passagemath-repl 10.5.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_repl-10.5.1.data/scripts/sage-cachegrind +25 -0
- passagemath_repl-10.5.1.data/scripts/sage-callgrind +16 -0
- passagemath_repl-10.5.1.data/scripts/sage-cleaner +230 -0
- passagemath_repl-10.5.1.data/scripts/sage-coverage +327 -0
- passagemath_repl-10.5.1.data/scripts/sage-eval +14 -0
- passagemath_repl-10.5.1.data/scripts/sage-fixdoctests +710 -0
- passagemath_repl-10.5.1.data/scripts/sage-inline-fortran +12 -0
- passagemath_repl-10.5.1.data/scripts/sage-ipynb2rst +50 -0
- passagemath_repl-10.5.1.data/scripts/sage-ipython +16 -0
- passagemath_repl-10.5.1.data/scripts/sage-massif +25 -0
- passagemath_repl-10.5.1.data/scripts/sage-notebook +267 -0
- passagemath_repl-10.5.1.data/scripts/sage-omega +25 -0
- passagemath_repl-10.5.1.data/scripts/sage-preparse +302 -0
- passagemath_repl-10.5.1.data/scripts/sage-run +27 -0
- passagemath_repl-10.5.1.data/scripts/sage-run-cython +10 -0
- passagemath_repl-10.5.1.data/scripts/sage-runtests +9 -0
- passagemath_repl-10.5.1.data/scripts/sage-startuptime.py +163 -0
- passagemath_repl-10.5.1.data/scripts/sage-valgrind +34 -0
- passagemath_repl-10.5.1.dist-info/METADATA +77 -0
- passagemath_repl-10.5.1.dist-info/RECORD +162 -0
- passagemath_repl-10.5.1.dist-info/WHEEL +5 -0
- passagemath_repl-10.5.1.dist-info/top_level.txt +1 -0
- sage/all__sagemath_repl.py +119 -0
- sage/doctest/__init__.py +4 -0
- sage/doctest/__main__.py +236 -0
- sage/doctest/all.py +4 -0
- sage/doctest/check_tolerance.py +261 -0
- sage/doctest/control.py +1727 -0
- sage/doctest/external.py +534 -0
- sage/doctest/fixtures.py +383 -0
- sage/doctest/forker.py +2665 -0
- sage/doctest/marked_output.py +102 -0
- sage/doctest/parsing.py +1708 -0
- sage/doctest/parsing_test.py +79 -0
- sage/doctest/reporting.py +733 -0
- sage/doctest/rif_tol.py +124 -0
- sage/doctest/sources.py +1657 -0
- sage/doctest/test.py +584 -0
- sage/doctest/tests/1second.rst +4 -0
- sage/doctest/tests/99seconds.rst +4 -0
- sage/doctest/tests/abort.rst +5 -0
- sage/doctest/tests/atexit.rst +7 -0
- sage/doctest/tests/fail_and_die.rst +6 -0
- sage/doctest/tests/initial.rst +15 -0
- sage/doctest/tests/interrupt.rst +7 -0
- sage/doctest/tests/interrupt_diehard.rst +14 -0
- sage/doctest/tests/keyboardinterrupt.rst +11 -0
- sage/doctest/tests/longtime.rst +5 -0
- sage/doctest/tests/nodoctest +5 -0
- sage/doctest/tests/random_seed.rst +4 -0
- sage/doctest/tests/show_skipped.rst +18 -0
- sage/doctest/tests/sig_on.rst +9 -0
- sage/doctest/tests/simple_failure.rst +8 -0
- sage/doctest/tests/sleep_and_raise.rst +106 -0
- sage/doctest/tests/tolerance.rst +31 -0
- sage/doctest/util.py +750 -0
- sage/interfaces/cleaner.py +48 -0
- sage/interfaces/quit.py +163 -0
- sage/misc/all__sagemath_repl.py +51 -0
- sage/misc/banner.py +235 -0
- sage/misc/benchmark.py +221 -0
- sage/misc/classgraph.py +134 -0
- sage/misc/copying.py +22 -0
- sage/misc/cython.py +694 -0
- sage/misc/dev_tools.py +745 -0
- sage/misc/edit_module.py +304 -0
- sage/misc/explain_pickle.py +3079 -0
- sage/misc/gperftools.py +361 -0
- sage/misc/inline_fortran.py +212 -0
- sage/misc/messaging.py +86 -0
- sage/misc/pager.py +21 -0
- sage/misc/profiler.py +179 -0
- sage/misc/python.py +70 -0
- sage/misc/remote_file.py +53 -0
- sage/misc/sage_eval.py +249 -0
- sage/misc/sage_input.py +3621 -0
- sage/misc/sagedoc.py +1742 -0
- sage/misc/sh.py +38 -0
- sage/misc/trace.py +90 -0
- sage/repl/__init__.py +16 -0
- sage/repl/all.py +15 -0
- sage/repl/attach.py +625 -0
- sage/repl/configuration.py +186 -0
- sage/repl/display/__init__.py +1 -0
- sage/repl/display/fancy_repr.py +354 -0
- sage/repl/display/formatter.py +318 -0
- sage/repl/display/jsmol_iframe.py +290 -0
- sage/repl/display/pretty_print.py +153 -0
- sage/repl/display/util.py +163 -0
- sage/repl/image.py +302 -0
- sage/repl/inputhook.py +91 -0
- sage/repl/interface_magic.py +298 -0
- sage/repl/interpreter.py +854 -0
- sage/repl/ipython_extension.py +593 -0
- sage/repl/ipython_kernel/__init__.py +1 -0
- sage/repl/ipython_kernel/__main__.py +4 -0
- sage/repl/ipython_kernel/all_jupyter.py +10 -0
- sage/repl/ipython_kernel/install.py +301 -0
- sage/repl/ipython_kernel/interact.py +278 -0
- sage/repl/ipython_kernel/kernel.py +217 -0
- sage/repl/ipython_kernel/widgets.py +466 -0
- sage/repl/ipython_kernel/widgets_sagenb.py +587 -0
- sage/repl/ipython_tests.py +163 -0
- sage/repl/load.py +326 -0
- sage/repl/preparse.py +2218 -0
- sage/repl/prompts.py +90 -0
- sage/repl/rich_output/__init__.py +4 -0
- sage/repl/rich_output/backend_base.py +648 -0
- sage/repl/rich_output/backend_doctest.py +316 -0
- sage/repl/rich_output/backend_emacs.py +151 -0
- sage/repl/rich_output/backend_ipython.py +596 -0
- sage/repl/rich_output/buffer.py +311 -0
- sage/repl/rich_output/display_manager.py +829 -0
- sage/repl/rich_output/example.avi +0 -0
- sage/repl/rich_output/example.canvas3d +1 -0
- sage/repl/rich_output/example.dvi +0 -0
- sage/repl/rich_output/example.flv +0 -0
- sage/repl/rich_output/example.gif +0 -0
- sage/repl/rich_output/example.jpg +0 -0
- sage/repl/rich_output/example.mkv +0 -0
- sage/repl/rich_output/example.mov +0 -0
- sage/repl/rich_output/example.mp4 +0 -0
- sage/repl/rich_output/example.ogv +0 -0
- sage/repl/rich_output/example.pdf +0 -0
