passagemath-repl 10.5.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (162) hide show
  1. passagemath_repl-10.5.1.data/scripts/sage-cachegrind +25 -0
  2. passagemath_repl-10.5.1.data/scripts/sage-callgrind +16 -0
  3. passagemath_repl-10.5.1.data/scripts/sage-cleaner +230 -0
  4. passagemath_repl-10.5.1.data/scripts/sage-coverage +327 -0
  5. passagemath_repl-10.5.1.data/scripts/sage-eval +14 -0
  6. passagemath_repl-10.5.1.data/scripts/sage-fixdoctests +710 -0
  7. passagemath_repl-10.5.1.data/scripts/sage-inline-fortran +12 -0
  8. passagemath_repl-10.5.1.data/scripts/sage-ipynb2rst +50 -0
  9. passagemath_repl-10.5.1.data/scripts/sage-ipython +16 -0
  10. passagemath_repl-10.5.1.data/scripts/sage-massif +25 -0
  11. passagemath_repl-10.5.1.data/scripts/sage-notebook +267 -0
  12. passagemath_repl-10.5.1.data/scripts/sage-omega +25 -0
  13. passagemath_repl-10.5.1.data/scripts/sage-preparse +302 -0
  14. passagemath_repl-10.5.1.data/scripts/sage-run +27 -0
  15. passagemath_repl-10.5.1.data/scripts/sage-run-cython +10 -0
  16. passagemath_repl-10.5.1.data/scripts/sage-runtests +9 -0
  17. passagemath_repl-10.5.1.data/scripts/sage-startuptime.py +163 -0
  18. passagemath_repl-10.5.1.data/scripts/sage-valgrind +34 -0
  19. passagemath_repl-10.5.1.dist-info/METADATA +77 -0
  20. passagemath_repl-10.5.1.dist-info/RECORD +162 -0
  21. passagemath_repl-10.5.1.dist-info/WHEEL +5 -0
  22. passagemath_repl-10.5.1.dist-info/top_level.txt +1 -0
  23. sage/all__sagemath_repl.py +119 -0
  24. sage/doctest/__init__.py +4 -0
  25. sage/doctest/__main__.py +236 -0
  26. sage/doctest/all.py +4 -0
  27. sage/doctest/check_tolerance.py +261 -0
  28. sage/doctest/control.py +1727 -0
  29. sage/doctest/external.py +534 -0
  30. sage/doctest/fixtures.py +383 -0
  31. sage/doctest/forker.py +2665 -0
  32. sage/doctest/marked_output.py +102 -0
  33. sage/doctest/parsing.py +1708 -0
  34. sage/doctest/parsing_test.py +79 -0
  35. sage/doctest/reporting.py +733 -0
  36. sage/doctest/rif_tol.py +124 -0
  37. sage/doctest/sources.py +1657 -0
  38. sage/doctest/test.py +584 -0
  39. sage/doctest/tests/1second.rst +4 -0
  40. sage/doctest/tests/99seconds.rst +4 -0
  41. sage/doctest/tests/abort.rst +5 -0
  42. sage/doctest/tests/atexit.rst +7 -0
  43. sage/doctest/tests/fail_and_die.rst +6 -0
  44. sage/doctest/tests/initial.rst +15 -0
  45. sage/doctest/tests/interrupt.rst +7 -0
  46. sage/doctest/tests/interrupt_diehard.rst +14 -0
  47. sage/doctest/tests/keyboardinterrupt.rst +11 -0
  48. sage/doctest/tests/longtime.rst +5 -0
  49. sage/doctest/tests/nodoctest +5 -0
  50. sage/doctest/tests/random_seed.rst +4 -0
  51. sage/doctest/tests/show_skipped.rst +18 -0
  52. sage/doctest/tests/sig_on.rst +9 -0
  53. sage/doctest/tests/simple_failure.rst +8 -0
  54. sage/doctest/tests/sleep_and_raise.rst +106 -0
  55. sage/doctest/tests/tolerance.rst +31 -0
  56. sage/doctest/util.py +750 -0
  57. sage/interfaces/cleaner.py +48 -0
  58. sage/interfaces/quit.py +163 -0
  59. sage/misc/all__sagemath_repl.py +51 -0
  60. sage/misc/banner.py +235 -0
  61. sage/misc/benchmark.py +221 -0
  62. sage/misc/classgraph.py +134 -0
  63. sage/misc/copying.py +22 -0
  64. sage/misc/cython.py +694 -0
  65. sage/misc/dev_tools.py +745 -0
  66. sage/misc/edit_module.py +304 -0
  67. sage/misc/explain_pickle.py +3079 -0
  68. sage/misc/gperftools.py +361 -0
  69. sage/misc/inline_fortran.py +212 -0
  70. sage/misc/messaging.py +86 -0
  71. sage/misc/pager.py +21 -0
  72. sage/misc/profiler.py +179 -0
  73. sage/misc/python.py +70 -0
  74. sage/misc/remote_file.py +53 -0
  75. sage/misc/sage_eval.py +249 -0
  76. sage/misc/sage_input.py +3621 -0
  77. sage/misc/sagedoc.py +1742 -0
  78. sage/misc/sh.py +38 -0
  79. sage/misc/trace.py +90 -0
  80. sage/repl/__init__.py +16 -0
  81. sage/repl/all.py +15 -0
  82. sage/repl/attach.py +625 -0
  83. sage/repl/configuration.py +186 -0
  84. sage/repl/display/__init__.py +1 -0
  85. sage/repl/display/fancy_repr.py +354 -0
  86. sage/repl/display/formatter.py +318 -0
  87. sage/repl/display/jsmol_iframe.py +290 -0
  88. sage/repl/display/pretty_print.py +153 -0
  89. sage/repl/display/util.py +163 -0
  90. sage/repl/image.py +302 -0
  91. sage/repl/inputhook.py +91 -0
  92. sage/repl/interface_magic.py +298 -0
  93. sage/repl/interpreter.py +854 -0
  94. sage/repl/ipython_extension.py +593 -0
  95. sage/repl/ipython_kernel/__init__.py +1 -0
  96. sage/repl/ipython_kernel/__main__.py +4 -0
  97. sage/repl/ipython_kernel/all_jupyter.py +10 -0
  98. sage/repl/ipython_kernel/install.py +301 -0
  99. sage/repl/ipython_kernel/interact.py +278 -0
  100. sage/repl/ipython_kernel/kernel.py +217 -0
  101. sage/repl/ipython_kernel/widgets.py +466 -0
  102. sage/repl/ipython_kernel/widgets_sagenb.py +587 -0
  103. sage/repl/ipython_tests.py +163 -0
  104. sage/repl/load.py +326 -0
  105. sage/repl/preparse.py +2218 -0
  106. sage/repl/prompts.py +90 -0
  107. sage/repl/rich_output/__init__.py +4 -0
  108. sage/repl/rich_output/backend_base.py +648 -0
