1.6.8.dist-info/entry_points.txt +4 -0
- pg_sui-1.6.8.dist-info/top_level.txt +1 -0
- pgsui/__init__.py +35 -54
- pgsui/_version.py +34 -0
- pgsui/cli.py +635 -0
- pgsui/data_processing/config.py +576 -0
- pgsui/data_processing/containers.py +1782 -0
- pgsui/data_processing/transformers.py +121 -1103
- pgsui/electron/app/__main__.py +5 -0
- pgsui/electron/app/icons/icons/1024x1024.png +0 -0
- pgsui/electron/app/icons/icons/128x128.png +0 -0
- pgsui/electron/app/icons/icons/16x16.png +0 -0
- pgsui/electron/app/icons/icons/24x24.png +0 -0
- pgsui/electron/app/icons/icons/256x256.png +0 -0
- pgsui/electron/app/icons/icons/32x32.png +0 -0
- pgsui/electron/app/icons/icons/48x48.png +0 -0
- pgsui/electron/app/icons/icons/512x512.png +0 -0
- pgsui/electron/app/icons/icons/64x64.png +0 -0
- pgsui/electron/app/icons/icons/icon.icns +0 -0
- pgsui/electron/app/icons/icons/icon.ico +0 -0
- pgsui/electron/app/main.js +189 -0
- pgsui/electron/app/package-lock.json +6893 -0
- pgsui/electron/app/package.json +50 -0
- pgsui/electron/app/preload.js +15 -0
- pgsui/electron/app/server.py +146 -0
- pgsui/electron/app/ui/logo.png +0 -0
- pgsui/electron/app/ui/renderer.js +130 -0
- pgsui/electron/app/ui/styles.css +59 -0
- pgsui/electron/app/ui/ui_shim.js +72 -0
- pgsui/electron/bootstrap.py +43 -0
- pgsui/electron/launch.py +59 -0
- pgsui/electron/package.json +14 -0
- pgsui/example_data/popmaps/{test.popmap → phylogen_nomx.popmap} +185 -99
- pgsui/example_data/vcf_files/phylogen_subset14K.vcf.gz +0 -0
- pgsui/example_data/vcf_files/phylogen_subset14K.vcf.gz.tbi +0 -0
- pgsui/impute/deterministic/imputers/allele_freq.py +691 -0
- pgsui/impute/deterministic/imputers/mode.py +679 -0
- pgsui/impute/deterministic/imputers/nmf.py +221 -0
- pgsui/impute/deterministic/imputers/phylo.py +971 -0
- pgsui/impute/deterministic/imputers/ref_allele.py +530 -0
- pgsui/impute/supervised/base.py +339 -0
- pgsui/impute/supervised/imputers/hist_gradient_boosting.py +293 -0
- pgsui/impute/supervised/imputers/random_forest.py +287 -0
- pgsui/impute/unsupervised/base.py +924 -0
- pgsui/impute/unsupervised/callbacks.py +89 -263
- pgsui/impute/unsupervised/imputers/autoencoder.py +972 -0
- pgsui/impute/unsupervised/imputers/nlpca.py +1264 -0
- pgsui/impute/unsupervised/imputers/ubp.py +1288 -0
- pgsui/impute/unsupervised/imputers/vae.py +957 -0
- pgsui/impute/unsupervised/loss_functions.py +158 -0
- pgsui/impute/unsupervised/models/autoencoder_model.py +208 -558
- pgsui/impute/unsupervised/models/nlpca_model.py +149 -468
- pgsui/impute/unsupervised/models/ubp_model.py +198 -1317
- pgsui/impute/unsupervised/models/vae_model.py +259 -618
- pgsui/impute/unsupervised/nn_scorers.py +215 -0
- pgsui/utils/classification_viz.py +591 -0
- pgsui/utils/misc.py +35 -480
- pgsui/utils/plotting.py +514 -824
- pgsui/utils/scorers.py +212 -438
- pg_sui-1.0.2.1.dist-info/RECORD +0 -75
- pg_sui-1.0.2.1.dist-info/top_level.txt +0 -3
