passagemath-repl 10.5.27__py3-none-any.whl → 10.5.29__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_repl-10.5.29.data/data/share/jupyter/kernels/sagemath/kernel.json +1 -0
- passagemath_repl-10.5.29.data/data/share/jupyter/kernels/sagemath/logo-64x64.png +0 -0
- passagemath_repl-10.5.29.data/data/share/jupyter/kernels/sagemath/logo.svg +352 -0
- {passagemath_repl-10.5.27.dist-info → passagemath_repl-10.5.29.dist-info}/METADATA +38 -13
- {passagemath_repl-10.5.27.dist-info → passagemath_repl-10.5.29.dist-info}/RECORD +95 -24
- {passagemath_repl-10.5.27.dist-info → passagemath_repl-10.5.29.dist-info}/top_level.txt +1 -0
- sage/ext_data/all__sagemath_repl.py +1 -0
- sage/interfaces/all__sagemath_repl.py +1 -0
- sage/repl/ipython_kernel/install.py +6 -8
- sage/tests/books/__init__.py +2 -0
- sage/tests/books/computational-mathematics-with-sagemath/__init__.py +1 -0
- sage/tests/books/computational-mathematics-with-sagemath/calculus_doctest.py +549 -0
- sage/tests/books/computational-mathematics-with-sagemath/combinat_doctest.py +1053 -0
- sage/tests/books/computational-mathematics-with-sagemath/domaines_doctest.py +443 -0
- sage/tests/books/computational-mathematics-with-sagemath/float_doctest.py +477 -0
- sage/tests/books/computational-mathematics-with-sagemath/graphique_doctest.py +254 -0
- sage/tests/books/computational-mathematics-with-sagemath/graphtheory_doctest.py +418 -0
- sage/tests/books/computational-mathematics-with-sagemath/integration_doctest.py +290 -0
- sage/tests/books/computational-mathematics-with-sagemath/linalg_doctest.py +454 -0
- sage/tests/books/computational-mathematics-with-sagemath/linsolve_doctest.py +421 -0
- sage/tests/books/computational-mathematics-with-sagemath/lp_doctest.py +234 -0
- sage/tests/books/computational-mathematics-with-sagemath/mpoly_doctest.py +560 -0
- sage/tests/books/computational-mathematics-with-sagemath/nonlinear_doctest.py +490 -0
- sage/tests/books/computational-mathematics-with-sagemath/numbertheory_doctest.py +155 -0
- sage/tests/books/computational-mathematics-with-sagemath/polynomes_doctest.py +405 -0
- sage/tests/books/computational-mathematics-with-sagemath/premierspas_doctest.py +180 -0
- sage/tests/books/computational-mathematics-with-sagemath/programmation_doctest.py +662 -0
- sage/tests/books/computational-mathematics-with-sagemath/recequadiff_doctest.py +392 -0
- sage/tests/books/computational-mathematics-with-sagemath/sol/__init__.py +1 -0
- sage/tests/books/computational-mathematics-with-sagemath/sol/calculus_doctest.py +264 -0
- sage/tests/books/computational-mathematics-with-sagemath/sol/combinat_doctest.py +217 -0
- sage/tests/books/computational-mathematics-with-sagemath/sol/domaines_doctest.py +59 -0
- sage/tests/books/computational-mathematics-with-sagemath/sol/float_doctest.py +141 -0
- sage/tests/books/computational-mathematics-with-sagemath/sol/graphique_doctest.py +105 -0
- sage/tests/books/computational-mathematics-with-sagemath/sol/graphtheory_doctest.py +53 -0
- sage/tests/books/computational-mathematics-with-sagemath/sol/integration_doctest.py +56 -0