- sage/repl/rich_output/example.png +0 -0
- sage/repl/rich_output/example.svg +54 -0
- sage/repl/rich_output/example.webm +0 -0
- sage/repl/rich_output/example.wmv +0 -0
- sage/repl/rich_output/example_jmol.spt.zip +0 -0
- sage/repl/rich_output/example_wavefront_scene.mtl +7 -0
- sage/repl/rich_output/example_wavefront_scene.obj +17 -0
- sage/repl/rich_output/output_basic.py +391 -0
- sage/repl/rich_output/output_browser.py +103 -0
- sage/repl/rich_output/output_catalog.py +54 -0
- sage/repl/rich_output/output_graphics.py +320 -0
- sage/repl/rich_output/output_graphics3d.py +345 -0
- sage/repl/rich_output/output_video.py +231 -0
- sage/repl/rich_output/preferences.py +432 -0
- sage/repl/rich_output/pretty_print.py +339 -0
- sage/repl/rich_output/test_backend.py +201 -0
- sage/repl/user_globals.py +214 -0
- sage/tests/all.py +0 -0
- sage/tests/all__sagemath_repl.py +3 -0
- sage/tests/article_heuberger_krenn_kropf_fsm-in-sage.py +630 -0
- sage/tests/arxiv_0812_2725.py +351 -0
- sage/tests/benchmark.py +1925 -0
- sage/tests/book_schilling_zabrocki_kschur_primer.py +795 -0
- sage/tests/book_stein_ent.py +651 -0
- sage/tests/book_stein_modform.py +558 -0
- sage/tests/cmdline.py +796 -0
- sage/tests/combinatorial_hopf_algebras.py +52 -0
- sage/tests/finite_poset.py +623 -0
- sage/tests/functools_partial_src.py +27 -0
- sage/tests/gosper-sum.py +218 -0
- sage/tests/lazy_imports.py +28 -0
- sage/tests/modular_group_cohomology.py +80 -0
- sage/tests/numpy.py +21 -0
- sage/tests/parigp.py +76 -0
- sage/tests/startup.py +27 -0
- sage/tests/symbolic-series.py +76 -0
- sage/tests/sympy.py +16 -0
- sage/tests/test_deprecation.py +31 -0
@@ -0,0 +1,795 @@
|
|
1
|
+
# sage_setup: distribution = sagemath-repl
|
2
|
+
# sage.doctest: needs sage.combinat sage.graphs sage.groups
|
3
|
+
r"""
|
4
|
+
This file contains doctests for the Chapter "k-Schur function primer"
|
5
|
+
for the book "k-Schur functions and affine Schubert calculus"
|
6
|
+
by Thomas Lam, Luc Lapointe, Jennifer Morse, Anne Schilling, Mark Shimozono,
|
7
|
+
and Mike Zabrocki, :arxiv:`1301.3569`.
|
8
|
+
The code was written by Anne Schilling and Mike Zabrocki, 2012 and 2013.
|
9
|
+
|
10
|
+
IF IT BECOMES NECESSARY TO CHANGE ANY TESTS IN THIS FILE, THERE
|
11
|
+
NEEDS TO BE A ONE-YEAR DEPRECATION PERIOD. ALSO, PLEASE IN THIS CASE
|
12
|
+
CONTACT Anne Schilling (anne@math.ucdavis.edu) AND Mike Zabrocki
|
13
|
+
(zabrocki@mathstat.yorku.ca) REGARDING THE CHANGES!
|
14
|
+
"""
|
15
|
+
"""
|
16
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 198::
|
17
|
+
|
18
|
+
sage: P = Partitions(4); P
|
19
|
+
Partitions of the integer 4
|
20
|
+
sage: P.list()
|
21
|
+
[[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]
|
22
|
+
|
23
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 205::
|
24
|
+
|
25
|
+
sage: [p for p in P]
|
26
|
+
[[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]
|
27
|
+
|
28
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 210::
|
29
|
+
|
30
|
+
sage: la=Partition([2,2]); mu=Partition([3,1])
|
31
|
+
sage: mu.dominates(la)
|
32
|
+
True
|
33
|
+
|
34
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 216::
|
35
|
+
|
36
|
+
sage: ord = lambda x,y: y.dominates(x)
|
37
|
+
sage: P = Poset([Partitions(6), ord], facade=True)
|
38
|
+
sage: H = P.hasse_diagram()
|
39
|
+
|
40
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 228::
|
41
|
+
|
42
|
+
sage: la=Partition([4,3,3,3,2,2,1])
|
43
|
+
sage: la.conjugate()
|
44
|
+
[7, 6, 4, 1]
|
45
|
+
sage: la.k_split(4)
|
46
|
+
[[4], [3, 3], [3, 2], [2, 1]]
|
47
|
+
|
48
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 236::
|
49
|
+
|
50
|
+
sage: p = SkewPartition([[2,1],[1]])
|
51
|
+
sage: p.is_connected()
|
52
|
+
False
|
53
|
+
|
54
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 334::
|
55
|
+
|
56
|
+
sage: la = Partition([4,3,3,3,2,2,1])
|
57
|
+
sage: kappa = la.k_skew(4); kappa
|
58
|
+
[12, 8, 5, 5, 2, 2, 1] / [8, 5, 2, 2]
|
59
|
+
|
60
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 340::
|
61
|
+
|
62
|
+
sage: kappa.row_lengths()
|
63
|
+
[4, 3, 3, 3, 2, 2, 1]
|
64
|
+
|
65
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 345::
|
66
|
+
|
67
|
+
sage: tau = Core([12,8,5,5,2,2,1],5)
|
68
|
+
sage: mu = tau.to_bounded_partition(); mu
|
69
|
+
[4, 3, 3, 3, 2, 2, 1]
|
70
|
+
sage: mu.to_core(4)
|
71
|
+
[12, 8, 5, 5, 2, 2, 1]
|
72
|
+
|
73
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 353::
|
74
|
+
|
75
|
+
sage: Cores(3,6).list()
|
76
|
+
[[6, 4, 2], [5, 3, 1, 1], [4, 2, 2, 1, 1], [3, 3, 2, 2, 1, 1]]
|
77
|
+
|
78
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 398::
|
79
|
+
|
80
|
+
sage: W = WeylGroup(['A',4,1]) # long time (5.47 s, 2013)
|
81
|
+
sage: S = W.simple_reflections() # long time
|
82
|
+
sage: [s.reduced_word() for s in S] # long time
|
83
|
+
[[0], [1], [2], [3], [4]]
|
84
|
+
|
85
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 406::
|
86
|
+
|
87
|
+
sage: # long time
|
88
|
+
sage: w = W.an_element(); w
|
89
|
+
[ 2 0 0 1 -2]
|
90
|
+
[ 2 0 0 0 -1]
|
91
|
+
[ 1 1 0 0 -1]
|
92
|
+
[ 1 0 1 0 -1]
|
93
|
+
[ 1 0 0 1 -1]
|
94
|
+
sage: w.reduced_word()
|
95
|
+
[0, 1, 2, 3, 4]
|
96
|
+
sage: w = W.from_reduced_word([2,1,0])
|
97
|
+
sage: w.is_affine_grassmannian()
|
98
|
+
True
|
99