- pgsui/example_data/phylip_files/test_n10.phy +0 -118
- pgsui/example_data/phylip_files/test_n100.phy +0 -118
- pgsui/example_data/phylip_files/test_n2.phy +0 -118
- pgsui/example_data/phylip_files/test_n500.phy +0 -118
- pgsui/example_data/structure_files/test.nopops.1row.10sites.str +0 -117
- pgsui/example_data/structure_files/test.nopops.2row.100sites.str +0 -234
- pgsui/example_data/structure_files/test.nopops.2row.10sites.str +0 -234
- pgsui/example_data/structure_files/test.nopops.2row.30sites.str +0 -234
- pgsui/example_data/structure_files/test.nopops.2row.allsites.str +0 -234
- pgsui/example_data/structure_files/test.pops.1row.10sites.str +0 -117
- pgsui/example_data/structure_files/test.pops.2row.10sites.str +0 -234
- pgsui/example_data/trees/test.iqtree +0 -376
- pgsui/example_data/trees/test.qmat +0 -5
- pgsui/example_data/trees/test.rate +0 -2033
- pgsui/example_data/trees/test.tre +0 -1
- pgsui/example_data/trees/test_n10.rate +0 -19
- pgsui/example_data/trees/test_n100.rate +0 -109
- pgsui/example_data/trees/test_n500.rate +0 -509
- pgsui/example_data/trees/test_siterates.txt +0 -2024
- pgsui/example_data/trees/test_siterates_n10.txt +0 -10
- pgsui/example_data/trees/test_siterates_n100.txt +0 -100
- pgsui/example_data/trees/test_siterates_n500.txt +0 -500
- pgsui/example_data/vcf_files/test.vcf +0 -244
- pgsui/example_data/vcf_files/test.vcf.gz +0 -0
- pgsui/example_data/vcf_files/test.vcf.gz.tbi +0 -0
- pgsui/impute/estimators.py +0 -735
- pgsui/impute/impute.py +0 -1486
- pgsui/impute/simple_imputers.py +0 -1439
- pgsui/impute/supervised/iterative_imputer_fixedparams.py +0 -785
- pgsui/impute/supervised/iterative_imputer_gridsearch.py +0 -1027
- pgsui/impute/unsupervised/keras_classifiers.py +0 -702
- pgsui/impute/unsupervised/models/in_development/cnn_model.py +0 -486
- pgsui/impute/unsupervised/neural_network_imputers.py +0 -1424
- pgsui/impute/unsupervised/neural_network_methods.py +0 -1549
- pgsui/pg_sui.py +0 -261
- pgsui/utils/sequence_tools.py +0 -407
- simulation/sim_benchmarks.py +0 -333
- simulation/sim_treeparams.py +0 -475
- test/__init__.py +0 -0
- test/pg_sui_simtest.py +0 -215
- test/pg_sui_testing.py +0 -523
- test/test.py +0 -297
- test/test_pgsui.py +0 -374
- test/test_tkc.py +0 -214
- {pg_sui-1.0.2.1.dist-info → pg_sui-1.6.8.dist-info/licenses}/LICENSE +0 -0
- /pgsui/{example_data/trees → electron/app}/__init__.py +0 -0
- /pgsui/impute/{unsupervised/models/in_development → supervised/imputers}/__init__.py +0 -0
- {simulation → pgsui/impute/unsupervised/imputers}/__init__.py +0 -0
|
@@ -1,486 +0,0 @@
|
|
|
1
|
-
import logging
|
|
2
|
-
import os
|
|
3
|
-
import sys
|
|
4
|
-
import warnings
|
|
5
|
-
import math
|
|
6
|
-
|
|
7
|
-
# Import tensorflow with reduced warnings.
|
|
8
|
-
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
|
9
|
-
logging.getLogger("tensorflow").disabled = True
|
|
10
|
-
warnings.filterwarnings("ignore", category=UserWarning)