  109. sage/repl/rich_output/backend_doctest.py +316 -0
  110. sage/repl/rich_output/backend_emacs.py +151 -0
  111. sage/repl/rich_output/backend_ipython.py +596 -0
  112. sage/repl/rich_output/buffer.py +311 -0
  113. sage/repl/rich_output/display_manager.py +829 -0
  114. sage/repl/rich_output/example.avi +0 -0
  115. sage/repl/rich_output/example.canvas3d +1 -0
  116. sage/repl/rich_output/example.dvi +0 -0
  117. sage/repl/rich_output/example.flv +0 -0
  118. sage/repl/rich_output/example.gif +0 -0
  119. sage/repl/rich_output/example.jpg +0 -0
  120. sage/repl/rich_output/example.mkv +0 -0
  121. sage/repl/rich_output/example.mov +0 -0
  122. sage/repl/rich_output/example.mp4 +0 -0
  123. sage/repl/rich_output/example.ogv +0 -0
  124. sage/repl/rich_output/example.pdf +0 -0
  125. sage/repl/rich_output/example.png +0 -0
  126. sage/repl/rich_output/example.svg +54 -0
  127. sage/repl/rich_output/example.webm +0 -0
  128. sage/repl/rich_output/example.wmv +0 -0
  129. sage/repl/rich_output/example_jmol.spt.zip +0 -0
  130. sage/repl/rich_output/example_wavefront_scene.mtl +7 -0
  131. sage/repl/rich_output/example_wavefront_scene.obj +17 -0
  132. sage/repl/rich_output/output_basic.py +391 -0
  133. sage/repl/rich_output/output_browser.py +103 -0
  134. sage/repl/rich_output/output_catalog.py +54 -0
  135. sage/repl/rich_output/output_graphics.py +320 -0
  136. sage/repl/rich_output/output_graphics3d.py +345 -0
  137. sage/repl/rich_output/output_video.py +231 -0
  138. sage/repl/rich_output/preferences.py +432 -0
  139. sage/repl/rich_output/pretty_print.py +339 -0
  140. sage/repl/rich_output/test_backend.py +201 -0
  141. sage/repl/user_globals.py +214 -0
  142. sage/tests/all.py +0 -0
  143. sage/tests/all__sagemath_repl.py +3 -0
  144. sage/tests/article_heuberger_krenn_kropf_fsm-in-sage.py +630 -0
  145. sage/tests/arxiv_0812_2725.py +351 -0
  146. sage/tests/benchmark.py +1925 -0
  147. sage/tests/book_schilling_zabrocki_kschur_primer.py +795 -0
  148. sage/tests/book_stein_ent.py +651 -0
  149. sage/tests/book_stein_modform.py +558 -0
  150. sage/tests/cmdline.py +796 -0
  151. sage/tests/combinatorial_hopf_algebras.py +52 -0
  152. sage/tests/finite_poset.py +623 -0
  153. sage/tests/functools_partial_src.py +27 -0
  154. sage/tests/gosper-sum.py +218 -0
  155. sage/tests/lazy_imports.py +28 -0
  156. sage/tests/modular_group_cohomology.py +80 -0
  157. sage/tests/numpy.py +21 -0
  158. sage/tests/parigp.py +76 -0
  159. sage/tests/startup.py +27 -0
  160. sage/tests/symbolic-series.py +76 -0
  161. sage/tests/sympy.py +16 -0
  162. sage/tests/test_deprecation.py +31 -0
@@ -0,0 +1,795 @@
1
+ # sage_setup: distribution = sagemath-repl
2
+ # sage.doctest: needs sage.combinat sage.graphs sage.groups
3
+ r"""
4
+ This file contains doctests for the Chapter "k-Schur function primer"
5
+ for the book "k-Schur functions and affine Schubert calculus"
6
+ by Thomas Lam, Luc Lapointe, Jennifer Morse, Anne Schilling, Mark Shimozono,
7
+ and Mike Zabrocki, :arxiv:`1301.3569`.
8
+ The code was written by Anne Schilling and Mike Zabrocki, 2012 and 2013.
9
+
10
+ IF IT BECOMES NECESSARY TO CHANGE ANY TESTS IN THIS FILE, THERE
11
+ NEEDS TO BE A ONE-YEAR DEPRECATION PERIOD. ALSO, PLEASE IN THIS CASE
12
+ CONTACT Anne Schilling (anne@math.ucdavis.edu) AND Mike Zabrocki
13
+ (zabrocki@mathstat.yorku.ca) REGARDING THE CHANGES!
14
+ """
15
+ """
16
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 198::
17
+
18
+ sage: P = Partitions(4); P
19
+ Partitions of the integer 4
20
+ sage: P.list()
21
+ [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]
22
+
23
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 205::
24
+
25
+ sage: [p for p in P]
26
+ [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]
27
+
28
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 210::
29
+
30
+ sage: la=Partition([2,2]); mu=Partition([3,1])
31
+ sage: mu.dominates(la)
32
+ True
33
+
34
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 216::
35
+
36
+ sage: ord = lambda x,y: y.dominates(x)
37
+ sage: P = Poset([Partitions(6), ord], facade=True)
38
+ sage: H = P.hasse_diagram()
39
+
40
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 228::
41
+
42
+ sage: la=Partition([4,3,3,3,2,2,1])
43
+ sage: la.conjugate()
44
+ [7, 6, 4, 1]
45
+ sage: la.k_split(4)
46
+ [[4], [3, 3], [3, 2], [2, 1]]
47
+
48
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 236::
49
+
50
+ sage: p = SkewPartition([[2,1],[1]])
51
+ sage: p.is_connected()
52
+ False
53
+
54
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 334::
55
+
56
+ sage: la = Partition([4,3,3,3,2,2,1])
57
+ sage: kappa = la.k_skew(4); kappa
58
+ [12, 8, 5, 5, 2, 2, 1] / [8, 5, 2, 2]
59
+
60
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 340::
61
+
62
+ sage: kappa.row_lengths()
63
+ [4, 3, 3, 3, 2, 2, 1]
64
+
65
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 345::
66
+
67
+ sage: tau = Core([12,8,5,5,2,2,1],5)
68
+ sage: mu = tau.to_bounded_partition(); mu