|
+
|
100
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 464::
|
101
|
+
|
102
|
+
sage: c = Core([7,3,1],5)
|
103
|
+
sage: c.affine_symmetric_group_simple_action(2)
|
104
|
+
[8, 4, 1, 1]
|
105
|
+
sage: c.affine_symmetric_group_simple_action(0)
|
106
|
+
[7, 3, 1]
|
107
|
+
|
108
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 474::
|
109
|
+
|
110
|
+
sage: k=4; length=3
|
111
|
+
sage: W = WeylGroup(['A',k,1])
|
112
|
+
sage: G = W.affine_grassmannian_elements_of_given_length(length)
|
113
|
+
sage: [w.reduced_word() for w in G]
|
114
|
+
[[2, 1, 0], [4, 1, 0], [3, 4, 0]]
|
115
|
+
|
116
|
+
sage: C = Cores(k+1,length)
|
117
|
+
sage: [c.to_grassmannian().reduced_word() for c in C]
|
118
|
+
[[2, 1, 0], [4, 1, 0], [3, 4, 0]]
|
119
|
+
|
120
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 543::
|
121
|
+
|
122
|
+
sage: la = Partition([4,3,3,3,2,2,1])
|
123
|
+
sage: c = la.to_core(4); c
|
124
|
+
[12, 8, 5, 5, 2, 2, 1]
|
125
|
+
sage: W = WeylGroup(['A',4,1])
|
126
|
+
sage: w = W.from_reduced_word([4,1,0,2,1,4,3,2,0,4,3,1,0,4,3,2,1,0])
|
127
|
+
sage: c.to_grassmannian() == w
|
128
|
+
True
|
129
|
+
|
130
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 643::
|
131
|
+
|
132
|
+
sage: A = AffinePermutationGroup(['A',2,1])
|
133
|
+
sage: w = A([-2,0,8])
|
134
|
+
sage: w.reduced_word()
|
135
|
+
[1, 0, 2, 1, 0]
|
136
|
+
sage: w.to_core()
|
137
|
+
[5, 3, 1]
|
138
|
+
|
139
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 767::
|
140
|
+
|
141
|
+
sage: la = Partition([4,3,3,3,2,2,1])
|
142
|
+
sage: la.k_conjugate(4)
|
143
|
+
[3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1]
|
144
|
+
|
145
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 1065::
|
146
|
+
|
147
|
+
sage: c = Core([3,1,1],3)
|
148
|
+
sage: c.weak_covers()
|
149
|
+
[[4, 2, 1, 1]]
|
150
|
+
sage: c.strong_covers()
|
151
|
+
[[5, 3, 1], [4, 2, 1, 1], [3, 2, 2, 1, 1]]
|
152
|
+
|
153
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 1073::
|
154
|
+
|
155
|
+
sage: kappa = Core([4,1],4)
|
156
|
+
sage: tau = Core([2,1],4)
|
157
|
+
sage: tau.weak_le(kappa)
|
158
|
+
False
|
159
|
+
sage: tau.strong_le(kappa)
|
160
|
+
True
|
161
|
+
|
162
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 1082::
|
163
|
+
|
164
|
+
sage: C = sum(([c for c in Cores(4,m)] for m in range(7)),[])
|
165
|
+
sage: ord = lambda x,y: x.weak_le(y)
|
166
|
+
sage: P = Poset([C, ord], cover_relations = False) # long time (3.99 s, 2013)
|
167
|
+
sage: H = P.hasse_diagram() # long time
|
168
|
+
sage: view(H) # not tested
|
169
|
+
|
170
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 1253::
|
171
|
+
|
172
|
+
sage: Sym = SymmetricFunctions(QQ)
|
173
|
+
sage: h = Sym.homogeneous()
|
174
|
+
sage: m = Sym.monomial()
|
175
|
+
|
176
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 1259::
|
177
|
+
|
178
|
+
sage: f = h[3,1]+h[2,2]
|
179
|
+
sage: m(f)
|
180
|
+
10*m[1, 1, 1, 1] + 7*m[2, 1, 1] + 5*m[2, 2] + 4*m[3, 1] + 2*m[4]
|
181
|
+
|
182
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 1266::
|
183
|
+
|
184
|
+
sage: f.scalar(h[2,1,1])
|
185
|
+
7
|
186
|
+
sage: m(f).coefficient([2,1,1])
|
187
|
+
7
|
188
|
+
|
189
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 1274::
|
190
|
+
|
191
|
+
sage: p = Sym.power()
|
192
|
+
sage: e = Sym.elementary()
|
193
|
+
sage: sum( (-1)**(i-1)*e[4-i]*p[i] for i in range(1,4) ) - p[4]
|
194
|
+
4*e[4]
|
195
|
+
sage: sum( (-1)**(i-1)*p[i]*e[4-i] for i in range(1,4) ) - p[4]
|
196
|
+
1/6*p[1, 1, 1, 1] - p[2, 1, 1] + 1/2*p[2, 2] + 4/3*p[3, 1] - p[4]
|
197
|
+
|
198
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 1327::
|
199
|
+
|
200
|
+
sage: Sym = SymmetricFunctions(QQ)
|
201
|
+
sage: s = Sym.schur()
|
202
|
+
sage: m = Sym.monomial()
|
203
|
+
sage: h = Sym.homogeneous()
|
204
|
+
sage: m(s[1,1,1])
|
205
|
+
m[1, 1, 1]
|
206
|
+
sage: h(s[1,1,1])
|
207
|
+
h[1, 1, 1] - 2*h[2, 1] + h[3]
|
208
|
+
|
209
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 1338::
|
210
|
+
|
211
|
+
sage: p = Sym.power()
|
212
|
+
sage: s = Sym.schur()
|
213
|
+
sage: p(s[1,1,1])
|
214
|
+
1/6*p[1, 1, 1] - 1/2*p[2, 1] + 1/3*p[3]
|
215
|
+
sage: p(s[2,1])
|
216
|
+
1/3*p[1, 1, 1] - 1/3*p[3]
|
217
|
+
sage: p(s[3])
|
218
|
+
1/6*p[1, 1, 1] + 1/2*p[2, 1] + 1/3*p[3]
|
219
|
+
|
220
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 1349::
|
221
|
+
|
222
|
+
sage: s[2,1].scalar(s[1,1,1])
|
223
|
+
0
|
224
|
+
sage: s[2,1].scalar(s[2,1])
|
225
|
+
1
|
226
|
+
|
227
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 1517::
|
228
|
+
|
229
|
+
sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
|
230
|
+
sage: Qp = Sym.hall_littlewood().Qp()
|
231
|
+
sage: Qp.base_ring()
|
232
|
+
Fraction Field of Univariate Polynomial Ring in t over Rational Field
|
233
|
+
sage: s = Sym.schur()
|
234
|
+
sage: s(Qp[1,1,1])
|
235
|
+
s[1, 1, 1] + (t^2+t)*s[2, 1] + t^3*s[3]
|
236
|
+
|
237
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 1530::
|
238
|
+
|
239
|
+
sage: t = Qp.t
|
240
|
+
sage: s[2,1].scalar(s[3].theta_qt(t,0))
|
241
|
+
t^2 - t
|
242
|
+
|
243
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 1536::
|
244
|
+
|
245
|
+
sage: s(Qp([1,1])).hl_creation_operator([3])
|
246
|
+
s[3, 1, 1] + t*s[3, 2] + (t^2+t)*s[4, 1] + t^3*s[5]