|
|
11
|
-
|
|
12
|
-
import numpy as np
|
|
13
|
-
import pandas as pd
|
|
14
|
-
import tensorflow as tf
|
|
15
|
-
|
|
16
|
-
# Disable can't find cuda .dll errors. Also turns of GPU support.
|
|
17
|
-
tf.config.set_visible_devices([], "GPU")
|
|
18
|
-
|
|
19
|
-
from tensorflow.python.util import deprecation
|
|
20
|
-
|
|
21
|
-
# Disable warnings and info logs.
|
|
22
|
-
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
|
|
23
|
-
tf.get_logger().setLevel(logging.ERROR)
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
# Monkey patching deprecation utils to supress warnings.
|
|
27
|
-
# noinspection PyUnusedLocal
|
|
28
|
-
def deprecated(
|
|
29
|
-
date, instructions, warn_once=True
|
|
30
|
-
): # pylint: disable=unused-argument
|
|
31
|
-
def deprecated_wrapper(func):
|
|
32
|
-
return func
|
|
33
|
-
|
|
34
|
-
return deprecated_wrapper
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
deprecation.deprecated = deprecated
|
|
38
|
-
|
|
39
|
-
from tensorflow.keras.layers import (
|
|
40
|
-
Dropout,
|
|
41
|
-
Dense,
|
|
42
|
-
Reshape,
|
|
43
|
-
Activation,
|
|
44
|
-
Flatten,
|
|
45
|
-
BatchNormalization,
|
|
46
|
-
LeakyReLU,
|
|
47
|
-
PReLU,
|
|
48
|
-
)
|
|
49
|
-
|
|
50
|
-
from tensorflow.keras.regularizers import l1_l2
|
|
51
|
-
|
|
52
|
-
# Custom Modules
|
|
53
|
-
try:
|
|
54
|
-
from ...neural_network_methods import NeuralNetworkMethods
|
|
55
|
-
except (ModuleNotFoundError, ValueError, ImportError):
|
|
56
|
-
from impute.unsupervised.neural_network_methods import NeuralNetworkMethods
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
class SoftOrdering1DCNN(tf.keras.Model):
|
|
60
|
-
def __init__(
|
|
61
|
-
self,
|
|
62
|
-
y=None,
|
|
63
|
-
output_shape=None,
|
|
64
|
-
weights_initializer="glorot_normal",
|
|
65
|
-
hidden_layer_sizes="midpoint",
|
|
66
|
-
num_hidden_layers=1,
|
|
67
|
-
hidden_activation="elu",
|
|
68
|
-
l1_penalty=1e-6,
|
|
69
|
-
l2_penalty=1e-6,
|
|
70
|
-
dropout_rate=0.2,
|
|
71
|
-
num_classes=4,
|
|
72
|
-
sample_weight=None,
|
|
73
|
-
batch_size=32,
|
|
74
|
-
missing_mask=None,
|
|
75
|
-
activation=None,
|
|
76
|
-
channel_increase_rate=2,
|
|
77
|
-
initial_hidden_size=2048,
|
|
78
|
-
num_groups=256,
|
|
79
|
-
):
|
|
80
|
-
super(SoftOrdering1DCNN, self).__init__()
|
|
81
|
-
|
|
82
|
-
self._y = y
|
|
83
|
-
self._missing_mask = missing_mask
|
|
84
|
-
self._sample_weight = sample_weight
|
|
85
|
-
self._batch_idx = 0
|
|
86
|
-
self._batch_size = batch_size
|
|
87
|
-
self.output_activation = activation
|
|
88
|
-
self.sample_weight = sample_weight
|
|
89
|
-
|
|
90
|
-
self.nn_ = NeuralNetworkMethods()
|
|
91
|
-
self.binary_accuracy = self.nn_.make_masked_binary_accuracy(
|
|
92
|
-
is_vae=True
|
|
93
|
-
)
|
|
94
|
-
|
|
95
|
-
self.total_loss_tracker = tf.keras.metrics.Mean(name="loss")
|
|
96
|
-
self.reconstruction_loss_tracker = tf.keras.metrics.Mean(
|
|
97
|
-
name="reconstruction_loss"
|
|
98
|
-
)
|
|
99
|
-
self.kl_loss_tracker = tf.keras.metrics.Mean(name="kl_loss")
|
|
100
|
-
self.accuracy_tracker = tf.keras.metrics.Mean(name="accuracy")