- sage/tests/books/computational-mathematics-with-sagemath/sol/linalg_doctest.py +56 -0
- sage/tests/books/computational-mathematics-with-sagemath/sol/linsolve_doctest.py +25 -0
- sage/tests/books/computational-mathematics-with-sagemath/sol/lp_doctest.py +47 -0
- sage/tests/books/computational-mathematics-with-sagemath/sol/mpoly_doctest.py +115 -0
- sage/tests/books/computational-mathematics-with-sagemath/sol/nonlinear_doctest.py +111 -0
- sage/tests/books/computational-mathematics-with-sagemath/sol/numbertheory_doctest.py +167 -0
- sage/tests/books/computational-mathematics-with-sagemath/sol/polynomes_doctest.py +107 -0
- sage/tests/books/computational-mathematics-with-sagemath/sol/recequadiff_doctest.py +58 -0
- sage/tests/books/judson-abstract-algebra/__init__.py +1 -0
- sage/tests/books/judson-abstract-algebra/actions-sage-exercises.py +51 -0
- sage/tests/books/judson-abstract-algebra/actions-sage.py +173 -0
- sage/tests/books/judson-abstract-algebra/algcodes-sage.py +130 -0
- sage/tests/books/judson-abstract-algebra/boolean-sage.py +269 -0
- sage/tests/books/judson-abstract-algebra/cosets-sage-exercises.py +87 -0
- sage/tests/books/judson-abstract-algebra/cosets-sage.py +170 -0
- sage/tests/books/judson-abstract-algebra/crypt-sage.py +151 -0
- sage/tests/books/judson-abstract-algebra/cyclic-sage.py +450 -0
- sage/tests/books/judson-abstract-algebra/domains-sage.py +163 -0
- sage/tests/books/judson-abstract-algebra/fields-sage.py +299 -0
- sage/tests/books/judson-abstract-algebra/finite-sage.py +108 -0
- sage/tests/books/judson-abstract-algebra/galois-sage.py +484 -0
- sage/tests/books/judson-abstract-algebra/groups-sage.py +280 -0
- sage/tests/books/judson-abstract-algebra/homomorph-sage-exercises.py +65 -0
- sage/tests/books/judson-abstract-algebra/homomorph-sage.py +200 -0
- sage/tests/books/judson-abstract-algebra/integers-sage.py +197 -0
- sage/tests/books/judson-abstract-algebra/isomorph-sage.py +172 -0
- sage/tests/books/judson-abstract-algebra/normal-sage.py +133 -0
- sage/tests/books/judson-abstract-algebra/permute-sage.py +319 -0
- sage/tests/books/judson-abstract-algebra/poly-sage.py +300 -0
- sage/tests/books/judson-abstract-algebra/rings-sage.py +413 -0
- sage/tests/books/judson-abstract-algebra/sets-sage.py +163 -0
- sage/tests/books/judson-abstract-algebra/struct-sage.py +63 -0
- sage/tests/books/judson-abstract-algebra/sylow-sage.py +250 -0
- sage/tests/books/judson-abstract-algebra/vect-sage-exercises.py +48 -0
- sage/tests/books/judson-abstract-algebra/vect-sage.py +211 -0
- sage/tests/memcheck/__init__.py +1 -0
- sage/tests/memcheck/run_tests.py +25 -0
- sage/tests/memcheck/run_tests_in_valgrind.py +36 -0
- sage/tests/memcheck/symbolic_expression.py +12 -0
- sage/tests/memcheck/verify_no_leak.py +28 -0
- sage/tests/all.py +0 -0
- {passagemath_repl-10.5.27.data → passagemath_repl-10.5.29.data}/scripts/sage-cachegrind +0 -0
- {passagemath_repl-10.5.27.data → passagemath_repl-10.5.29.data}/scripts/sage-callgrind +0 -0
- {passagemath_repl-10.5.27.data → passagemath_repl-10.5.29.data}/scripts/sage-cleaner +0 -0