|
247
|
+
sage: s(Qp([3,1,1]))
|
248
|
+
s[3, 1, 1] + t*s[3, 2] + (t^2+t)*s[4, 1] + t^3*s[5]
|
249
|
+
|
250
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 1568::
|
251
|
+
|
252
|
+
sage: Sym = SymmetricFunctions(FractionField(QQ['q,t']))
|
253
|
+
sage: Mac = Sym.macdonald()
|
254
|
+
sage: H = Mac.H()
|
255
|
+
sage: s = Sym.schur()
|
256
|
+
sage: for la in Partitions(3):
|
257
|
+
....: print("H {} = {}".format(la, s(H(la))))
|
258
|
+
H [3] = q^3*s[1, 1, 1] + (q^2+q)*s[2, 1] + s[3]
|
259
|
+
H [2, 1] = q*s[1, 1, 1] + (q*t+1)*s[2, 1] + t*s[3]
|
260
|
+
H [1, 1, 1] = s[1, 1, 1] + (t^2+t)*s[2, 1] + t^3*s[3]
|
261
|
+
|
262
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 1581::
|
263
|
+
|
264
|
+
sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
|
265
|
+
sage: Mac = Sym.macdonald(q=0)
|
266
|
+
sage: H = Mac.H()
|
267
|
+
sage: s = Sym.schur()
|
268
|
+
sage: for la in Partitions(3):
|
269
|
+
....: print("H {} = {}".format(la, s(H(la))))
|
270
|
+
H [3] = s[3]
|
271
|
+
H [2, 1] = s[2, 1] + t*s[3]
|
272
|
+
H [1, 1, 1] = s[1, 1, 1] + (t^2+t)*s[2, 1] + t^3*s[3]
|
273
|
+
sage: Qp = Sym.hall_littlewood().Qp()
|
274
|
+
sage: s(Qp[1, 1, 1])
|
275
|
+
s[1, 1, 1] + (t^2+t)*s[2, 1] + t^3*s[3]
|
276
|
+
|
277
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 1596::
|
278
|
+
|
279
|
+
sage: Sym = SymmetricFunctions(FractionField(QQ['q']))
|
280
|
+
sage: Mac = Sym.macdonald(t=0)
|
281
|
+
sage: H = Mac.H()
|
282
|
+
sage: s = Sym.schur()
|
283
|
+
sage: for la in Partitions(3):
|
284
|
+
....: print("H {} = {}".format(la, s(H(la))))
|
285
|
+
H [3] = q^3*s[1, 1, 1] + (q^2+q)*s[2, 1] + s[3]
|
286
|
+
H [2, 1] = q*s[1, 1, 1] + s[2, 1]
|
287
|
+
H [1, 1, 1] = s[1, 1, 1]
|
288
|
+
|
289
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 1717::
|
290
|
+
|
291
|
+
sage: t = Tableau([[1,1,1,2,3,7],[2,2,3,5],[3,4],[4,5],[6]])
|
292
|
+
sage: t.charge()
|
293
|
+
9
|
294
|
+
|
295
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 1881::
|
296
|
+
|
297
|
+
sage: la = Partition([2,2])
|
298
|
+
sage: la.k_conjugate(2).conjugate()
|
299
|
+
[4]
|
300
|
+
sage: la = Partition([2,1,1])
|
301
|
+
sage: la.k_conjugate(2).conjugate()
|
302
|
+
[3, 1]
|
303
|
+
sage: la = Partition([1,1,1,1])
|
304
|
+
sage: la.k_conjugate(2).conjugate()
|
305
|
+
[2, 2]
|
306
|
+
|
307
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 1893::
|
308
|
+
|
309
|
+
sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
|
310
|
+
sage: ks = Sym.kschur(2)
|
311
|
+
sage: ks[2,2].omega_t_inverse()
|
312
|
+
1/t^2*ks2[1, 1, 1, 1]
|
313
|
+
sage: ks[2,1,1].omega_t_inverse()
|
314
|
+
1/t*ks2[2, 1, 1]
|
315
|
+
sage: ks[1,1,1,1].omega_t_inverse()
|
316
|
+
1/t^2*ks2[2, 2]
|
317
|
+
|
318
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 1904::
|
319
|
+
|
320
|
+
sage: Sym = SymmetricFunctions(FractionField(QQ['q,t']))
|
321
|
+
sage: H = Sym.macdonald().H()
|
322
|
+
sage: ks = Sym.kschur(2)
|
323
|
+
sage: ks(H[2,2])
|
324
|
+
q^2*ks2[1, 1, 1, 1] + (q*t+q)*ks2[2, 1, 1] + ks2[2, 2]
|
325
|
+
sage: ks(H[2,1,1])
|
326
|
+
q*ks2[1, 1, 1, 1] + (q*t^2+1)*ks2[2, 1, 1] + t*ks2[2, 2]
|
327
|
+
sage: ks(H[1,1,1,1])
|
328
|
+
ks2[1, 1, 1, 1] + (t^3+t^2)*ks2[2, 1, 1] + t^4*ks2[2, 2]
|
329
|
+
|
330
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 2174::
|
331
|
+
|
332
|
+
sage: SemistandardTableaux([5,2],[4,2,1]).list()
|
333
|
+
[[[1, 1, 1, 1, 2], [2, 3]], [[1, 1, 1, 1, 3], [2, 2]]]
|
334
|
+
|
335
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 2179::
|
336
|
+
|
337
|
+
sage: P = Partitions(4)
|
338
|
+
sage: P.list()
|
339
|
+
[[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]
|
340
|
+
sage: n = P.cardinality(); n
|
341
|
+
5
|
342
|
+
sage: K = matrix(QQ,n,n,
|
343
|
+
....: [[SemistandardTableaux(la,mu).cardinality()
|
344
|
+
....: for mu in P] for la in P])
|
345
|
+
sage: K
|
346
|
+
[1 1 1 1 1]
|
347
|
+
[0 1 1 2 3]
|
348
|
+
[0 0 1 1 2]
|
349
|
+
[0 0 0 1 3]
|
350
|
+
[0 0 0 0 1]
|
351
|
+
|
352
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 2376::
|
353
|
+
|
354
|
+
sage: T = WeakTableaux(6, [5,3], [4,3,1])
|
355
|
+
sage: T.list()
|
356
|
+
[[[1, 1, 1, 1, 3], [2, 2, 2]], [[1, 1, 1, 1, 2], [2, 2, 3]]]
|
357
|
+
|
358
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 2382::
|
359
|
+
|
360
|
+
sage: k = 3
|
361
|
+
sage: c = Core([5,2,1], k+1)
|
362
|
+
sage: la = c.to_bounded_partition(); la
|
363
|
+
[3, 2, 1]
|
364
|
+
sage: for mu in Partitions(la.size(), max_part = 3):
|
365
|
+
....: T = WeakTableaux(k, c, mu)
|
366
|
+
....: print("weight {}".format(mu))
|
367
|
+
....: print(T.list())
|
368
|
+
weight [3, 3]
|
369
|
+
[]
|
370
|
+
weight [3, 2, 1]
|
371
|
+
[[[1, 1, 1, 2, 2], [2, 2], [3]]]
|
372
|
+
weight [3, 1, 1, 1]
|
373
|
+
[[[1, 1, 1, 2, 4], [2, 4], [3]], [[1, 1, 1, 2, 3], [2, 3], [4]]]
|
374
|
+
weight [2, 2, 2]
|
375
|
+
[[[1, 1, 2, 2, 3], [2, 3], [3]]]
|
376
|
+
weight [2, 2, 1, 1]
|
377
|
+
[[[1, 1, 2, 2, 4], [2, 4], [3]], [[1, 1, 2, 2, 3], [2, 3], [4]]]
|
378
|
+
weight [2, 1, 1, 1, 1]
|
379
|
+
[[[1, 1, 3, 4, 5], [2, 5], [3]], [[1, 1, 2, 3, 5], [3, 5], [4]],
|
380
|
+
[[1, 1, 2, 3, 4], [3, 4], [5]]]
|
381
|
+
weight [1, 1, 1, 1, 1, 1]
|
382
|
+
[[[1, 3, 4, 5, 6], [2, 6], [4]], [[1, 2, 4, 5, 6], [3, 6], [4]],
|
383
|
+