69
+ [4, 3, 3, 3, 2, 2, 1]
70
+ sage: mu.to_core(4)
71
+ [12, 8, 5, 5, 2, 2, 1]
72
+
73
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 353::
74
+
75
+ sage: Cores(3,6).list()
76
+ [[6, 4, 2], [5, 3, 1, 1], [4, 2, 2, 1, 1], [3, 3, 2, 2, 1, 1]]
77
+
78
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 398::
79
+
80
+ sage: W = WeylGroup(['A',4,1]) # long time (5.47 s, 2013)
81
+ sage: S = W.simple_reflections() # long time
82
+ sage: [s.reduced_word() for s in S] # long time
83
+ [[0], [1], [2], [3], [4]]
84
+
85
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 406::
86
+
87
+ sage: # long time
88
+ sage: w = W.an_element(); w
89
+ [ 2 0 0 1 -2]
90
+ [ 2 0 0 0 -1]
91
+ [ 1 1 0 0 -1]
92
+ [ 1 0 1 0 -1]
93
+ [ 1 0 0 1 -1]
94
+ sage: w.reduced_word()
95
+ [0, 1, 2, 3, 4]
96
+ sage: w = W.from_reduced_word([2,1,0])
97
+ sage: w.is_affine_grassmannian()
98
+ True
99
+
100
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 464::
101
+
102
+ sage: c = Core([7,3,1],5)
103
+ sage: c.affine_symmetric_group_simple_action(2)
104
+ [8, 4, 1, 1]
105
+ sage: c.affine_symmetric_group_simple_action(0)
106
+ [7, 3, 1]
107
+
108
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 474::
109
+
110
+ sage: k=4; length=3
111
+ sage: W = WeylGroup(['A',k,1])
112
+ sage: G = W.affine_grassmannian_elements_of_given_length(length)
113
+ sage: [w.reduced_word() for w in G]
114
+ [[2, 1, 0], [4, 1, 0], [3, 4, 0]]
115
+
116
+ sage: C = Cores(k+1,length)
117
+ sage: [c.to_grassmannian().reduced_word() for c in C]
118
+ [[2, 1, 0], [4, 1, 0], [3, 4, 0]]
119
+
120
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 543::
121
+
122
+ sage: la = Partition([4,3,3,3,2,2,1])
123
+ sage: c = la.to_core(4); c
124
+ [12, 8, 5, 5, 2, 2, 1]
125
+ sage: W = WeylGroup(['A',4,1])
126
+ sage: w = W.from_reduced_word([4,1,0,2,1,4,3,2,0,4,3,1,0,4,3,2,1,0])
127
+ sage: c.to_grassmannian() == w
128
+ True
129
+
130
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 643::
131
+
132
+ sage: A = AffinePermutationGroup(['A',2,1])
133
+ sage: w = A([-2,0,8])
134
+ sage: w.reduced_word()
135
+ [1, 0, 2, 1, 0]
136
+ sage: w.to_core()
137
+ [5, 3, 1]
138
+
139
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 767::
140
+
141
+ sage: la = Partition([4,3,3,3,2,2,1])
142
+ sage: la.k_conjugate(4)
143
+ [3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1]
144
+
145
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 1065::
146
+
147
+ sage: c = Core([3,1,1],3)
148
+ sage: c.weak_covers()
149
+ [[4, 2, 1, 1]]
150
+ sage: c.strong_covers()
151
+ [[5, 3, 1], [4, 2, 1, 1], [3, 2, 2, 1, 1]]
152
+
153
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 1073::
154
+
155
+ sage: kappa = Core([4,1],4)
156
+ sage: tau = Core([2,1],4)
157
+ sage: tau.weak_le(kappa)
158
+ False
159
+ sage: tau.strong_le(kappa)
160
+ True
161
+
162
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 1082::
163
+
164
+ sage: C = sum(([c for c in Cores(4,m)] for m in range(7)),[])
165
+ sage: ord = lambda x,y: x.weak_le(y)
166
+ sage: P = Poset([C, ord], cover_relations = False) # long time (3.99 s, 2013)
167
+ sage: H = P.hasse_diagram() # long time
168
+ sage: view(H) # not tested
169
+
170
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 1253::
171
+
172
+ sage: Sym = SymmetricFunctions(QQ)
173
+ sage: h = Sym.homogeneous()
174
+ sage: m = Sym.monomial()
175
+
176
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 1259::
177
+
178
+ sage: f = h[3,1]+h[2,2]
179
+ sage: m(f)
180
+ 10*m[1, 1, 1, 1] + 7*m[2, 1, 1] + 5*m[2, 2] + 4*m[3, 1] + 2*m[4]
181
+
182
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 1266::
183
+
184
+ sage: f.scalar(h[2,1,1])
185
+ 7
186
+ sage: m(f).coefficient([2,1,1])
187
+ 7
188
+
189
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 1274::
190
+
191
+ sage: p = Sym.power()
192
+ sage: e = Sym.elementary()
193
+ sage: sum( (-1)**(i-1)*e[4-i]*p[i] for i in range(1,4) ) - p[4]
194
+ 4*e[4]
195
+ sage: sum( (-1)**(i-1)*p[i]*e[4-i] for i in range(1,4) ) - p[4]
196
+ 1/6*p[1, 1, 1, 1] - p[2, 1, 1] + 1/2*p[2, 2] + 4/3*p[3, 1] - p[4]
197
+
198
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 1327::
199
+
200
+ sage: Sym = SymmetricFunctions(QQ)
201
+ sage: s = Sym.schur()
202
+ sage: m = Sym.monomial()
203
+ sage: h = Sym.homogeneous()
204
+ sage: m(s[1,1,1])
205
+ m[1, 1, 1]
206
+ sage: h(s[1,1,1])
207
+ h[1, 1, 1] - 2*h[2, 1] + h[3]
208
+
209
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 1338::
210
+
211
+ sage: p = Sym.power()
212
+ sage: s = Sym.schur()
213
+ sage: p(s[1,1,1])
214
+ 1/6*p[1, 1, 1] - 1/2*p[2, 1] + 1/3*p[3]
215
+ sage: p(s[2,1])
216
+ 1/3*p[1, 1, 1] - 1/3*p[3]
217
+ sage: p(s[3])
218
+ 1/6*p[1, 1, 1] + 1/2*p[2, 1] + 1/3*p[3]
219
+
220
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 1349::
221
+
222
+ sage: s[2,1].scalar(s[1,1,1])
223
+ 0
224
+ sage: s[2,1].scalar(s[2,1])
225
+ 1
226
+
227
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 1517::
228
+
229
+ sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
230
+ sage: Qp = Sym.hall_littlewood().Qp()
231
+ sage: Qp.base_ring()
232
+ Fraction Field of Univariate Polynomial Ring in t over Rational Field
233
+ sage: s = Sym.schur()
234
+ sage: s(Qp[1,1,1])
235
+ s[1, 1, 1] + (t^2+t)*s[2, 1] + t^3*s[3]
236
+
237
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 1530::
238
+
239
+ sage: t = Qp.t
240
+ sage: s[2,1].scalar(s[3].theta_qt(t,0))
241
+ t^2 - t
242
+
243
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 1536::
244
+
245
+ sage: s(Qp([1,1])).hl_creation_operator([3])
246
+ s[3, 1, 1] + t*s[3, 2] + (t^2+t)*s[4, 1] + t^3*s[5]
247
+ sage: s(Qp([3,1,1]))
248
+ s[3, 1, 1] + t*s[3, 2] + (t^2+t)*s[4, 1] + t^3*s[5]
249
+
250
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 1568::
251
+
252
+ sage: Sym = SymmetricFunctions(FractionField(QQ['q,t']))
253
+ sage: Mac = Sym.macdonald()
254
+ sage: H = Mac.H()
255
+ sage: s = Sym.schur()
256
+ sage: for la in Partitions(3):
257
+ ....: print("H {} = {}".format(la, s(H(la))))
258
+ H [3] = q^3*s[1, 1, 1] + (q^2+q)*s[2, 1] + s[3]
259
+ H [2, 1] = q*s[1, 1, 1] + (q*t+1)*s[2, 1] + t*s[3]
260
+ H [1, 1, 1] = s[1, 1, 1] + (t^2+t)*s[2, 1] + t^3*s[3]
261
+
262
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 1581::
263
+
264
+ sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
265
+ sage: Mac = Sym.macdonald(q=0)
266
+ sage: H = Mac.H()
267
+ sage: s = Sym.schur()
268
+ sage: for la in Partitions(3):
269
+ ....: print("H {} = {}".format(la, s(H(la))))
270
+ H [3] = s[3]
271
+ H [2, 1] = s[2, 1] + t*s[3]
272
+ H [1, 1, 1] = s[1, 1, 1] + (t^2+t)*s[2, 1] + t^3*s[3]
273
+ sage: Qp = Sym.hall_littlewood().Qp()
274
+ sage: s(Qp[1, 1, 1])
275
+ s[1, 1, 1] + (t^2+t)*s[2, 1] + t^3*s[3]
276
+
277
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 1596::
278
+
279
+ sage: Sym = SymmetricFunctions(FractionField(QQ['q']))
280
+ sage: Mac = Sym.macdonald(t=0)
281
+ sage: H = Mac.H()
282
+ sage: s = Sym.schur()
283
+ sage: for la in Partitions(3):
284
+ ....: print("H {} = {}".format(la, s(H(la))))
285
+ H [3] = q^3*s[1, 1, 1] + (q^2+q)*s[2, 1] + s[3]
286
+ H [2, 1] = q*s[1, 1, 1] + s[2, 1]
287
+ H [1, 1, 1] = s[1, 1, 1]
288
+
289
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 1717::
290
+
291
+ sage: t = Tableau([[1,1,1,2,3,7],[2,2,3,5],[3,4],[4,5],[6]])
292
+ sage: t.charge()
293
+ 9
294
+
295
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 1881::
296
+
297
+ sage: la = Partition([2,2])
298
+ sage: la.k_conjugate(2).conjugate()
299
+ [4]
300
+ sage: la = Partition([2,1,1])
301
+ sage: la.k_conjugate(2).conjugate()
302
+ [3, 1]
303
+ sage: la = Partition([1,1,1,1])
304
+ sage: la.k_conjugate(2).conjugate()
305
+ [2, 2]
306
+
307
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 1893::
308
+
309
+ sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
310
+ sage: ks = Sym.kschur(2)
311
+ sage: ks[2,2].omega_t_inverse()
312
+ 1/t^2*ks2[1, 1, 1, 1]
313
+ sage: ks[2,1,1].omega_t_inverse()
314
+ 1/t*ks2[2, 1, 1]
315
+ sage: ks[1,1,1,1].omega_t_inverse()
316
+ 1/t^2*ks2[2, 2]
317
+
318
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 1904::
319
+
320
+ sage: Sym = SymmetricFunctions(FractionField(QQ['q,t']))
321
+ sage: H = Sym.macdonald().H()
322
+ sage: ks = Sym.kschur(2)
323
+ sage: ks(H[2,2])
324
+ q^2*ks2[1, 1, 1, 1] + (q*t+q)*ks2[2, 1, 1] + ks2[2, 2]
325
+ sage: ks(H[2,1,1])
326
+ q*ks2[1, 1, 1, 1] + (q*t^2+1)*ks2[2, 1, 1] + t*ks2[2, 2]
327
+ sage: ks(H[1,1,1,1])
328
+ ks2[1, 1, 1, 1] + (t^3+t^2)*ks2[2, 1, 1] + t^4*ks2[2, 2]
329
+
330
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 2174::
331
+
332
+ sage: SemistandardTableaux([5,2],[4,2,1]).list()
333
+ [[[1, 1, 1, 1, 2], [2, 3]], [[1, 1, 1, 1, 3], [2, 2]]]
334
+
335
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 2179::
336
+
337
+ sage: P = Partitions(4)
338
+ sage: P.list()
339
+ [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]
340
+ sage: n = P.cardinality(); n
341
+ 5
342
+ sage: K = matrix(QQ,n,n,
343
+ ....: [[SemistandardTableaux(la,mu).cardinality()
344
+ ....: for mu in P] for la in P])
345
+ sage: K
346
+ [1 1 1 1 1]
347
+ [0 1 1 2 3]
348
+ [0 0 1 1 2]
349
+ [0 0 0 1 3]
350
+ [0 0 0 0 1]
351
+
352
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 2376::
353
+
354
+ sage: T = WeakTableaux(6, [5,3], [4,3,1])
355
+ sage: T.list()
356
+ [[[1, 1, 1, 1, 3], [2, 2, 2]], [[1, 1, 1, 1, 2], [2, 2, 3]]]
357
+
358
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 2382::
359
+
360
+ sage: k = 3
361
+ sage: c = Core([5,2,1], k+1)
362
+ sage: la = c.to_bounded_partition(); la
363
+ [3, 2, 1]
364
+ sage: for mu in Partitions(la.size(), max_part = 3):
365
+ ....: T = WeakTableaux(k, c, mu)
366
+ ....: print("weight {}".format(mu))
367
+ ....: print(T.list())
368
+ weight [3, 3]
369
+ []
370
+ weight [3, 2, 1]
371
+ [[[1, 1, 1, 2, 2], [2, 2], [3]]]
372
+ weight [3, 1, 1, 1]
373
+ [[[1, 1, 1, 2, 4], [2, 4], [3]], [[1, 1, 1, 2, 3], [2, 3], [4]]]
374
+ weight [2, 2, 2]
375
+ [[[1, 1, 2, 2, 3], [2, 3], [3]]]