- {passagemath_repl-10.5.27.data → passagemath_repl-10.5.29.data}/scripts/sage-coverage +0 -0
- {passagemath_repl-10.5.27.data → passagemath_repl-10.5.29.data}/scripts/sage-eval +0 -0
- {passagemath_repl-10.5.27.data → passagemath_repl-10.5.29.data}/scripts/sage-fixdoctests +0 -0
- {passagemath_repl-10.5.27.data → passagemath_repl-10.5.29.data}/scripts/sage-inline-fortran +0 -0
- {passagemath_repl-10.5.27.data → passagemath_repl-10.5.29.data}/scripts/sage-ipynb2rst +0 -0
- {passagemath_repl-10.5.27.data → passagemath_repl-10.5.29.data}/scripts/sage-ipython +0 -0
- {passagemath_repl-10.5.27.data → passagemath_repl-10.5.29.data}/scripts/sage-massif +0 -0
- {passagemath_repl-10.5.27.data → passagemath_repl-10.5.29.data}/scripts/sage-notebook +0 -0
- {passagemath_repl-10.5.27.data → passagemath_repl-10.5.29.data}/scripts/sage-omega +0 -0
- {passagemath_repl-10.5.27.data → passagemath_repl-10.5.29.data}/scripts/sage-preparse +0 -0
- {passagemath_repl-10.5.27.data → passagemath_repl-10.5.29.data}/scripts/sage-run +0 -0
- {passagemath_repl-10.5.27.data → passagemath_repl-10.5.29.data}/scripts/sage-run-cython +0 -0
- {passagemath_repl-10.5.27.data → passagemath_repl-10.5.29.data}/scripts/sage-runtests +0 -0
- {passagemath_repl-10.5.27.data → passagemath_repl-10.5.29.data}/scripts/sage-startuptime.py +0 -0
- {passagemath_repl-10.5.27.data → passagemath_repl-10.5.29.data}/scripts/sage-valgrind +0 -0
- {passagemath_repl-10.5.27.dist-info → passagemath_repl-10.5.29.dist-info}/WHEEL +0 -0
@@ -0,0 +1,484 @@
|
|
1
|
+
# sage_setup: distribution = sagemath-repl
|
2
|
+
## Sage Doctest File ##
|
3
|
+
#**************************************#
|
4
|
+
#* Generated from PreTeXt source *#
|
5
|
+
#* on 2017-08-24T11:43:34-07:00 *#
|
6
|
+
#* *#
|
7
|
+
#* http://mathbook.pugetsound.edu *#
|
8
|
+
#* *#
|
9
|
+
#**************************************#
|
10
|
+
##
|
11
|
+
"""
|
12
|
+
Please contact Rob Beezer (beezer@ups.edu) with
|
13
|
+
any test failures here that need to be changed
|
14
|
+
as a result of changes accepted into Sage. You
|
15
|
+
may edit/change this file in any sensible way, so
|
16
|
+
that development work may procede. Your changes
|
17
|
+
may later be replaced by the authors of "Abstract
|
18
|
+
Algebra: Theory and Applications" when the text is
|
19
|
+
updated, and a replacement of this file is proposed
|
20
|
+
for review.
|
21
|
+
"""
|
22
|
+
##
|
23
|
+
## To execute doctests in these files, run
|
24
|
+
## $ $SAGE_ROOT/sage -t <directory-of-these-files>
|
25
|
+
## or
|
26
|
+
## $ $SAGE_ROOT/sage -t <a-single-file>
|
27
|
+
##
|
28
|
+
## Replace -t by "-tp n" for parallel testing,
|
29
|
+
## "-tp 0" will use a sensible number of threads
|
30
|
+
##
|
31
|
+
## See: http://www.sagemath.org/doc/developer/doctesting.html
|
32
|
+
## or run $ $SAGE_ROOT/sage --advanced for brief help
|
33
|
+
##
|
34
|
+
## Generated at 2017-08-24T11:43:34-07:00
|
35
|
+
## From "Abstract Algebra"
|
36
|
+
## At commit 26d3cac0b4047f4b8d6f737542be455606e2c4b4
|
37
|
+
##
|
38
|
+
## Section 23.6 Sage
|
39
|
+
##
|
40
|
+
r"""
|
41
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
42
|
+
|
43
|
+