|
|
101
|
-
|
|
102
|
-
# y_train[1] dimension.
|
|
103
|
-
self.n_features = output_shape * num_classes
|
|
104
|
-
|
|
105
|
-
self.weights_initializer = weights_initializer
|
|
106
|
-
self.hidden_layer_sizes = hidden_layer_sizes
|
|
107
|
-
self.num_hidden_layers = num_hidden_layers
|
|
108
|
-
self.hidden_activation = hidden_activation
|
|
109
|
-
self.l1_penalty = l1_penalty
|
|
110
|
-
self.l2_penalty = l2_penalty
|
|
111
|
-
self.dropout_rate = dropout_rate
|
|
112
|
-
self.num_classes = num_classes
|
|
113
|
-
self.channel_increase_rate = channel_increase_rate
|
|
114
|
-
self.initial_hidden_size = initial_hidden_size
|
|
115
|
-
self.channel_size1 = num_groups
|
|
116
|
-
self.channel_size2 = num_groups * 2
|
|
117
|
-
self.channel_size3 = num_groups * 2
|
|
118
|
-
|
|
119
|
-
nn = NeuralNetworkMethods()
|
|
120
|
-
|
|
121
|
-
# hidden_layer_sizes = nn.validate_hidden_layers(
|
|
122
|
-
# self.hidden_layer_sizes, self.num_hidden_layers
|
|
123
|
-
# )
|
|
124
|
-
|
|
125
|
-
# hidden_layer_sizes = nn.get_hidden_layer_sizes(
|
|
126
|
-
# self.n_features, self.n_components, hidden_layer_sizes, vae=True
|
|
127
|
-
# )
|
|
128
|
-
|
|
129
|
-
# hidden_layer_sizes = [h * self.num_classes for h in hidden_layer_sizes]
|
|
130
|
-
|
|
131
|
-
if self.l1_penalty == 0.0 and self.l2_penalty == 0.0:
|
|
132
|
-
kernel_regularizer = None
|
|
133
|
-
else:
|
|
134
|
-
kernel_regularizer = l1_l2(self.l1_penalty, self.l2_penalty)
|
|
135
|
-
|
|
136
|
-
kernel_initializer = self.weights_initializer
|
|
137
|
-
|
|
138
|
-
if self.hidden_activation.lower() == "leaky_relu":
|
|
139
|
-
activation = LeakyReLU(alpha=0.01)
|
|
140
|
-
|
|
141
|
-
elif self.hidden_activation.lower() == "prelu":
|
|
142
|
-
activation = PReLU()
|
|
143
|
-
|
|
144
|
-
elif self.hidden_activation.lower() == "selu":
|
|
145
|
-
activation = "selu"
|
|
146
|
-
kernel_initializer = "lecun_normal"
|
|
147
|
-
|
|
148
|
-
else:
|
|
149
|
-
activation = self.hidden_activation
|
|
150
|
-
|
|
151
|
-
if num_hidden_layers > 5:
|
|
152
|
-
raise ValueError(
|
|
153
|
-
f"The maximum number of hidden layers is 5, but got "
|
|
154
|
-
f"{num_hidden_layers}"
|
|
155
|
-
)
|
|
156
|
-
|
|
157
|
-
hidden_size = initial_hidden_size
|
|
158
|
-
if self.n_features >= hidden_size:
|
|
159
|
-
scaling_factor = int(math.ceil(self.n_features / hidden_size)) * 2
|
|
160
|
-
hidden_size *= num_groups * int(
|
|
161
|
-
math.ceil((scaling_factor / num_groups))
|
|
162
|
-
)
|
|
163
|
-
else:
|
|
164
|
-
# If hidden_size is close in number to n_features
|
|
165
|
-
if abs(hidden_size - self.n_features) <= (hidden_size // 2):
|
|
166
|
-
hidden_size *= 2
|
|
167
|
-
|
|
168
|
-
# Model adapted from: https://medium.com/spikelab/convolutional-neural-networks-on-tabular-datasets-part-1-4abdd67795b6
|
|
169
|
-
|
|
170
|
-
signal_size1 = hidden_size // num_groups
|
|
171
|
-
signal_size2 = signal_size1 // 2
|
|
172
|
-
signal_size3 = signal_size1 // 4 * self.channel_size3
