passagemath-polyhedra 10.6.31rc3__cp314-cp314-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-polyhedra might be problematic. Click here for more details.
- passagemath_polyhedra-10.6.31rc3.dist-info/METADATA +367 -0
- passagemath_polyhedra-10.6.31rc3.dist-info/METADATA.bak +369 -0
- passagemath_polyhedra-10.6.31rc3.dist-info/RECORD +208 -0
- passagemath_polyhedra-10.6.31rc3.dist-info/WHEEL +5 -0
- passagemath_polyhedra-10.6.31rc3.dist-info/top_level.txt +2 -0
- passagemath_polyhedra.libs/libgcc_s-0cd532bd.so.1 +0 -0
- passagemath_polyhedra.libs/libgmp-0e7fc84e.so.10.5.0 +0 -0
- passagemath_polyhedra.libs/libgomp-8949ffbe.so.1.0.0 +0 -0
- passagemath_polyhedra.libs/libstdc++-5d72f927.so.6.0.33 +0 -0
- sage/all__sagemath_polyhedra.py +50 -0
- sage/game_theory/all.py +8 -0
- sage/game_theory/catalog.py +6 -0
- sage/game_theory/catalog_normal_form_games.py +923 -0
- sage/game_theory/cooperative_game.py +844 -0
- sage/game_theory/matching_game.py +1181 -0
- sage/game_theory/normal_form_game.py +2697 -0
- sage/game_theory/parser.py +275 -0
- sage/geometry/all__sagemath_polyhedra.py +22 -0
- sage/geometry/cone.py +6940 -0
- sage/geometry/cone_catalog.py +847 -0
- sage/geometry/cone_critical_angles.py +1027 -0
- sage/geometry/convex_set.py +1119 -0
- sage/geometry/fan.py +3743 -0
- sage/geometry/fan_isomorphism.py +389 -0
- sage/geometry/fan_morphism.py +1884 -0
- sage/geometry/hasse_diagram.py +202 -0
- sage/geometry/hyperplane_arrangement/affine_subspace.py +390 -0
- sage/geometry/hyperplane_arrangement/all.py +1 -0
- sage/geometry/hyperplane_arrangement/arrangement.py +3895 -0
- sage/geometry/hyperplane_arrangement/check_freeness.py +145 -0
- sage/geometry/hyperplane_arrangement/hyperplane.py +773 -0
- sage/geometry/hyperplane_arrangement/library.py +825 -0
- sage/geometry/hyperplane_arrangement/ordered_arrangement.py +642 -0
- sage/geometry/hyperplane_arrangement/plot.py +520 -0
- sage/geometry/integral_points.py +35 -0
- sage/geometry/integral_points_generic_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/geometry/integral_points_generic_dense.pyx +7 -0
- sage/geometry/lattice_polytope.py +5894 -0
- sage/geometry/linear_expression.py +773 -0
- sage/geometry/newton_polygon.py +767 -0
- sage/geometry/point_collection.cpython-314-x86_64-linux-musl.so +0 -0
- sage/geometry/point_collection.pyx +1008 -0
- sage/geometry/polyhedral_complex.py +2616 -0
- sage/geometry/polyhedron/all.py +8 -0
- sage/geometry/polyhedron/backend_cdd.py +460 -0
- sage/geometry/polyhedron/backend_cdd_rdf.py +231 -0
- sage/geometry/polyhedron/backend_field.py +347 -0
- sage/geometry/polyhedron/backend_normaliz.py +2503 -0
- sage/geometry/polyhedron/backend_number_field.py +168 -0
- sage/geometry/polyhedron/backend_polymake.py +765 -0
- sage/geometry/polyhedron/backend_ppl.py +582 -0
- sage/geometry/polyhedron/base.py +1206 -0
- sage/geometry/polyhedron/base0.py +1444 -0
- sage/geometry/polyhedron/base1.py +886 -0
- sage/geometry/polyhedron/base2.py +812 -0
- sage/geometry/polyhedron/base3.py +1845 -0
- sage/geometry/polyhedron/base4.py +1262 -0
- sage/geometry/polyhedron/base5.py +2700 -0
- sage/geometry/polyhedron/base6.py +1741 -0
- sage/geometry/polyhedron/base7.py +997 -0
- sage/geometry/polyhedron/base_QQ.py +1258 -0
- sage/geometry/polyhedron/base_RDF.py +98 -0
- sage/geometry/polyhedron/base_ZZ.py +934 -0
- sage/geometry/polyhedron/base_mutable.py +215 -0
- sage/geometry/polyhedron/base_number_field.py +122 -0
- sage/geometry/polyhedron/cdd_file_format.py +155 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/all.py +1 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/base.cpython-314-x86_64-linux-musl.so +0 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/base.pxd +76 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/base.pyx +3859 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/combinatorial_face.cpython-314-x86_64-linux-musl.so +0 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/combinatorial_face.pxd +39 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/combinatorial_face.pyx +1038 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/conversions.cpython-314-x86_64-linux-musl.so +0 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/conversions.pxd +9 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/conversions.pyx +501 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/face_data_structure.pxd +207 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/face_iterator.cpython-314-x86_64-linux-musl.so +0 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/face_iterator.pxd +102 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/face_iterator.pyx +2274 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/face_list_data_structure.cpython-314-x86_64-linux-musl.so +0 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/face_list_data_structure.pxd +370 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/face_list_data_structure.pyx +84 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/list_of_faces.cpython-314-x86_64-linux-musl.so +0 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/list_of_faces.pxd +31 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/list_of_faces.pyx +587 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/polyhedron_face_lattice.cpython-314-x86_64-linux-musl.so +0 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/polyhedron_face_lattice.pxd +52 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/polyhedron_face_lattice.pyx +560 -0