376
+ weight [2, 2, 1, 1]
377
+ [[[1, 1, 2, 2, 4], [2, 4], [3]], [[1, 1, 2, 2, 3], [2, 3], [4]]]
378
+ weight [2, 1, 1, 1, 1]
379
+ [[[1, 1, 3, 4, 5], [2, 5], [3]], [[1, 1, 2, 3, 5], [3, 5], [4]],
380
+ [[1, 1, 2, 3, 4], [3, 4], [5]]]
381
+ weight [1, 1, 1, 1, 1, 1]
382
+ [[[1, 3, 4, 5, 6], [2, 6], [4]], [[1, 2, 4, 5, 6], [3, 6], [4]],
383
+ [[1, 2, 3, 4, 6], [4, 6], [5]], [[1, 2, 3, 4, 5], [4, 5], [6]]]
384
+
385
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 2487::
386
+
387
+ sage: Sym = SymmetricFunctions(QQ)
388
+ sage: ks = Sym.kschur(3, t=1)
389
+ sage: h = Sym.homogeneous()
390
+ sage: for mu in Partitions(7, max_part=3):
391
+ ....: print(h(ks(mu)))
392
+ h[3, 3, 1]
393
+ h[3, 2, 2] - h[3, 3, 1]
394
+ h[3, 2, 1, 1] - h[3, 2, 2]
395
+ h[3, 1, 1, 1, 1] - 2*h[3, 2, 1, 1] + h[3, 3, 1]
396
+ h[2, 2, 2, 1] - h[3, 2, 1, 1] - h[3, 2, 2] + h[3, 3, 1]
397
+ h[2, 2, 1, 1, 1] - 2*h[2, 2, 2, 1] - h[3, 1, 1, 1, 1]
398
+ + 2*h[3, 2, 1, 1] + h[3, 2, 2] - h[3, 3, 1]
399
+ h[2, 1, 1, 1, 1, 1] - 3*h[2, 2, 1, 1, 1] + 2*h[2, 2, 2, 1]
400
+ + h[3, 2, 1, 1] - h[3, 2, 2]
401
+ h[1, 1, 1, 1, 1, 1, 1] - 4*h[2, 1, 1, 1, 1, 1] + 4*h[2, 2, 1, 1, 1]
402
+ + 2*h[3, 1, 1, 1, 1] - 4*h[3, 2, 1, 1] + h[3, 3, 1]
403
+
404
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 2608::
405
+
406
+ sage: ks6 = Sym.kschur(6,t=1)
407
+ sage: ks6(h[4,3,1])
408
+ ks6[4, 3, 1] + ks6[4, 4] + ks6[5, 2, 1] + 2*ks6[5, 3]
409
+ + ks6[6, 1, 1] + ks6[6, 2]
410
+
411
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 2617::
412
+
413
+ sage: Sym = SymmetricFunctions(QQ)
414
+ sage: ks = Sym.kschur(3,t=1)
415
+ sage: ks.realization_of()
416
+ 3-bounded Symmetric Functions over Rational Field with t=1
417
+ sage: s = Sym.schur()
418
+ sage: s.realization_of()
419
+ Symmetric Functions over Rational Field
420
+
421
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 2658::
422
+
423
+ sage: k = 6
424
+ sage: weight = Partition([4,3,1])
425
+ sage: for la in Partitions(weight.size(), max_part = k):
426
+ ....: if la.dominates(weight):
427
+ ....: print(la)
428
+ ....: T = WeakTableaux(k, la, weight, representation = 'bounded')
429
+ ....: print(T.list())
430
+ [6, 2]
431
+ [[[1, 1, 1, 1, 2, 2], [2, 3]]]
432
+ [6, 1, 1]
433
+ [[[1, 1, 1, 1, 2, 2], [2], [3]]]
434
+ [5, 3]
435
+ [[[1, 1, 1, 1, 3], [2, 2, 2]], [[1, 1, 1, 1, 2], [2, 2, 3]]]
436
+ [5, 2, 1]
437
+ [[[1, 1, 1, 1, 2], [2, 2], [3]]]
438
+ [4, 4]
439
+ [[[1, 1, 1, 1], [2, 2, 2, 3]]]
440
+ [4, 3, 1]
441
+ [[[1, 1, 1, 1], [2, 2, 2], [3]]]
442
+
443
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 2740::
444
+
445
+ sage: mu = Partition([3,2,1])
446
+ sage: c = mu.to_core(3)
447
+ sage: w = c.to_grassmannian()
448
+ sage: w.stanley_symmetric_function()
449
+ 4*m[1, 1, 1, 1, 1, 1] + 3*m[2, 1, 1, 1, 1] + 2*m[2, 2, 1, 1]
450
+ + m[2, 2, 2] + 2*m[3, 1, 1, 1] + m[3, 2, 1]
451
+ sage: sorted(w.reduced_words())
452
+ [[0, 2, 3, 2, 1, 0],
453
+ [0, 3, 2, 1, 3, 0],
454
+ [0, 3, 2, 3, 1, 0],
455
+ [2, 0, 3, 2, 1, 0]]
456
+
457
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 2752::
458
+
459
+ sage: Sym = SymmetricFunctions(QQ)
460
+ sage: Q3 = Sym.kBoundedQuotient(3,t=1)
461
+ sage: F3 = Q3.affineSchur()
462
+ sage: m = Q3.kmonomial()
463
+ sage: m(F3([3,2,1]))
464
+ 4*m3[1, 1, 1, 1, 1, 1] + 3*m3[2, 1, 1, 1, 1] + 2*m3[2, 2, 1, 1]
465
+ + m3[2, 2, 2] + 2*m3[3, 1, 1, 1] + m3[3, 2, 1]
466
+
467
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 2799::
468
+
469
+ sage: Sym = SymmetricFunctions(QQ)
470
+ sage: Q3 = Sym.kBoundedQuotient(3,t=1)
471
+ sage: F3 = Q3.affineSchur()
472
+ sage: h = Sym.homogeneous()
473
+ sage: f = F3[3,2,1]*h[1]; f
474
+ F3[3, 1, 1, 1, 1] + 3*F3[3, 2, 1, 1] + F3[3, 2, 2] + 2*F3[3, 3, 1]
475
+
476
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 2810::
477
+
478
+ sage: c = Partition([3,2,1]).to_core(3)
479
+ sage: for p in sorted(f.support()): # Sorted for consistant doctest ordering
480
+ ....: print("{} {}".format(p, SkewPartition([p.to_core(3).to_partition(),c.to_partition()])))
481
+ [3, 1, 1, 1, 1] [[5, 2, 1, 1, 1], [5, 2, 1]]
482
+ [3, 2, 1, 1] [[6, 3, 1, 1], [5, 2, 1]]
483
+ [3, 2, 2] [[5, 2, 2], [5, 2, 1]]
484
+ [3, 3, 1] [[7, 4, 1], [5, 2, 1]]
485
+
486
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 2976::
487
+
488
+ sage: T = StrongTableau([[-1,-1,-2,-3],[-2,3,-3,4],[2,3],[-3,-4]], 3)
489
+ sage: T.to_transposition_sequence()
490
+ [[-2, -1], [3, 4], [0, 2], [-3, -2], [2, 3], [-1, 0], [1, 2], [0, 1]]
491
+ sage: T.intermediate_shapes()
492
+ [[], [2], [3, 1, 1], [4, 3, 2, 1], [4, 4, 2, 2]]
493
+ sage: [T.content_of_marked_head(v+1) for v in range(8)]
494
+ [0, 1, -1, 2, -3, 1, 3, -2]
495
+ sage: T.left_action([0,1])
496
+ [[-1, -1, -2, -3, 5], [-2, 3, -3, 4], [2, 3, -5], [-3, -4], [5]]
497
+
498
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 2999::
499
+
500
+ sage: ST = StrongTableaux(3, [6,3,1,1], [4,2,1]); ST
501
+ Set of strong 3-tableaux of shape [6, 3, 1, 1] and of weight (4, 2, 1)
502
+ sage: ST.list()
503