sage: x = polygen(QQ, 'x')
|
44
|
+
sage: N.<a> = NumberField(x^4 - 2); N
|
45
|
+
Number Field in a with defining polynomial x^4 - 2
|
46
|
+
|
47
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
48
|
+
|
49
|
+
sage: L.<b> = N.galois_closure(); L
|
50
|
+
Number Field in b with defining polynomial x^8 + 28*x^4 + 2500
|
51
|
+
|
52
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
53
|
+
|
54
|
+
sage: L.degree()
|
55
|
+
8
|
56
|
+
|
57
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
58
|
+
|
59
|
+
sage: y = polygen(L, 'y')
|
60
|
+
sage: (y^4 - 2).factor()
|
61
|
+
(y - 1/120*b^5 - 19/60*b) *
|
62
|
+
(y - 1/240*b^5 + 41/120*b) *
|
63
|
+
(y + 1/240*b^5 - 41/120*b) *
|
64
|
+
(y + 1/120*b^5 + 19/60*b)
|
65
|
+
|
66
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
67
|
+
|
68
|
+
sage: G = L.galois_group(); G
|
69
|
+
Galois group 8T4 ([4]2) with order 8 of x^8 + 28*x^4 + 2500
|
70
|
+
|
71
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
72
|
+
|
73
|
+
sage: G.is_abelian()
|
74
|
+
False
|
75
|
+
|
76
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
77
|
+
|
78
|
+
sage: G.order()
|
79
|
+
8
|
80
|
+
|
81
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
82
|
+
|
83
|
+
sage: G.list()
|
84
|
+
[(), (1,2,8,7)(3,4,6,5),
|
85
|
+
(1,3)(2,5)(4,7)(6,8), (1,4)(2,3)(5,8)(6,7),
|
86
|
+
(1,5)(2,6)(3,7)(4,8), (1,6)(2,4)(3,8)(5,7),
|
87
|
+
(1,7,8,2)(3,5,6,4), (1,8)(2,7)(3,6)(4,5)]
|
88
|
+
|
89
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
90
|
+
|
91
|
+
sage: G.is_isomorphic(DihedralGroup(4))
|
92
|
+
True
|
93
|
+
|
94
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
95
|
+
|
96
|
+
sage: x = polygen(QQ, 'x')
|
97
|
+
sage: p = x^4 - 2
|
98
|
+
sage: N.<a> = NumberField(p); N
|
99
|
+
Number Field in a with defining polynomial x^4 - 2
|
100
|
+
|
101
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
102
|
+
|
103
|
+
sage: y = polygen(N, 'y')
|
104
|
+
sage: p = p.subs(x=y)
|
105
|
+
sage: p.factor()
|
106
|
+
(y - a) * (y + a) * (y^2 + a^2)
|
107
|
+
|
108
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
109
|
+
|
110
|
+
sage: M.<b> = NumberField(y^2 + a^2); M
|
111
|
+
Number Field in b with defining polynomial y^2 + a^2 over
|
112
|
+
its base field
|
113
|
+
|
114
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
115
|
+
|
116
|
+
sage: z = polygen(M, 'z')
|
117
|
+
sage: (z^4 - 2).factor()
|
118
|
+
(z - b) * (z - a) * (z + a) * (z + b)
|
119
|
+
|
120
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
121
|
+
|
122
|
+
sage: L.<c> = M.absolute_field(); L
|
123
|
+
Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
|
124
|
+
|
125
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
126
|
+
|
127
|
+
sage: fromL, toL = L.structure()
|
128
|
+
|
129
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
130
|
+
|
131
|
+
sage: roots = p.roots(ring=L, multiplicities=False); roots
|
132
|
+
[1/120*c^5 + 19/60*c,
|
133
|
+
1/240*c^5 - 41/120*c,
|
134
|
+
-1/240*c^5 + 41/120*c,
|
135
|
+
-1/120*c^5 - 19/60*c]
|
136
|
+
|
137
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
138
|
+
|