|
|
173
|
-
|
|
174
|
-
self.signal_size1 = signal_size1
|
|
175
|
-
self.signal_size2 = signal_size2
|
|
176
|
-
self.signal_size3 = signal_size3
|
|
177
|
-
|
|
178
|
-
self.batch_norm1 = BatchNormalization()
|
|
179
|
-
self.dropout1 = Dropout(self.dropout_rate)
|
|
180
|
-
self.dense1 = Dense(
|
|
181
|
-
hidden_size,
|
|
182
|
-
input_shape=(self.n_features,),
|
|
183
|
-
activation=hidden_activation,
|
|
184
|
-
kernel_initializer=kernel_initializer,
|
|
185
|
-
)
|
|
186
|
-
|
|
187
|
-
self.rshp = Reshape((num_groups, signal_size1))
|
|
188
|
-
|
|
189
|
-
self.batch_norm_c1 = BatchNormalization()
|
|
190
|
-
self.conv1 = tf.keras.layers.Conv1D(
|
|
191
|
-
self.channel_size1 * self.channel_increase_rate,
|
|
192
|
-
kernel_size=5,
|
|
193
|
-
stride=1,
|
|
194
|
-
padding=2,
|
|
195
|
-
groups=signal_size1,
|
|
196
|
-
kernel_initializer=kernel_initializer,
|
|
197
|
-
activation=hidden_activation,
|
|
198
|
-
)
|
|
199
|
-
|
|
200
|
-
self.avg_po_c1 = tf.keras.layers.AveragePooling1D(
|
|
201
|
-
pool_size=4, padding="valid"
|
|
202
|
-
)
|
|
203
|
-
|
|
204
|
-
self.batch_norm_c2 = BatchNormalization()
|
|
205
|
-
self.dropout_c2 = Dropout(self.dropout_rate)
|
|
206
|
-
self.conv2 = tf.keras.layers.Conv1D(
|
|
207
|
-
self.channel_size2,
|
|
208
|
-
kernel_size=3,
|
|
209
|
-
stride=1,
|
|
210
|
-
padding=1,
|
|
211
|
-
kernel_initializer=kernel_initializer,
|
|
212
|
-
activation=hidden_activation,
|
|
213
|
-
)
|
|
214
|
-
|
|
215
|
-
self.batch_norm_c3 = BatchNormalization()
|
|
216
|
-
self.dropout_c3 = Dropout(self.dropout_rate)
|
|
217
|
-
self.conv3 = tf.keras.layers.Conv1D(
|
|
218
|
-
self.channel_size2,
|
|
219
|
-
kernel_size=3,
|
|
220
|
-
stride=1,
|
|
221
|
-
padding=1,
|
|
222
|
-
kernel_initializer=kernel_initializer,
|
|
223
|
-
activation=hidden_activation,
|
|
224
|
-
)
|
|
225
|
-
|
|
226
|
-
self.batch_norm_c4 = BatchNormalization()
|
|
227
|
-
self.dropout_c4 = Dropout(self.dropout_rate)
|
|
228
|
-
self.conv4 = tf.keras.layers.Conv1D(
|
|
229
|
-
self.channel_size2,
|
|
230
|
-
kernel_size=5,
|
|
231
|
-
stride=1,
|
|
232
|
-
padding=2,
|
|
233
|
-
groups=signal_size1,
|
|
234
|
-
kernel_initializer=kernel_initializer,
|
|
235
|
-
activation=None,
|
|
236
|
-
)
|
|
237
|
-
|
|
238
|
-
self.act_c4 = Activation(hidden_activation)
|
|
239
|
-
|
|
240
|
-
self.max_po_c4 = tf.keras.layers.MaxPooling1D(
|
|
241
|
-
pool_size=4, stride=2, padding=1
|
|
242
|
-
)
|
|
243
|
-
|
|
244
|
-
self.flatten = Flatten()
|
|
245
|
-
|
|
246
|
-
self.batch_norm2 = BatchNormalization()
|
|
247
|
-
self.dropout2 = Dropout(self.dropout_rate)
|
|
248
|
-
self.dense2 = Dense(
|
|
249
|
-
self.n_features, kernel_initializer=kernel_initializer
|
|
250
|
-
)
|
|
251
|
-
self.rshp2 = Reshape((output_shape, num_classes))
|
|
252
|
-
self.act2 = Activation(activation)
|
|
253
|
-
|
|
254
|
-
def call(self, inputs, training=None):
|
|
255
|
-
"""Call the model on a particular input.