+ [[[-1, -1, -1, -1, 2, 2], [1, -2, -2], [-3], [3]],
504
+ [[-1, -1, -1, -1, 2, -2], [1, -2, 2], [-3], [3]],
505
+ [[-1, -1, -1, -1, -2, -2], [1, 2, 2], [-3], [3]],
506
+ [[-1, -1, -1, -1, 2, 3], [1, -2, 3], [-2], [-3]],
507
+ [[-1, -1, -1, -1, 2, 3], [1, -2, -3], [-2], [3]],
508
+ [[-1, -1, -1, -1, 2, -3], [1, -2, 3], [-2], [3]],
509
+ [[-1, -1, -1, -1, -2, 3], [1, 2, 3], [-2], [-3]],
510
+ [[-1, -1, -1, -1, -2, 3], [1, 2, -3], [-2], [3]],
511
+ [[-1, -1, -1, -1, -2, -3], [1, 2, 3], [-2], [3]]]
512
+ sage: ks = SymmetricFunctions(QQ).kschur(3,1)
513
+ sage: m = SymmetricFunctions(QQ).m()
514
+ sage: m(ks[3,2,1,1]).coefficient([4,2,1])
515
+ 9
516
+
517
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 3243::
518
+
519
+ sage: W = WeylGroup(['A',3,1])
520
+ sage: [w.reduced_word() for w in W.pieri_factors()]
521
+ [[], [0], [1], [2], [3], [1, 0], [2, 0], [0, 3], [2, 1], [3, 1], [3, 2],
522
+ [2, 1, 0], [1, 0, 3], [0, 3, 2], [3, 2, 1]]
523
+
524
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 3251::
525
+
526
+ sage: A = NilCoxeterAlgebra(WeylGroup(['A',3,1]), prefix = 'A')
527
+ sage: A.homogeneous_noncommutative_variables([2])
528
+ A[1,0] + A[2,0] + A[0,3] + A[3,2] + A[3,1] + A[2,1]
529
+
530
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 3258::
531
+
532
+ sage: A.k_schur_noncommutative_variables([2,2])
533
+ A[0,3,1,0] + A[3,1,2,0] + A[1,2,0,1] + A[3,2,0,3] + A[2,0,3,1] + A[2,3,1,2]
534
+
535
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 3265::
536
+
537
+ sage: Sym = SymmetricFunctions(ZZ)
538
+ sage: ks = Sym.kschur(5,t=1)
539
+ sage: ks[2,1]*ks[2,1]
540
+ ks5[2, 2, 1, 1] + ks5[2, 2, 2] + ks5[3, 1, 1, 1] + 2*ks5[3, 2, 1]
541
+ + ks5[3, 3] + ks5[4, 2]
542
+
543
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 3536::
544
+
545
+ sage: la = Partition([3,2,1,1])
546
+ sage: la.k_atom(4)
547
+ [[[1, 1, 1, 4], [2, 2], [3]], [[1, 1, 1], [2, 2], [3], [4]]]
548
+
549
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 3639::
550
+
551
+ sage: s = SymmetricFunctions(QQ['t']).schur()
552
+ sage: G1 = s[1]
553
+ sage: G211 = G1.hl_creation_operator([2,1]); G211
554
+ s[2, 1, 1] + t*s[2, 2] + t*s[3, 1]
555
+ sage: G3211 = G211.hl_creation_operator([3]); G3211
556
+ s[3, 2, 1, 1] + t*s[3, 2, 2] + t*s[3, 3, 1] + t*s[4, 1, 1, 1]
557
+ + (2*t^2+t)*s[4, 2, 1] + t^2*s[4, 3] + (t^3+t^2)*s[5, 1, 1]
558
+ + 2*t^3*s[5, 2] + t^4*s[6, 1]
559
+
560
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 3954::
561
+
562
+ sage: T = WeakTableau([[1,1,2,3,4,4,5,5,6],[2,3,5,5,6],[3,4,7],
563
+ ....: [5,6],[6],[7]],4)
564
+ sage: T.k_charge()
565
+ 12
566
+
567
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 3962::
568
+
569
+ sage: Sym = SymmetricFunctions(QQ['t'].fraction_field())
570
+ sage: Qp = Sym.hall_littlewood().Qp()
571
+ sage: ks = Sym.kBoundedSubspace(3).kschur()
572
+ sage: t = ks.base_ring().gen()
573
+ sage: ks(Qp[3,2,2,1])
574
+ ks3[3, 2, 2, 1] + t*ks3[3, 3, 1, 1] + t^2*ks3[3, 3, 2]
575
+ sage: sum(t^T.k_charge()*ks(la) for la in Partitions(8, max_part=3)
576
+ ....: for T in WeakTableaux(3,la,[3,2,2,1],representation = 'bounded'))
577
+ ks3[3, 2, 2, 1] + t*ks3[3, 3, 1, 1] + t^2*ks3[3, 3, 2]
578
+
579
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 4055::
580
+
581
+ sage: t = var('t') # needs sage.symbolic
582
+ sage: for mu in Partitions(5): # needs sage.symbolic
583
+ ....: print("{} {}".format(mu, sum(t^T.spin() for T in StrongTableaux(3,[4,1,1],mu))))
584
+ [5] 0
585
+ [4, 1] t
586
+ [3, 2] t
587
+ [3, 1, 1] 2*t + 1
588
+ [2, 2, 1] 2*t + 1
589
+ [2, 1, 1, 1] 3*t + 3
590
+ [1, 1, 1, 1, 1] 4*t + 6
591
+ sage: StrongTableaux( 3, [4,1,1], (1,)*5 ).cardinality()
592
+ 10
593
+ sage: StrongTableaux( 3, [4,1,1], (1,)*5 ).list()
594
+ [[[-1, -2, -3, 4], [-4], [-5]],
595
+ [[-1, -2, -3, -4], [4], [-5]],
596
+ [[-1, -2, -3, -5], [-4], [4]],
597
+ [[-1, -2, 4, -4], [-3], [-5]],
598
+ [[-1, -2, 4, -5], [-3], [-4]],
599
+ [[-1, -2, -4, -5], [-3], [4]],
600
+ [[-1, -3, 4, -4], [-2], [-5]],
601
+ [[-1, -3, 4, -5], [-2], [-4]],
602
+ [[-1, -3, -4, -5], [-2], [4]],
603
+ [[-1, 4, -4, -5], [-2], [-3]]]
604
+
605
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 4385::
606
+
607
+ sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
608
+ sage: ks4 = Sym.kschur(4)
609
+ sage: ks4([3, 1, 1]).hl_creation_operator([1])
610
+ (t-1)*ks4[2, 2, 1, 1] + t^2*ks4[3, 1, 1, 1] + t^3*ks4[3, 2, 1]
611
+ + (t^3-t^2)*ks4[3, 3] + t^4*ks4[4, 1, 1]
612
+ sage: ks4([3, 1, 1]).hl_creation_operator([2])
613
+ t*ks4[3, 2, 1, 1] + t^2*ks4[3, 3, 1] + t^2*ks4[4, 1, 1, 1]
614
+ + t^3*ks4[4, 2, 1]
615
+ sage: ks4([3, 1, 1]).hl_creation_operator([3])
616
+ ks4[3, 3, 1, 1] + t*ks4[4, 2, 1, 1] + t^2*ks4[4, 3, 1]
617
+ sage: ks4([3, 1, 1]).hl_creation_operator([4])
618
+ ks4[4, 3, 1, 1]
619
+
620
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 4456::
621
+
622
+ sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
623
+ sage: ks3 = Sym.kschur(3)
624
+ sage: ks3([3,2]).omega()
625
+ Traceback (most recent call last):
626
+ ...