139
|
+
sage: [fromL(r) for r in roots]
|
140
|
+
[b, a, -a, -b]
|
141
|
+
|
142
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
143
|
+
|
144
|
+
sage: G = End(L); G
|
145
|
+
Automorphism group of Number Field in c with
|
146
|
+
defining polynomial x^8 + 28*x^4 + 2500
|
147
|
+
|
148
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
149
|
+
|
150
|
+
sage: [tau(1) for tau in G]
|
151
|
+
[1, 1, 1, 1, 1, 1, 1, 1]
|
152
|
+
|
153
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
154
|
+
|
155
|
+
sage: Sequence([[fromL(tau(r)) for r in roots] for tau in G], cr=True)
|
156
|
+
[[b, a, -a, -b],
|
157
|
+
[-b, -a, a, b],
|
158
|
+
[a, -b, b, -a],
|
159
|
+
[b, -a, a, -b],
|
160
|
+
[-a, -b, b, a],
|
161
|
+
[a, b, -b, -a],
|
162
|
+
[-b, a, -a, b],
|
163
|
+
[-a, b, -b, a]]
|
164
|
+
|
165
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
166
|
+
|
167
|
+
sage: S4 = SymmetricGroup(4)
|
168
|
+
sage: elements = [S4([1, 2, 3, 4]),
|
169
|
+
....: S4([4, 3, 2, 1]),
|
170
|
+
....: S4([2, 4, 1, 3]),
|
171
|
+
....: S4([1, 3, 2, 4]),
|
172
|
+
....: S4([3, 4, 1, 2]),
|
173
|
+
....: S4([2, 1, 4, 3]),
|
174
|
+
....: S4([4, 2, 3, 1]),
|
175
|
+
....: S4([3, 1, 4, 2])]
|
176
|
+
sage: elements
|
177
|
+
[(), (1,4)(2,3), (1,2,4,3), (2,3), (1,3)(2,4),
|
178
|
+
(1,2)(3,4), (1,4), (1,3,4,2)]
|
179
|
+
|
180
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
181
|
+
|
182
|
+
sage: P = S4.subgroup(elements)
|
183
|
+
sage: P.is_isomorphic(DihedralGroup(4))
|
184
|
+
True
|
185
|
+
|
186
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
187
|
+
|
188
|
+
sage: basis = L.power_basis(); basis
|
189
|
+
[1, c, c^2, c^3, c^4, c^5, c^6, c^7]
|
190
|
+
|
191
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
192
|
+
|
193
|
+
sage: tau = G[3]
|
194
|
+
sage: z = 4 + 5*c+ 6*c^3-7*c^6
|
195
|
+
sage: tz = tau(4 + 5*c+ 6*c^3-7*c^6); tz
|
196
|
+
11/250*c^7 - 98/25*c^6 + 1/12*c^5 + 779/125*c^3 +
|
197
|
+
6006/25*c^2 - 11/6*c + 4
|
198
|
+
|
199
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
200
|
+
|
201
|
+
sage: tz.vector()
|
202
|
+
(4, -11/6, 6006/25, 779/125, 0, 1/12, -98/25, 11/250)
|
203
|
+
|
204
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
205
|
+
|
206
|
+
sage: tau_matrix = column_matrix([tau(be).vector() for be in basis])
|
207
|
+
sage: tau_matrix
|
208
|
+
[ 1 0 0 0 -28 0 0 0]
|
209
|
+
[ 0 -11/30 0 0 0 779/15 0 0]
|
210
|
+
[ 0 0 -14/25 0 0 0 -858/25 0]
|
211
|
+
[ 0 0 0 779/750 0 0 0 -4031/375]
|
212
|
+
[ 0 0 0 0 -1 0 0 0]
|
213
|
+
[ 0 1/60 0 0 0 11/30 0 0]
|
214
|
+
[ 0 0 -1/50 0 0 0 14/25 0]
|
215
|
+
[ 0 0 0 11/1500 0 0 0 -779/750]
|
216
|
+
|
217
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
218
|
+
|
219
|
+
sage: tau_matrix*z.vector()
|
220
|
+
(4, -11/6, 6006/25, 779/125, 0, 1/12, -98/25, 11/250)
|
221
|
+
|
222
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
223
|
+
|
224
|
+
sage: tau_matrix*(z.vector()) == (tau(z)).vector()
|
225
|
+
True
|
226
|
+
|
227
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
228
|
+
|
229
|
+
sage: K = (tau_matrix-identity_matrix(8)).right_kernel(); K
|
230