|
|
256
|
-
|
|
257
|
-
Args:
|
|
258
|
-
input (tf.Tensor): Input tensor. Must be one-hot encoded.
|
|
259
|
-
|
|
260
|
-
Returns:
|
|
261
|
-
tf.Tensor: Output predictions. Will be one-hot encoded.
|
|
262
|
-
"""
|
|
263
|
-
x = self.dense1(inputs)
|
|
264
|
-
x = self.batch_norm1(x, training=training)
|
|
265
|
-
x = self.dropout1(x, training=training)
|
|
266
|
-
x = self.rshp(x)
|
|
267
|
-
x = self.conv1(x)
|
|
268
|
-
x = self.batch_norm_c1(x, training=training)
|
|
269
|
-
x = self.avg_po_c1(x)
|
|
270
|
-
x = self.conv2(x)
|
|
271
|
-
x = self.batch_norm(x, training=training)
|
|
272
|
-
x = self.dropout_c2(x, training=training)
|
|
273
|
-
x_s = x
|
|
274
|
-
x = self.conv3(x)
|
|
275
|
-
x = self.batch_norm_c3(x, training=training)
|
|
276
|
-
x = self.dropout(x, training=training)
|
|
277
|
-
x = self.conv4(x)
|
|
278
|
-
x = self.batch_norm_c4(x, training=training)
|
|
279
|
-
x += x_s
|
|
280
|
-
x = self.act_c4(x)
|
|
281
|
-
x = self.max_po_c4(x)
|
|
282
|
-
x = self.dropout1(x)
|
|
283
|
-
x = self.rshp(x)
|
|
284
|
-
x = self.batch_norm_c1(x)
|
|
285
|
-
x = self.conv1(x)
|
|
286
|
-
x = self.avg_po_c1(x)
|
|
287
|
-
x = self.flatten(x)
|
|
288
|
-
x = self.dense2(x)
|
|
289
|
-
x = self.batch_norm2(x, training=training)
|
|
290
|
-
x = self.dropout2(x, training=training)
|
|
291
|
-
x = self.rshp2(x)
|
|
292
|
-
return self.act2(x)
|
|
293
|
-
|
|
294
|
-
def model(self):
|
|
295
|
-
"""Here so that mymodel.model().summary() can be called for debugging."""
|
|
296
|
-
x = tf.keras.Input(shape=(self.n_features * self.num_classes,))
|
|
297
|
-
return tf.keras.Model(inputs=[x], outputs=self.call(x))
|
|
298
|
-
|
|
299
|
-
def set_model_outputs(self):
|
|
300
|
-
x = tf.keras.Input(shape=(self.n_features * self.num_classes,))
|
|
301
|
-
model = tf.keras.Model(inputs=[x], outputs=self.call(x))
|
|
302
|
-
self.outputs = model.outputs
|
|
303
|
-
|
|
304
|
-
@property
|
|
305
|
-
def metrics(self):
|
|
306
|
-
return [
|
|
307
|
-
self.total_loss_tracker,
|
|
308
|
-
self.reconstruction_loss_tracker,
|
|
309
|
-
self.kl_loss_tracker,
|
|
310
|
-
self.accuracy_tracker,
|
|
311
|
-
]
|
|
312
|
-
|
|
313
|
-
@tf.function
|
|
314
|
-
def train_step(self, data):