[[1, 2, 3, 4, 6], [4, 6], [5]], [[1, 2, 3, 4, 5], [4, 5], [6]]]
|
384
|
+
|
385
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 2487::
|
386
|
+
|
387
|
+
sage: Sym = SymmetricFunctions(QQ)
|
388
|
+
sage: ks = Sym.kschur(3, t=1)
|
389
|
+
sage: h = Sym.homogeneous()
|
390
|
+
sage: for mu in Partitions(7, max_part=3):
|
391
|
+
....: print(h(ks(mu)))
|
392
|
+
h[3, 3, 1]
|
393
|
+
h[3, 2, 2] - h[3, 3, 1]
|
394
|
+
h[3, 2, 1, 1] - h[3, 2, 2]
|
395
|
+
h[3, 1, 1, 1, 1] - 2*h[3, 2, 1, 1] + h[3, 3, 1]
|
396
|
+
h[2, 2, 2, 1] - h[3, 2, 1, 1] - h[3, 2, 2] + h[3, 3, 1]
|
397
|
+
h[2, 2, 1, 1, 1] - 2*h[2, 2, 2, 1] - h[3, 1, 1, 1, 1]
|
398
|
+
+ 2*h[3, 2, 1, 1] + h[3, 2, 2] - h[3, 3, 1]
|
399
|
+
h[2, 1, 1, 1, 1, 1] - 3*h[2, 2, 1, 1, 1] + 2*h[2, 2, 2, 1]
|
400
|
+
+ h[3, 2, 1, 1] - h[3, 2, 2]
|
401
|
+
h[1, 1, 1, 1, 1, 1, 1] - 4*h[2, 1, 1, 1, 1, 1] + 4*h[2, 2, 1, 1, 1]
|
402
|
+
+ 2*h[3, 1, 1, 1, 1] - 4*h[3, 2, 1, 1] + h[3, 3, 1]
|
403
|
+
|
404
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 2608::
|
405
|
+
|
406
|
+
sage: ks6 = Sym.kschur(6,t=1)
|
407
|
+
sage: ks6(h[4,3,1])
|
408
|
+
ks6[4, 3, 1] + ks6[4, 4] + ks6[5, 2, 1] + 2*ks6[5, 3]
|
409
|
+
+ ks6[6, 1, 1] + ks6[6, 2]
|
410
|
+
|
411
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 2617::
|
412
|
+
|
413
|
+
sage: Sym = SymmetricFunctions(QQ)
|
414
|
+
sage: ks = Sym.kschur(3,t=1)
|
415
|
+
sage: ks.realization_of()
|
416
|
+
3-bounded Symmetric Functions over Rational Field with t=1
|
417
|
+
sage: s = Sym.schur()
|
418
|
+
sage: s.realization_of()
|
419
|
+
Symmetric Functions over Rational Field
|
420
|
+
|
421
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 2658::
|
422
|
+
|
423
|
+
sage: k = 6
|
424
|
+
sage: weight = Partition([4,3,1])
|
425
|
+
sage: for la in Partitions(weight.size(), max_part = k):
|
426
|
+
....: if la.dominates(weight):
|
427
|
+
....: print(la)
|
428
|
+
....: T = WeakTableaux(k, la, weight, representation = 'bounded')
|
429
|
+
....: print(T.list())
|
430
|
+
[6, 2]
|
431
|
+
[[[1, 1, 1, 1, 2, 2], [2, 3]]]
|
432
|
+
[6, 1, 1]
|
433
|
+
[[[1, 1, 1, 1, 2, 2], [2], [3]]]
|
434
|
+
[5, 3]
|
435
|
+
[[[1, 1, 1, 1, 3], [2, 2, 2]], [[1, 1, 1, 1, 2], [2, 2, 3]]]
|
436
|
+
[5, 2, 1]
|
437
|
+
[[[1, 1, 1, 1, 2], [2, 2], [3]]]
|
438
|
+
[4, 4]
|
439
|
+
[[[1, 1, 1, 1], [2, 2, 2, 3]]]
|
440
|
+
[4, 3, 1]
|
441
|
+
[[[1, 1, 1, 1], [2, 2, 2], [3]]]
|
442
|
+
|
443
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 2740::
|
444
|
+
|
445
|
+
sage: mu = Partition([3,2,1])
|
446
|
+
sage: c = mu.to_core(3)
|
447
|
+
sage: w = c.to_grassmannian()
|
448
|
+
sage: w.stanley_symmetric_function()
|
449
|
+
4*m[1, 1, 1, 1, 1, 1] + 3*m[2, 1, 1, 1, 1] + 2*m[2, 2, 1, 1]
|
450
|
+
+ m[2, 2, 2] + 2*m[3, 1, 1, 1] + m[3, 2, 1]
|
451
|
+
sage: sorted(w.reduced_words())
|
452
|
+
[[0, 2, 3, 2, 1, 0],
|
453
|
+
[0, 3, 2, 1, 3, 0],
|
454
|
+
[0, 3, 2, 3, 1, 0],
|
455
|
+
[2, 0, 3, 2, 1, 0]]
|
456
|
+
|
457
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 2752::
|
458
|
+
|
459
|
+
sage: Sym = SymmetricFunctions(QQ)
|
460
|
+
sage: Q3 = Sym.kBoundedQuotient(3,t=1)
|
461
|
+
sage: F3 = Q3.affineSchur()
|
462
|
+
sage: m = Q3.kmonomial()
|
463
|
+
sage: m(F3([3,2,1]))
|
464
|
+
4*m3[1, 1, 1, 1, 1, 1] + 3*m3[2, 1, 1, 1, 1] + 2*m3[2, 2, 1, 1]
|
465
|
+
+ m3[2, 2, 2] + 2*m3[3, 1, 1, 1] + m3[3, 2, 1]
|
466
|
+
|
467
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 2799::
|
468
|
+
|
469
|
+
sage: Sym = SymmetricFunctions(QQ)
|
470
|
+
sage: Q3 = Sym.kBoundedQuotient(3,t=1)
|
471
|
+
sage: F3 = Q3.affineSchur()
|
472
|
+
sage: h = Sym.homogeneous()
|
473
|
+
sage: f = F3[3,2,1]*h[1]; f
|
474
|
+
F3[3, 1, 1, 1, 1] + 3*F3[3, 2, 1, 1] + F3[3, 2, 2] + 2*F3[3, 3, 1]
|
475
|
+
|
476
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 2810::
|
477
|
+
|
478
|
+
sage: c = Partition([3,2,1]).to_core(3)
|
479
|
+
sage: for p in sorted(f.support()): # Sorted for consistant doctest ordering
|
480
|
+
....: print("{} {}".format(p, SkewPartition([p.to_core(3).to_partition(),c.to_partition()])))
|
481
|
+
[3, 1, 1, 1, 1] [[5, 2, 1, 1, 1], [5, 2, 1]]
|
482
|
+
[3, 2, 1, 1] [[6, 3, 1, 1], [5, 2, 1]]
|
483
|
+
[3, 2, 2] [[5, 2, 2], [5, 2, 1]]
|
484
|
+
[3, 3, 1] [[7, 4, 1], [5, 2, 1]]
|
485
|
+
|
486
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 2976::
|
487
|
+
|
488
|
+
sage: T = StrongTableau([[-1,-1,-2,-3],[-2,3,-3,4],[2,3],[-3,-4]], 3)
|
489
|
+
sage: T.to_transposition_sequence()
|
490
|
+
[[-2, -1], [3, 4], [0, 2], [-3, -2], [2, 3], [-1, 0], [1, 2], [0, 1]]
|
491
|
+
sage: T.intermediate_shapes()
|
492
|
+
[[], [2], [3, 1, 1], [4, 3, 2, 1], [4, 4, 2, 2]]
|
493
|
+
sage: [T.content_of_marked_head(v+1) for v in range(8)]
|
494
|
+
[0, 1, -1, 2, -3, 1, 3, -2]
|
495
|
+
sage: T.left_action([0,1])
|
496
|
+
[[-1, -1, -2, -3, 5], [-2, 3, -3, 4], [2, 3, -5], [-3, -4], [5]]
|
497
|
+
|
498
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 2999::
|
499
|
+
|
500
|
+
sage: ST = StrongTableaux(3, [6,3,1,1], [4,2,1]); ST
|
501
|
+
Set of strong 3-tableaux of shape [6, 3, 1, 1] and of weight (4, 2, 1)
|
502
|
+
sage: ST.list()
|
503
|
+
[[[-1, -1, -1, -1, 2, 2], [1, -2, -2], [-3], [3]],
|
504
|
+
[[-1, -1, -1, -1, 2, -2], [1, -2, 2], [-3], [3]],
|
505
|
+
[[-1, -1, -1, -1, -2, -2], [1, 2, 2], [-3], [3]],
|
506
|
+
[[-1, -1, -1, -1, 2, 3], [1, -2, 3], [-2], [-3]],