627
+ ValueError: t^2*s[1, 1, 1, 1, 1] + t*s[2, 1, 1, 1] + s[2, 2, 1] is not
628
+ in the image
629
+
630
+ sage: s = Sym.schur()
631
+ sage: s(ks3[3,2])
632
+ s[3, 2] + t*s[4, 1] + t^2*s[5]
633
+ sage: t = s.base_ring().gen()
634
+ sage: invert = lambda x: s.base_ring()(x.subs(t=1/t))
635
+ sage: ks3(s(ks3([3,2])).omega().map_coefficients(invert))
636
+ 1/t^2*ks3[1, 1, 1, 1, 1]
637
+
638
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 4478::
639
+
640
+ sage: ks3[3,2].omega_t_inverse()
641
+ 1/t^2*ks3[1, 1, 1, 1, 1]
642
+
643
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 4686::
644
+
645
+ sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
646
+ sage: ks3 = Sym.kschur(3)
647
+ sage: ks3[3,1].coproduct()
648
+ ks3[] # ks3[3, 1] + ks3[1] # ks3[2, 1] + (t+1)*ks3[1] # ks3[3]
649
+ + ks3[1, 1] # ks3[2] + ks3[2] # ks3[1, 1] + (t+1)*ks3[2] # ks3[2]
650
+ + ks3[2, 1] # ks3[1] + (t+1)*ks3[3] # ks3[1] + ks3[3, 1] # ks3[]
651
+
652
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 4720::
653
+
654
+ sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
655
+ sage: ks2 = Sym.kschur(2)
656
+ sage: ks3 = Sym.kschur(3)
657
+ sage: ks5 = Sym.kschur(5)
658
+ sage: ks5(ks3[2])*ks5(ks2[1])
659
+ ks5[2, 1] + ks5[3]
660
+ sage: ks5(ks3[2])*ks5(ks2[2,1])
661
+ ks5[2, 2, 1] + ks5[3, 1, 1] + (t+1)*ks5[3, 2] + (t+1)*ks5[4, 1]
662
+ + t*ks5[5]
663
+
664
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 4779::
665
+
666
+ sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
667
+ sage: ks3 = Sym.kschur(3)
668
+ sage: ks4 = Sym.kschur(4)
669
+ sage: ks5 = Sym.kschur(5)
670
+ sage: ks4(ks3[3,2,1,1])
671
+ ks4[3, 2, 1, 1] + t*ks4[3, 3, 1] + t*ks4[4, 1, 1, 1] + t^2*ks4[4, 2, 1]
672
+ sage: ks5(ks3[3,2,1,1])
673
+ ks5[3, 2, 1, 1] + t*ks5[3, 3, 1] + t*ks5[4, 1, 1, 1] + t^2*ks5[4, 2, 1]
674
+ + t^2*ks5[4, 3] + t^3*ks5[5, 1, 1]
675
+
676
+ sage: ks5(ks4[3,2,1,1])
677
+ ks5[3, 2, 1, 1]
678
+ sage: ks5(ks4[4,3,3,2,1,1])
679
+ ks5[4, 3, 3, 2, 1, 1] + t*ks5[4, 4, 3, 1, 1, 1]
680
+ + t^2*ks5[5, 3, 3, 1, 1, 1]
681
+ sage: ks5(ks4[4,3,3,2,1,1,1])
682
+ ks5[4, 3, 3, 2, 1, 1, 1] + t*ks5[4, 3, 3, 3, 1, 1]
683
+ + t*ks5[4, 4, 3, 1, 1, 1, 1] + t^2*ks5[4, 4, 3, 2, 1, 1]
684
+ + t^2*ks5[5, 3, 3, 1, 1, 1, 1] + t^3*ks5[5, 3, 3, 2, 1, 1]
685
+ + t^4*ks5[5, 4, 3, 1, 1, 1]
686
+
687
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 4858::
688
+
689
+ sage: Sym = SymmetricFunctions(FractionField(QQ['q,t']))
690
+ sage: H = Sym.macdonald().H()
691
+ sage: ks = Sym.kschur(3)
692
+ sage: ks(H[3])
693
+ q^3*ks3[1, 1, 1] + (q^2+q)*ks3[2, 1] + ks3[3]
694
+ sage: ks(H[3,2]) # long time (2.11 s, 2013)
695
+ q^4*ks3[1, 1, 1, 1, 1] + (q^3*t+q^3+q^2)*ks3[2, 1, 1, 1]
696
+ + (q^3*t+q^2*t+q^2+q)*ks3[2, 2, 1]
697
+ + (q^2*t+q*t+q)*ks3[3, 1, 1] + ks3[3, 2]
698
+ sage: ks(H[3,1,1])
699
+ q^3*ks3[1, 1, 1, 1, 1] + (q^3*t^2+q^2+q)*ks3[2, 1, 1, 1]
700
+ + (q^2*t^2+q^2*t+q*t+q)*ks3[2, 2, 1]
701
+ + (q^2*t^2+q*t^2+1)*ks3[3, 1, 1] + t*ks3[3, 2]
702
+
703
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 4965::
704
+
705
+ sage: Sym = SymmetricFunctions(QQ)
706
+ sage: Q3 = Sym.kBoundedQuotient(3,t=1)
707
+ sage: F = Q3.affineSchur()
708
+ sage: p = Sym.power()
709
+ sage: F[2,1]*p[2]
710
+ -F3[1, 1, 1, 1, 1] - F3[2, 1, 1, 1] + F3[3, 1, 1] + F3[3, 2]
711
+
712
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 5028::
713
+
714
+ sage: R = QQ[I]; z4 = R.zeta(4)
715