|
|
315
|
-
# if isinstance(data, tuple):
|
|
316
|
-
# if len(data) == 2:
|
|
317
|
-
# x, y = data
|
|
318
|
-
# sample_weight = None
|
|
319
|
-
# else:
|
|
320
|
-
# x, y, sample_weight = data
|
|
321
|
-
# else:
|
|
322
|
-
# raise TypeError("Target y must be supplied to fit for this model.")
|
|
323
|
-
|
|
324
|
-
# Set in the UBPCallbacks() callback.
|
|
325
|
-
y = self._y
|
|
326
|
-
|
|
327
|
-
(
|
|
328
|
-
y,
|
|
329
|
-
y_true,
|
|
330
|
-
sample_weight,
|
|
331
|
-
missing_mask,
|
|
332
|
-
batch_start,
|
|
333
|
-
batch_end,
|
|
334
|
-
) = self.nn_.prepare_training_batches(
|
|
335
|
-
y,
|
|
336
|
-
y,
|
|
337
|
-
self._batch_size,
|
|
338
|
-
self._batch_idx,
|
|
339
|
-
True,
|
|
340
|
-
self.n_components,
|
|
341
|
-
self._sample_weight,
|
|
342
|
-
self._missing_mask,
|
|
343
|
-
ubp=False,
|
|
344
|
-
)
|
|
345
|
-
|
|
346
|
-
if sample_weight is not None:
|
|
347
|
-
sample_weight_masked = tf.convert_to_tensor(
|
|
348
|
-
sample_weight[~missing_mask], dtype=tf.float32
|
|
349
|
-
)
|
|
350
|
-
else:
|
|
351
|
-
sample_weight_masked = None
|
|
352
|
-
|
|
353
|
-
y_true_masked = tf.boolean_mask(
|
|
354
|
-
tf.convert_to_tensor(y_true, dtype=tf.float32),
|
|
355
|
-
tf.reduce_any(tf.not_equal(y_true, -1), axis=2),
|
|
356
|
-
)
|
|
357
|
-
|
|
358
|
-
with tf.GradientTape() as tape:
|
|
359
|
-
reconstruction = self(tf.convert_to_tensor(y), training=True)
|
|
360
|
-
|
|
361
|
-
y_pred_masked = tf.boolean_mask(
|
|
362
|
-
reconstruction, tf.reduce_any(tf.not_equal(y_true, -1), axis=2)
|
|
363
|
-
)
|
|
364
|
-
|
|
365
|
-
# Returns binary crossentropy loss.
|
|
366
|
-
loss = self.compiled_loss(
|
|
367
|
-
y_true_masked,
|
|
368
|
-
y_pred_masked,
|
|
369
|
-
sample_weight=sample_weight_masked,
|
|
370
|
-
)
|
|
371
|
-
|
|
372
|
-
grads = tape.gradient(loss, self.trainable_weights)
|
|
373
|
-
self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
|
|
374
|
-
self.total_loss_tracker.update_state(loss)
|
|
375
|
-
|
|
376
|
-
### NOTE: If you get the error, "'tuple' object has no attribute
|
|
377
|
-
### 'rank', then convert y_true to a tensor object."
|
|
378
|
-
# self.compiled_metrics.update_state(
|
|
379
|
-
self.accuracy_tracker.update_state(
|
|
380
|
-
self.binary_accuracy(
|
|
381
|
-
y_true_masked,
|
|
382
|
-
y_pred_masked,
|
|
383
|
-
sample_weight=sample_weight_masked,
|
|
384
|
-
)
|
|
385
|
-
)
|
|
386
|
-
|
|
387
|
-
return {
|
|
388
|
-
"loss": self.total_loss_tracker.result(),
|
|
389
|
-
"accuracy": self.accuracy_tracker.result(),
|
|
390
|
-
}
|
|
391
|
-
|
|
392
|
-
@tf.function
|
|
393
|
-
def test_step(self, data):
|
|
394
|
-
if isinstance(data, tuple):
|
|
395
|
-
if len(data) == 2:
|
|
396
|
-
x, y = data
|
|
397
|
-
sample_weight = None
|
|
398
|
-
else:
|
|
399
|
-
x, y, sample_weight = data
|
|
400
|
-
else:
|
|
401
|
-
raise TypeError("Target y must be supplied to fit in this model.")