|
507
|
+
[[-1, -1, -1, -1, 2, 3], [1, -2, -3], [-2], [3]],
|
508
|
+
[[-1, -1, -1, -1, 2, -3], [1, -2, 3], [-2], [3]],
|
509
|
+
[[-1, -1, -1, -1, -2, 3], [1, 2, 3], [-2], [-3]],
|
510
|
+
[[-1, -1, -1, -1, -2, 3], [1, 2, -3], [-2], [3]],
|
511
|
+
[[-1, -1, -1, -1, -2, -3], [1, 2, 3], [-2], [3]]]
|
512
|
+
sage: ks = SymmetricFunctions(QQ).kschur(3,1)
|
513
|
+
sage: m = SymmetricFunctions(QQ).m()
|
514
|
+
sage: m(ks[3,2,1,1]).coefficient([4,2,1])
|
515
|
+
9
|
516
|
+
|
517
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 3243::
|
518
|
+
|
519
|
+
sage: W = WeylGroup(['A',3,1])
|
520
|
+
sage: [w.reduced_word() for w in W.pieri_factors()]
|
521
|
+
[[], [0], [1], [2], [3], [1, 0], [2, 0], [0, 3], [2, 1], [3, 1], [3, 2],
|
522
|
+
[2, 1, 0], [1, 0, 3], [0, 3, 2], [3, 2, 1]]
|
523
|
+
|
524
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 3251::
|
525
|
+
|
526
|
+
sage: A = NilCoxeterAlgebra(WeylGroup(['A',3,1]), prefix = 'A')
|
527
|
+
sage: A.homogeneous_noncommutative_variables([2])
|
528
|
+
A[1,0] + A[2,0] + A[0,3] + A[3,2] + A[3,1] + A[2,1]
|
529
|
+
|
530
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 3258::
|
531
|
+
|
532
|
+
sage: A.k_schur_noncommutative_variables([2,2])
|
533
|
+
A[0,3,1,0] + A[3,1,2,0] + A[1,2,0,1] + A[3,2,0,3] + A[2,0,3,1] + A[2,3,1,2]
|
534
|
+
|
535
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 3265::
|
536
|
+
|
537
|
+
sage: Sym = SymmetricFunctions(ZZ)
|
538
|
+
sage: ks = Sym.kschur(5,t=1)
|
539
|
+
sage: ks[2,1]*ks[2,1]
|
540
|
+
ks5[2, 2, 1, 1] + ks5[2, 2, 2] + ks5[3, 1, 1, 1] + 2*ks5[3, 2, 1]
|
541
|
+
+ ks5[3, 3] + ks5[4, 2]
|
542
|
+
|
543
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 3536::
|
544
|
+
|
545
|
+
sage: la = Partition([3,2,1,1])
|
546
|
+
sage: la.k_atom(4)
|
547
|
+
[[[1, 1, 1, 4], [2, 2], [3]], [[1, 1, 1], [2, 2], [3], [4]]]
|
548
|
+
|
549
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 3639::
|
550
|
+
|
551
|
+
sage: s = SymmetricFunctions(QQ['t']).schur()
|
552
|
+
sage: G1 = s[1]
|
553
|
+
sage: G211 = G1.hl_creation_operator([2,1]); G211
|
554
|
+
s[2, 1, 1] + t*s[2, 2] + t*s[3, 1]
|
555
|
+
sage: G3211 = G211.hl_creation_operator([3]); G3211
|
556
|
+
s[3, 2, 1, 1] + t*s[3, 2, 2] + t*s[3, 3, 1] + t*s[4, 1, 1, 1]
|
557
|
+
+ (2*t^2+t)*s[4, 2, 1] + t^2*s[4, 3] + (t^3+t^2)*s[5, 1, 1]
|
558
|
+
+ 2*t^3*s[5, 2] + t^4*s[6, 1]
|
559
|
+
|
560
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 3954::
|
561
|
+
|
562
|
+
sage: T = WeakTableau([[1,1,2,3,4,4,5,5,6],[2,3,5,5,6],[3,4,7],
|
563
|
+
....: [5,6],[6],[7]],4)
|
564
|
+
sage: T.k_charge()
|
565
|
+
12
|
566
|
+
|
567
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 3962::
|
568
|
+
|
569
|
+
sage: Sym = SymmetricFunctions(QQ['t'].fraction_field())
|
570
|
+
sage: Qp = Sym.hall_littlewood().Qp()
|
571
|
+
sage: ks = Sym.kBoundedSubspace(3).kschur()
|
572
|
+
sage: t = ks.base_ring().gen()
|
573
|
+
sage: ks(Qp[3,2,2,1])
|
574
|
+
ks3[3, 2, 2, 1] + t*ks3[3, 3, 1, 1] + t^2*ks3[3, 3, 2]
|
575
|
+
sage: sum(t^T.k_charge()*ks(la) for la in Partitions(8, max_part=3)
|
576
|
+
....: for T in WeakTableaux(3,la,[3,2,2,1],representation = 'bounded'))
|
577
|
+
ks3[3, 2, 2, 1] + t*ks3[3, 3, 1, 1] + t^2*ks3[3, 3, 2]
|
578
|
+
|
579
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 4055::
|
580
|
+
|
581
|
+
sage: t = var('t') # needs sage.symbolic
|
582
|
+
sage: for mu in Partitions(5): # needs sage.symbolic
|
583
|
+
....: print("{} {}".format(mu, sum(t^T.spin() for T in StrongTableaux(3,[4,1,1],mu))))
|
584
|
+
[5] 0
|
585
|
+
[4, 1] t
|
586
|
+
[3, 2] t
|
587
|
+
[3, 1, 1] 2*t + 1
|
588
|
+
[2, 2, 1] 2*t + 1
|
589
|
+
[2, 1, 1, 1] 3*t + 3
|
590
|
+
[1, 1, 1, 1, 1] 4*t + 6
|
591
|
+
sage: StrongTableaux( 3, [4,1,1], (1,)*5 ).cardinality()
|
592
|
+
10
|
593
|
+
sage: StrongTableaux( 3, [4,1,1], (1,)*5 ).list()
|
594
|
+
[[[-1, -2, -3, 4], [-4], [-5]],
|
595
|
+
[[-1, -2, -3, -4], [4], [-5]],
|
596
|
+
[[-1, -2, -3, -5], [-4], [4]],
|
597
|
+
[[-1, -2, 4, -4], [-3], [-5]],
|
598
|
+
[[-1, -2, 4, -5], [-3], [-4]],
|
599
|
+
[[-1, -2, -4, -5], [-3], [4]],
|
600
|
+
[[-1, -3, 4, -4], [-2], [-5]],
|
601
|
+
[[-1, -3, 4, -5], [-2], [-4]],
|
602
|
+
[[-1, -3, -4, -5], [-2], [4]],
|
603
|
+
[[-1, 4, -4, -5], [-2], [-3]]]
|
604
|
+
|
605
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 4385::
|
606
|
+
|
607
|
+
sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
|
608
|
+
sage: ks4 = Sym.kschur(4)
|
609
|
+
sage: ks4([3, 1, 1]).hl_creation_operator([1])
|
610
|
+
(t-1)*ks4[2, 2, 1, 1] + t^2*ks4[3, 1, 1, 1] + t^3*ks4[3, 2, 1]
|
611
|
+
+ (t^3-t^2)*ks4[3, 3] + t^4*ks4[4, 1, 1]
|
612
|
+
sage: ks4([3, 1, 1]).hl_creation_operator([2])
|
613
|
+
t*ks4[3, 2, 1, 1] + t^2*ks4[3, 3, 1] + t^2*ks4[4, 1, 1, 1]
|
614
|
+
+ t^3*ks4[4, 2, 1]
|
615
|
+
sage: ks4([3, 1, 1]).hl_creation_operator([3])
|
616
|
+
ks4[3, 3, 1, 1] + t*ks4[4, 2, 1, 1] + t^2*ks4[4, 3, 1]
|
617
|
+
sage: ks4([3, 1, 1]).hl_creation_operator([4])
|
618
|
+
ks4[4, 3, 1, 1]
|
619
|
+
|
620
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 4456::
|
621
|
+
|
622
|
+
sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
|
623
|
+
sage: ks3 = Sym.kschur(3)
|
624
|
+
sage: ks3([3,2]).omega()
|
625
|
+
Traceback (most recent call last):
|
626
|
+
...