+ sage: Sym = SymmetricFunctions(R)
716
+ sage: ks3z = Sym.kschur(3,t=z4)
717
+ sage: ks3 = Sym.kschur(3,t=1)
718
+ sage: p = Sym.p()
719
+ sage: p(ks3z[2, 2, 2, 2, 2, 2, 2, 2]) # long time (17s on sage.math, 2013)
720
+ 1/12*p[4, 4, 4, 4] + 1/4*p[8, 8] - 1/3*p[12, 4]
721
+ sage: p(ks3[2,2])
722
+ 1/12*p[1, 1, 1, 1] + 1/4*p[2, 2] - 1/3*p[3, 1]
723
+ sage: p(ks3[2,2]).plethysm(p[4])
724
+ 1/12*p[4, 4, 4, 4] + 1/4*p[8, 8] - 1/3*p[12, 4]
725
+
726
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 5042::
727
+
728
+ sage: ks3z[3, 3, 3, 3]*ks3z[2, 1] # long time (10s on sage.math, 2013)
729
+ ks3[3, 3, 3, 3, 2, 1]
730
+
731
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 5197::
732
+
733
+ sage: Sym = SymmetricFunctions(QQ['t'].fraction_field())
734
+ sage: Q3 = Sym.kBoundedQuotient(3)
735
+ sage: dks = Q3.dual_k_Schur()
736
+ sage: dks[2, 1, 1]*dks[3, 2, 1] # long time (25.7s, 2013)
737
+ (t^7+t^6)*dks3[2, 1, 1, 1, 1, 1, 1, 1, 1]
738
+ + (t^4+t^3+t^2)*dks3[2, 2, 2, 1, 1, 1, 1]
739
+ + (t^3+t^2)*dks3[2, 2, 2, 2, 1, 1]
740
+ + (t^5+2*t^4+2*t^3+t^2)*dks3[2, 2, 2, 2, 2]
741
+ + (t^5+2*t^4+t^3)*dks3[3, 1, 1, 1, 1, 1, 1, 1]
742
+ + (2*t^5+3*t^4+4*t^3+3*t^2+t)*dks3[3, 2, 1, 1, 1, 1, 1]
743
+ + (2*t^2+t+1)*dks3[3, 2, 2, 1, 1, 1]
744
+ + (t^4+3*t^3+4*t^2+3*t+1)*dks3[3, 2, 2, 2, 1]
745
+ + (t^5+t^4+4*t^3+4*t^2+3*t+1)*dks3[3, 3, 1, 1, 1, 1]
746
+ + (2*t^5+3*t^4+5*t^3+6*t^2+4*t+2)*dks3[3, 3, 2, 1, 1]
747
+ + (t^4+t^3+3*t^2+2*t+1)*dks3[3, 3, 2, 2]
748
+ + (t^5+3*t^4+3*t^3+4*t^2+2*t+1)*dks3[3, 3, 3, 1]
749
+
750
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 5294::
751
+
752
+ sage: ks2 = SymmetricFunctions(QQ['t']).kschur(2)
753
+ sage: HLQp = SymmetricFunctions(QQ['t']).hall_littlewood().Qp()
754
+ sage: ks2( (HLQp(ks2[1,1])*HLQp(ks2[1])).restrict_parts(2) )
755
+ ks2[1, 1, 1] + (-t+1)*ks2[2, 1]
756
+
757
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 5303::
758
+
759
+ sage: dks = SymmetricFunctions(QQ['t']).kBoundedQuotient(2).dks()
760
+ sage: dks[2,1].coproduct()
761
+ dks2[] # dks2[2, 1] + (-t+1)*dks2[1] # dks2[1, 1] +
762
+ dks2[1] # dks2[2] + (-t+1)*dks2[1, 1] # dks2[1] +
763
+ dks2[2] # dks2[1] + dks2[2, 1] # dks2[]
764
+
765
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 5560::
766
+
767
+ sage: Sym = SymmetricFunctions(QQ)
768
+ sage: Sym3 = Sym.kBoundedSubspace(3,t=1)
769
+ sage: Kks3 = Sym3.K_kschur()
770
+ sage: s = Sym.s()
771
+ sage: m = Sym.m()
772
+ sage: s(Kks3[3,1])
773
+ s[3] + s[3, 1] + s[4]
774
+ sage: m(Kks3[3,1])
775
+ m[1, 1, 1] + 4*m[1, 1, 1, 1] + m[2, 1] + 3*m[2, 1, 1] + 2*m[2, 2]
776
+ + m[3] + 2*m[3, 1] + m[4]
777
+ sage: ks3 = Sym3.kschur()
778
+ sage: ks3(Kks3[3,1])
779
+ ks3[3] + ks3[3, 1]
780
+ sage: Kks3[3,1]*Kks3[2] # long time (11.85 s, 2013)
781
+ -Kks3[3, 1, 1] - Kks3[3, 2] + Kks3[3, 2, 1] + Kks3[3, 3]
782
+ sage: Kks3[3,1].coproduct()
783
+ Kks3[] # Kks3[3, 1] - Kks3[1] # Kks3[2] + Kks3[1] # Kks3[2, 1]
784
+ + 2*Kks3[1] # Kks3[3] + Kks3[1, 1] # Kks3[2] - Kks3[2] # Kks3[1]
785
+ + Kks3[2] # Kks3[1, 1] + 2*Kks3[2] # Kks3[2] + Kks3[2, 1] # Kks3[1]
786
+ + 2*Kks3[3] # Kks3[1] + Kks3[3, 1] # Kks3[]
787
+
788
+ Sage example in ./kschurnotes/notes-mike-anne.tex, line 5588::
789
+
790
+ sage: SymQ3 = Sym.kBoundedQuotient(3,t=1)
791
+ sage: G1 = SymQ3.AffineGrothendieckPolynomial([1],6)
792
+ sage: G2 = SymQ3.AffineGrothendieckPolynomial([2],6)
793
+ sage: (G1*G2).lift().scalar(Kks3[3,1])
794
+ -1
795
+ """