|
|
402
|
-
|
|
403
|
-
if sample_weight is not None:
|
|
404
|
-
sample_weight_masked = tf.boolean_mask(
|
|
405
|
-
tf.convert_to_tensor(sample_weight),
|
|
406
|
-
tf.reduce_any(tf.not_equal(y, -1), axis=2),
|
|
407
|
-
)
|
|
408
|
-
else:
|
|
409
|
-
sample_weight_masked = None
|
|
410
|
-
|
|
411
|
-
reconstruction, z_mean, z_log_var, z = self(x, training=False)
|
|
412
|
-
reconstruction_loss = self.compiled_loss(
|
|
413
|
-
y,
|
|
414
|
-
reconstruction,
|
|
415
|
-
sample_weight=sample_weight_masked,
|
|
416
|
-
)
|
|
417
|
-
|
|
418
|
-
# Includes KL Divergence Loss.
|
|
419
|
-
regularization_loss = sum(self.losses)
|
|
420
|
-
|
|
421
|
-
total_loss = reconstruction_loss + regularization_loss
|
|
422
|
-
|
|
423
|
-
self.accuracy_tracker.update_state(
|
|
424
|
-
self.cateogrical_accuracy(
|
|
425
|
-
y,
|
|
426
|
-
reconstruction,
|
|
427
|
-
sample_weight=sample_weight_masked,
|
|
428
|
-
)
|
|
429
|
-
)
|
|
430
|
-
|
|
431
|
-
self.total_loss_tracker.update_state(total_loss)
|
|
432
|
-
self.reconstruction_loss_tracker.update_state(reconstruction_loss)
|
|
433
|
-
self.kl_loss_tracker.update_state(regularization_loss)
|
|
434
|
-
|
|
435
|
-
return {
|
|
436
|
-
"loss": self.total_loss_tracker.result(),
|
|
437
|
-
"reconstruction_loss": self.reconstruction_loss_tracker.result(),
|
|
438
|
-
"kl_loss": self.kl_loss_tracker.result(),
|
|
439
|
-
"accuracy": self.accuracy_tracker.result(),
|
|
440
|
-
}
|
|
441
|
-
|
|
442
|
-
@property
|
|
443
|
-
def batch_size(self):
|
|
444
|
-
"""Batch (=step) size per epoch."""
|
|
445
|
-
return self._batch_size
|
|
446
|
-
|
|
447
|
-
@property
|
|
448
|
-
def batch_idx(self):
|
|
449
|
-
"""Current batch (=step) index."""
|
|
450
|
-
return self._batch_idx
|
|
451
|
-
|
|
452
|
-
@property
|
|
453
|
-
def y(self):
|
|
454
|
-
return self._y
|
|
455
|
-
|
|
456
|
-
@property
|
|
457
|
-
def missing_mask(self):
|
|
458
|
-
return self._missing_mask
|
|
459
|
-
|
|
460
|
-
@property
|
|
461
|
-
def sample_weight(self):
|
|
462
|
-
return self._sample_weight
|
|
463
|
-
|
|
464
|
-
@batch_size.setter
|
|
465
|
-
def batch_size(self, value):
|
|
466
|
-
"""Set batch_size parameter."""
|
|
467
|
-
self._batch_size = int(value)
|
|
468
|
-
|
|
469
|
-
@batch_idx.setter
|
|
470
|
-
def batch_idx(self, value):
|
|
471
|
-
"""Set current batch (=step) index."""
|
|
472
|
-
self._batch_idx = int(value)
|
|
473
|
-
|
|
474
|
-
@y.setter
|
|
475
|
-
def y(self, value):
|
|
476
|
-
"""Set y after each epoch."""
|
|
477
|
-
self._y = value
|
|
478
|
-
|
|
479
|
-
@missing_mask.setter
|
|
480
|
-
def missing_mask(self, value):
|
|
481
|
-
"""Set y after each epoch."""
|
|
482
|
-
self._missing_mask = value
|
|
483
|
-
|
|
484
|
-
@sample_weight.setter
|
|
485
|
-
def sample_weight(self, value):
|
|
486
|
-
self._sample_weight = value
|