|
+
Vector space of degree 8 and dimension 4 over Rational Field
|
231
|
+
Basis matrix:
|
232
|
+
[ 1 0 0 0 0 0 0 0]
|
233
|
+
[ 0 1 0 0 0 1/38 0 0]
|
234
|
+
[ 0 0 1 0 0 0 -1/22 0]
|
235
|
+
[ 0 0 0 1 0 0 0 1/278]
|
236
|
+
|
237
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
238
|
+
|
239
|
+
sage: fromL(1)
|
240
|
+
1
|
241
|
+
|
242
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
243
|
+
|
244
|
+
sage: fromL(c + (1/38)*c^5)
|
245
|
+
60/19*b
|
246
|
+
|
247
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
248
|
+
|
249
|
+
sage: fromL(c^2 - (1/22)*c^6)
|
250
|
+
150/11*a^2
|
251
|
+
|
252
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
253
|
+
|
254
|
+
sage: fromL(c^3 + (1/278)*c^7)
|
255
|
+
1500/139*a^2*b
|
256
|
+
|
257
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
258
|
+
|
259
|
+
sage: a^2 + b^2
|
260
|
+
0
|
261
|
+
|
262
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
263
|
+
|
264
|
+
sage: sg = P.subgroups()
|
265
|
+
sage: [H.gens() for H in sg]
|
266
|
+
[((),),
|
267
|
+
((1,4)(2,3),),
|
268
|
+
((2,3),),
|
269
|
+
((1,4),),
|
270
|
+
((1,2)(3,4),),
|
271
|
+
((1,3)(2,4),),
|
272
|
+
((1,4)(2,3), (2,3)),
|
273
|
+
((1,4)(2,3), (1,2,4,3)),
|
274
|
+
((1,4)(2,3), (1,2)(3,4)),
|
275
|
+
((1,4)(2,3), (2,3), (1,2,4,3))]
|
276
|
+
|
277
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
278
|
+
|
279
|
+
sage: [H.order() for H in sg]
|
280
|
+
[1, 2, 2, 2, 2, 2, 4, 4, 4, 8]
|
281
|
+
|
282
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
283
|
+
|
284
|
+
sage: tau = G[4]
|
285
|
+
sage: tau_matrix = column_matrix([tau(be).vector() for be in basis])
|
286
|
+
sage: (tau_matrix-identity_matrix(8)).right_kernel()
|
287
|
+
Vector space of degree 8 and dimension 4 over Rational Field
|
288
|
+
Basis matrix:
|
289
|
+
[ 1 0 0 0 0 0 0 0]
|
290
|
+
[ 0 1 0 0 0 1/158 0 0]
|
291
|
+
[ 0 0 1 0 0 0 1/78 0]
|
292
|
+
[ 0 0 0 1 0 0 0 13/614]
|
293
|
+
|
294
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
295
|
+
|
296
|
+
sage: fromL(tau(1))
|
297
|
+
1
|
298
|
+
|
299
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
300
|
+
|
301
|
+
sage: fromL(tau(c+(1/158)*c^5))
|
302
|
+
120/79*b - 120/79*a
|
303
|
+
|
304
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
305
|
+
|
306
|
+
sage: fromL(tau(c^2+(1/78)*c^6))
|
307
|
+
-200/39*a*b
|
308
|
+
|
309
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
310
|
+
|
311
|
+
sage: fromL(tau(c^3+(13/614)*c^7))
|
312
|
+
3000/307*a^2*b + 3000/307*a^3
|
313
|
+
|
314
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
315
|
+
|
316
|
+
sage: (b-a)^2
|
317
|
+
-2*a*b
|
318
|
+
|
319
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
320
|
+
|
321
|
+
sage: (b-a)^3
|
322
|
+
2*a^2*b + 2*a^3
|
323
|
+
|
324
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
325
|
+
|
326
|
+
sage: subinfo = L.subfield((79/120)*(c+(1/158)*c^5)); subinfo
|
327
|
+
(Number Field in c0 with defining polynomial x^4 + 8 with c0 = 1/240*c^5 + 79/120*c,
|
328
|
+
Ring morphism:
|
329
|
+
From: Number Field in c0 with defining polynomial x^4 + 8 with c0 = 1/240*c^5 + 79/120*c