|
627
|
+
ValueError: t^2*s[1, 1, 1, 1, 1] + t*s[2, 1, 1, 1] + s[2, 2, 1] is not
|
628
|
+
in the image
|
629
|
+
|
630
|
+
sage: s = Sym.schur()
|
631
|
+
sage: s(ks3[3,2])
|
632
|
+
s[3, 2] + t*s[4, 1] + t^2*s[5]
|
633
|
+
sage: t = s.base_ring().gen()
|
634
|
+
sage: invert = lambda x: s.base_ring()(x.subs(t=1/t))
|
635
|
+
sage: ks3(s(ks3([3,2])).omega().map_coefficients(invert))
|
636
|
+
1/t^2*ks3[1, 1, 1, 1, 1]
|
637
|
+
|
638
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 4478::
|
639
|
+
|
640
|
+
sage: ks3[3,2].omega_t_inverse()
|
641
|
+
1/t^2*ks3[1, 1, 1, 1, 1]
|
642
|
+
|
643
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 4686::
|
644
|
+
|
645
|
+
sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
|
646
|
+
sage: ks3 = Sym.kschur(3)
|
647
|
+
sage: ks3[3,1].coproduct()
|
648
|
+
ks3[] # ks3[3, 1] + ks3[1] # ks3[2, 1] + (t+1)*ks3[1] # ks3[3]
|
649
|
+
+ ks3[1, 1] # ks3[2] + ks3[2] # ks3[1, 1] + (t+1)*ks3[2] # ks3[2]
|
650
|
+
+ ks3[2, 1] # ks3[1] + (t+1)*ks3[3] # ks3[1] + ks3[3, 1] # ks3[]
|
651
|
+
|
652
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 4720::
|
653
|
+
|
654
|
+
sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
|
655
|
+
sage: ks2 = Sym.kschur(2)
|
656
|
+
sage: ks3 = Sym.kschur(3)
|
657
|
+
sage: ks5 = Sym.kschur(5)
|
658
|
+
sage: ks5(ks3[2])*ks5(ks2[1])
|
659
|
+
ks5[2, 1] + ks5[3]
|
660
|
+
sage: ks5(ks3[2])*ks5(ks2[2,1])
|
661
|
+
ks5[2, 2, 1] + ks5[3, 1, 1] + (t+1)*ks5[3, 2] + (t+1)*ks5[4, 1]
|
662
|
+
+ t*ks5[5]
|
663
|
+
|
664
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 4779::
|
665
|
+
|
666
|
+
sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
|
667
|
+
sage: ks3 = Sym.kschur(3)
|
668
|
+
sage: ks4 = Sym.kschur(4)
|
669
|
+
sage: ks5 = Sym.kschur(5)
|
670
|
+
sage: ks4(ks3[3,2,1,1])
|
671
|
+
ks4[3, 2, 1, 1] + t*ks4[3, 3, 1] + t*ks4[4, 1, 1, 1] + t^2*ks4[4, 2, 1]
|
672
|
+
sage: ks5(ks3[3,2,1,1])
|
673
|
+
ks5[3, 2, 1, 1] + t*ks5[3, 3, 1] + t*ks5[4, 1, 1, 1] + t^2*ks5[4, 2, 1]
|
674
|
+
+ t^2*ks5[4, 3] + t^3*ks5[5, 1, 1]
|
675
|
+
|
676
|
+
sage: ks5(ks4[3,2,1,1])
|
677
|
+
ks5[3, 2, 1, 1]
|
678
|
+
sage: ks5(ks4[4,3,3,2,1,1])
|
679
|
+
ks5[4, 3, 3, 2, 1, 1] + t*ks5[4, 4, 3, 1, 1, 1]
|
680
|
+
+ t^2*ks5[5, 3, 3, 1, 1, 1]
|
681
|
+
sage: ks5(ks4[4,3,3,2,1,1,1])
|
682
|
+
ks5[4, 3, 3, 2, 1, 1, 1] + t*ks5[4, 3, 3, 3, 1, 1]
|
683
|
+
+ t*ks5[4, 4, 3, 1, 1, 1, 1] + t^2*ks5[4, 4, 3, 2, 1, 1]
|
684
|
+
+ t^2*ks5[5, 3, 3, 1, 1, 1, 1] + t^3*ks5[5, 3, 3, 2, 1, 1]
|
685
|
+
+ t^4*ks5[5, 4, 3, 1, 1, 1]
|
686
|
+
|
687
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 4858::
|
688
|
+
|
689
|
+
sage: Sym = SymmetricFunctions(FractionField(QQ['q,t']))
|
690
|
+
sage: H = Sym.macdonald().H()
|
691
|
+
sage: ks = Sym.kschur(3)
|
692
|
+
sage: ks(H[3])
|
693
|
+
q^3*ks3[1, 1, 1] + (q^2+q)*ks3[2, 1] + ks3[3]
|
694
|
+
sage: ks(H[3,2]) # long time (2.11 s, 2013)
|
695
|
+
q^4*ks3[1, 1, 1, 1, 1] + (q^3*t+q^3+q^2)*ks3[2, 1, 1, 1]
|
696
|
+
+ (q^3*t+q^2*t+q^2+q)*ks3[2, 2, 1]
|
697
|
+
+ (q^2*t+q*t+q)*ks3[3, 1, 1] + ks3[3, 2]
|
698
|
+
sage: ks(H[3,1,1])
|
699
|
+
q^3*ks3[1, 1, 1, 1, 1] + (q^3*t^2+q^2+q)*ks3[2, 1, 1, 1]
|
700
|
+
+ (q^2*t^2+q^2*t+q*t+q)*ks3[2, 2, 1]
|
701
|
+
+ (q^2*t^2+q*t^2+1)*ks3[3, 1, 1] + t*ks3[3, 2]
|
702
|
+
|
703
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 4965::
|
704
|
+
|
705
|
+
sage: Sym = SymmetricFunctions(QQ)
|
706
|
+
sage: Q3 = Sym.kBoundedQuotient(3,t=1)
|
707
|
+
sage: F = Q3.affineSchur()
|
708
|
+
sage: p = Sym.power()
|
709
|
+
sage: F[2,1]*p[2]
|
710
|
+
-F3[1, 1, 1, 1, 1] - F3[2, 1, 1, 1] + F3[3, 1, 1] + F3[3, 2]
|
711
|
+
|
712
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 5028::
|
713
|
+
|
714
|
+
sage: R = QQ[I]; z4 = R.zeta(4)
|
715