|
330
|
+
To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
|
331
|
+
Defn: c0 |--> 1/240*c^5 + 79/120*c)
|
332
|
+
|
333
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
334
|
+
|
335
|
+
sage: V = QQ^8
|
336
|
+
sage: for tau in [G[0], G[1], G[3], G[6]]:
|
337
|
+
....: tau_matrix = column_matrix([tau(be).vector() for be in basis])
|
338
|
+
....: K = (tau_matrix-identity_matrix(8)).right_kernel()
|
339
|
+
....: V = V.intersection(K)
|
340
|
+
sage: V
|
341
|
+
Vector space of degree 8 and dimension 2 over Rational Field
|
342
|
+
Basis matrix:
|
343
|
+
[ 1 0 0 0 0 0 0 0]
|
344
|
+
[ 0 0 1 0 0 0 -1/22 0]
|
345
|
+
|
346
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
347
|
+
|
348
|
+
sage: fromL(tau(c^2 - (1/22)*c^6))
|
349
|
+
150/11*a^2
|
350
|
+
|
351
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
352
|
+
|
353
|
+
sage: F, mapping = L.subfield((11/150)*(c^2 - (1/22)*c^6))
|
354
|
+
sage: F
|
355
|
+
Number Field in c0 with defining polynomial x^2 - 2 with c0 = -1/300*c^6 + 11/150*c^2
|
356
|
+
|
357
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
358
|
+
|
359
|
+
sage: V = QQ^8
|
360
|
+
sage: for tau in [G[0], G[1], G[2], G[7]]:
|
361
|
+
....: tau_matrix = column_matrix([tau(be).vector() for be in basis])
|
362
|
+
....: K = (tau_matrix-identity_matrix(8)).right_kernel()
|
363
|
+
....: V = V.intersection(K)
|
364
|
+
sage: V
|
365
|
+
Vector space of degree 8 and dimension 2 over Rational Field
|
366
|
+
Basis matrix:
|
367
|
+
[1 0 0 0 0 0 0 0]
|
368
|
+
[0 0 0 0 1 0 0 0]
|
369
|
+
|
370
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
371
|
+
|
372
|
+
sage: fromL(tau(c^4))
|
373
|
+
-24*a^3*b - 14
|
374
|
+
|
375
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
376
|
+
|
377
|
+
sage: F, mapping = L.subfield((c^4+14)/-48)
|
378
|
+
sage: F
|
379
|
+
Number Field in c0 with defining polynomial x^2 + 1 with c0 = -1/48*c^4 - 7/24
|
380
|
+
|
381
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
382
|
+
|
383
|
+
sage: L.subfields()
|
384
|
+
[(Number Field in c0 with defining polynomial x,
|
385
|
+
Ring morphism:
|
386
|
+
From: Number Field in c0 with defining polynomial x
|
387
|
+
To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
|
388
|
+
Defn: 0 |--> 0,
|
389
|
+
None),
|
390
|
+
(Number Field in c1 with defining polynomial x^2 + 112*x + 40000,
|
391
|
+
Ring morphism:
|
392
|
+
From: Number Field in c1 with defining polynomial x^2 + 112*x + 40000
|
393
|
+
To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
|
394
|
+
Defn: c1 |--> 4*c^4,
|
395
|
+
None),
|
396
|
+
(Number Field in c2 with defining polynomial x^2 + 512,
|
397
|
+
Ring morphism:
|
398
|
+
From: Number Field in c2 with defining polynomial x^2 + 512
|
399
|
+
To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
|
400
|
+
Defn: c2 |--> 1/25*c^6 + 78/25*c^2,
|
401
|
+
None),
|
402
|
+
(Number Field in c3 with defining polynomial x^2 - 288,
|
403
|
+
Ring morphism:
|
404
|
+
From: Number Field in c3 with defining polynomial x^2 - 288
|
405
|
+
To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
|
406
|
+
Defn: c3 |--> -1/25*c^6 + 22/25*c^2,
|
407
|
+
None),
|
408
|
+
(Number Field in c4 with defining polynomial x^4 + 112*x^2 + 40000,
|
409
|
+
Ring morphism:
|
410
|
+
From: Number Field in c4 with defining polynomial x^4 + 112*x^2 + 40000
|
411
|
+
To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
|
412
|
+
Defn: c4 |--> 2*c^2,
|
413
|
+
None),
|
414
|
+
(Number Field in c5 with defining polynomial x^4 + 8,
|
415
|
+
Ring morphism:
|
416
|
+
From: Number Field in c5 with defining polynomial x^4 + 8
|
417
|
+
To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
|
418
|
+
Defn: c5 |--> -1/80*c^5 + 1/40*c,
|
419
|
+
None),
|
420
|
+
(Number Field in c6 with defining polynomial x^4 + 648,
|
421
|
+
Ring morphism:
|
422
|
+
From: Number Field in c6 with defining polynomial x^4 + 648
|
423
|
+
To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
|
424
|
+
Defn: c6 |--> 1/80*c^5 + 79/40*c,
|
425
|
+
None),
|
426
|
+
(Number Field in c7 with defining polynomial x^4 - 512,
|
427
|
+
Ring morphism:
|
428
|
+
From: Number Field in c7 with defining polynomial x^4 - 512
|
429
|
+
To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
|
430
|
+
Defn: c7 |--> -1/60*c^5 + 41/30*c,
|
431
|
+
None),
|
432
|
+
(Number Field in c8 with defining polynomial x^4 - 32,
|
433
|
+
Ring morphism:
|
434
|
+
From: Number Field in c8 with defining polynomial x^4 - 32
|
435
|
+
To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
|
436
|
+
Defn: c8 |--> 1/60*c^5 + 19/30*c,
|
437
|
+
None),
|
438
|
+
(Number Field in c9 with defining polynomial x^8 + 28*x^4 + 2500,
|
439
|
+
Ring morphism:
|
440
|
+
From: Number Field in c9 with defining polynomial x^8 + 28*x^4 + 2500
|
441
|
+
To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
|
442
|
+
Defn: c9 |--> c,
|
443
|
+
Ring morphism:
|
444
|
+
From: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
|
445
|
+
To: Number Field in c9 with defining polynomial x^8 + 28*x^4 + 2500
|
446
|
+
Defn: c |--> c9)]
|
447
|
+
|
448
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
449
|
+
|
450
|
+
sage: tau = G[6]
|
451
|
+
sage: tau_matrix = column_matrix([tau(be).vector() for be in basis])
|
452
|
+
sage: (tau_matrix-identity_matrix(8)).right_kernel()
|
453
|
+
Vector space of degree 8 and dimension 4 over Rational Field
|
454
|
+
Basis matrix:
|
455
|
+
[ 1 0 0 0 0 0 0 0]
|
456
|
+
[ 0 1 0 0 0 -1/82 0 0]
|
457
|
+
[ 0 0 1 0 0 0 -1/22 0]
|
458
|
+
[ 0 0 0 1 0 0 0 11/58]
|
459
|
+
|
460
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
461
|
+
|
462
|
+
sage: fromL(tau(1))
|
463
|
+
1
|
464
|
+
|
465
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
466
|
+
|
467
|
+
sage: fromL(tau(c+(-1/82)*c^5))
|
468
|
+
-120/41*a
|
469
|
+
|
470
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
471
|
+
|
472
|
+
sage: fromL(tau(c^2+(-1/22)*c^6))
|
473
|
+
150/11*a^2
|
474
|
+
|
475
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
476
|
+
|
477
|
+
sage: fromL(tau(c^3+(11/58)*c^7))
|
478
|
+
3000/29*a^3
|
479
|
+
|
480
|
+
~~~~~~~~~~~~~~~~~~~~~~ ::
|
481
|
+
|
482
|
+
sage: sg[2].is_normal(P)
|
483
|
+
False
|
484
|
+
"""
|