|
+
sage: Sym = SymmetricFunctions(R)
|
716
|
+
sage: ks3z = Sym.kschur(3,t=z4)
|
717
|
+
sage: ks3 = Sym.kschur(3,t=1)
|
718
|
+
sage: p = Sym.p()
|
719
|
+
sage: p(ks3z[2, 2, 2, 2, 2, 2, 2, 2]) # long time (17s on sage.math, 2013)
|
720
|
+
1/12*p[4, 4, 4, 4] + 1/4*p[8, 8] - 1/3*p[12, 4]
|
721
|
+
sage: p(ks3[2,2])
|
722
|
+
1/12*p[1, 1, 1, 1] + 1/4*p[2, 2] - 1/3*p[3, 1]
|
723
|
+
sage: p(ks3[2,2]).plethysm(p[4])
|
724
|
+
1/12*p[4, 4, 4, 4] + 1/4*p[8, 8] - 1/3*p[12, 4]
|
725
|
+
|
726
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 5042::
|
727
|
+
|
728
|
+
sage: ks3z[3, 3, 3, 3]*ks3z[2, 1] # long time (10s on sage.math, 2013)
|
729
|
+
ks3[3, 3, 3, 3, 2, 1]
|
730
|
+
|
731
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 5197::
|
732
|
+
|
733
|
+
sage: Sym = SymmetricFunctions(QQ['t'].fraction_field())
|
734
|
+
sage: Q3 = Sym.kBoundedQuotient(3)
|
735
|
+
sage: dks = Q3.dual_k_Schur()
|
736
|
+
sage: dks[2, 1, 1]*dks[3, 2, 1] # long time (25.7s, 2013)
|
737
|
+
(t^7+t^6)*dks3[2, 1, 1, 1, 1, 1, 1, 1, 1]
|
738
|
+
+ (t^4+t^3+t^2)*dks3[2, 2, 2, 1, 1, 1, 1]
|
739
|
+
+ (t^3+t^2)*dks3[2, 2, 2, 2, 1, 1]
|
740
|
+
+ (t^5+2*t^4+2*t^3+t^2)*dks3[2, 2, 2, 2, 2]
|
741
|
+
+ (t^5+2*t^4+t^3)*dks3[3, 1, 1, 1, 1, 1, 1, 1]
|
742
|
+
+ (2*t^5+3*t^4+4*t^3+3*t^2+t)*dks3[3, 2, 1, 1, 1, 1, 1]
|
743
|
+
+ (2*t^2+t+1)*dks3[3, 2, 2, 1, 1, 1]
|
744
|
+
+ (t^4+3*t^3+4*t^2+3*t+1)*dks3[3, 2, 2, 2, 1]
|
745
|
+
+ (t^5+t^4+4*t^3+4*t^2+3*t+1)*dks3[3, 3, 1, 1, 1, 1]
|
746
|
+
+ (2*t^5+3*t^4+5*t^3+6*t^2+4*t+2)*dks3[3, 3, 2, 1, 1]
|
747
|
+
+ (t^4+t^3+3*t^2+2*t+1)*dks3[3, 3, 2, 2]
|
748
|
+
+ (t^5+3*t^4+3*t^3+4*t^2+2*t+1)*dks3[3, 3, 3, 1]
|
749
|
+
|
750
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 5294::
|
751
|
+
|
752
|
+
sage: ks2 = SymmetricFunctions(QQ['t']).kschur(2)
|
753
|
+
sage: HLQp = SymmetricFunctions(QQ['t']).hall_littlewood().Qp()
|
754
|
+
sage: ks2( (HLQp(ks2[1,1])*HLQp(ks2[1])).restrict_parts(2) )
|
755
|
+
ks2[1, 1, 1] + (-t+1)*ks2[2, 1]
|
756
|
+
|
757
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 5303::
|
758
|
+
|
759
|
+
sage: dks = SymmetricFunctions(QQ['t']).kBoundedQuotient(2).dks()
|
760
|
+
sage: dks[2,1].coproduct()
|
761
|
+
dks2[] # dks2[2, 1] + (-t+1)*dks2[1] # dks2[1, 1] +
|
762
|
+
dks2[1] # dks2[2] + (-t+1)*dks2[1, 1] # dks2[1] +
|
763
|
+
dks2[2] # dks2[1] + dks2[2, 1] # dks2[]
|
764
|
+
|
765
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 5560::
|
766
|
+
|
767
|
+
sage: Sym = SymmetricFunctions(QQ)
|
768
|
+
sage: Sym3 = Sym.kBoundedSubspace(3,t=1)
|
769
|
+
sage: Kks3 = Sym3.K_kschur()
|
770
|
+
sage: s = Sym.s()
|
771
|
+
sage: m = Sym.m()
|
772
|
+
sage: s(Kks3[3,1])
|
773
|
+
s[3] + s[3, 1] + s[4]
|
774
|
+
sage: m(Kks3[3,1])
|
775
|
+
m[1, 1, 1] + 4*m[1, 1, 1, 1] + m[2, 1] + 3*m[2, 1, 1] + 2*m[2, 2]
|
776
|
+
+ m[3] + 2*m[3, 1] + m[4]
|
777
|
+
sage: ks3 = Sym3.kschur()
|
778
|
+
sage: ks3(Kks3[3,1])
|
779
|
+
ks3[3] + ks3[3, 1]
|
780
|
+
sage: Kks3[3,1]*Kks3[2] # long time (11.85 s, 2013)
|
781
|
+
-Kks3[3, 1, 1] - Kks3[3, 2] + Kks3[3, 2, 1] + Kks3[3, 3]
|
782
|
+
sage: Kks3[3,1].coproduct()
|
783
|
+
Kks3[] # Kks3[3, 1] - Kks3[1] # Kks3[2] + Kks3[1] # Kks3[2, 1]
|
784
|
+
+ 2*Kks3[1] # Kks3[3] + Kks3[1, 1] # Kks3[2] - Kks3[2] # Kks3[1]
|
785
|
+
+ Kks3[2] # Kks3[1, 1] + 2*Kks3[2] # Kks3[2] + Kks3[2, 1] # Kks3[1]
|
786
|
+
+ 2*Kks3[3] # Kks3[1] + Kks3[3, 1] # Kks3[]
|
787
|
+
|
788
|
+
Sage example in ./kschurnotes/notes-mike-anne.tex, line 5588::
|
789
|
+
|
790
|
+
sage: SymQ3 = Sym.kBoundedQuotient(3,t=1)
|
791
|
+
sage: G1 = SymQ3.AffineGrothendieckPolynomial([1],6)
|
792
|
+
sage: G2 = SymQ3.AffineGrothendieckPolynomial([2],6)
|
793
|
+
sage: (G1*G2).lift().scalar(Kks3[3,1])
|
794
|
+
-1
|
795
|
+
"""
|