- sage/geometry/polyhedron/constructor.py +773 -0
- sage/geometry/polyhedron/double_description.py +753 -0
- sage/geometry/polyhedron/double_description_inhomogeneous.py +564 -0
- sage/geometry/polyhedron/face.py +1060 -0
- sage/geometry/polyhedron/generating_function.py +1810 -0
- sage/geometry/polyhedron/lattice_euclidean_group_element.py +178 -0
- sage/geometry/polyhedron/library.py +3502 -0
- sage/geometry/polyhedron/misc.py +121 -0
- sage/geometry/polyhedron/modules/all.py +1 -0
- sage/geometry/polyhedron/modules/formal_polyhedra_module.py +155 -0
- sage/geometry/polyhedron/palp_database.py +447 -0
- sage/geometry/polyhedron/parent.py +1279 -0
- sage/geometry/polyhedron/plot.py +1986 -0
- sage/geometry/polyhedron/ppl_lattice_polygon.py +556 -0
- sage/geometry/polyhedron/ppl_lattice_polytope.py +1257 -0
- sage/geometry/polyhedron/representation.py +1723 -0
- sage/geometry/pseudolines.py +515 -0
- sage/geometry/relative_interior.py +445 -0
- sage/geometry/toric_plotter.py +1103 -0
- sage/geometry/triangulation/all.py +2 -0
- sage/geometry/triangulation/base.cpython-314-x86_64-linux-musl.so +0 -0
- sage/geometry/triangulation/base.pyx +963 -0
- sage/geometry/triangulation/data.h +147 -0
- sage/geometry/triangulation/data.pxd +4 -0
- sage/geometry/triangulation/element.py +914 -0
- sage/geometry/triangulation/functions.h +10 -0
- sage/geometry/triangulation/functions.pxd +4 -0
- sage/geometry/triangulation/point_configuration.py +2256 -0
- sage/geometry/triangulation/triangulations.h +49 -0
- sage/geometry/triangulation/triangulations.pxd +7 -0
- sage/geometry/voronoi_diagram.py +319 -0
- sage/interfaces/all__sagemath_polyhedra.py +1 -0
- sage/interfaces/polymake.py +2028 -0
- sage/numerical/all.py +13 -0
- sage/numerical/all__sagemath_polyhedra.py +11 -0
- sage/numerical/backends/all.py +1 -0
- sage/numerical/backends/all__sagemath_polyhedra.py +1 -0
- sage/numerical/backends/cvxopt_backend.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/backends/cvxopt_backend.pyx +1006 -0
- sage/numerical/backends/cvxopt_backend_test.py +19 -0
- sage/numerical/backends/cvxopt_sdp_backend.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/backends/cvxopt_sdp_backend.pyx +382 -0
- sage/numerical/backends/cvxpy_backend.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/backends/cvxpy_backend.pxd +41 -0
- sage/numerical/backends/cvxpy_backend.pyx +934 -0
- sage/numerical/backends/cvxpy_backend_test.py +13 -0
- sage/numerical/backends/generic_backend_test.py +24 -0
- sage/numerical/backends/interactivelp_backend.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/backends/interactivelp_backend.pxd +36 -0
- sage/numerical/backends/interactivelp_backend.pyx +1231 -0
- sage/numerical/backends/interactivelp_backend_test.py +12 -0
- sage/numerical/backends/logging_backend.py +391 -0
- sage/numerical/backends/matrix_sdp_backend.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/backends/matrix_sdp_backend.pxd +15 -0
- sage/numerical/backends/matrix_sdp_backend.pyx +478 -0
- sage/numerical/backends/ppl_backend.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/backends/ppl_backend.pyx +1126 -0
- sage/numerical/backends/ppl_backend_test.py +13 -0
- sage/numerical/backends/scip_backend.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/backends/scip_backend.pxd +22 -0
- sage/numerical/backends/scip_backend.pyx +1289 -0
- sage/numerical/backends/scip_backend_test.py +13 -0
- sage/numerical/interactive_simplex_method.py +5338 -0
- sage/numerical/knapsack.py +665 -0
- sage/numerical/linear_functions.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/linear_functions.pxd +31 -0
- sage/numerical/linear_functions.pyx +1648 -0
- sage/numerical/linear_tensor.py +470 -0
- sage/numerical/linear_tensor_constraints.py +448 -0
- sage/numerical/linear_tensor_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/linear_tensor_element.pxd +6 -0
- sage/numerical/linear_tensor_element.pyx +459 -0
- sage/numerical/mip.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/mip.pxd +40 -0
- sage/numerical/mip.pyx +3667 -0
- sage/numerical/sdp.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/sdp.pxd +39 -0
- sage/numerical/sdp.pyx +1433 -0
- sage/rings/all__sagemath_polyhedra.py +3 -0
- sage/rings/polynomial/all__sagemath_polyhedra.py +10 -0
- sage/rings/polynomial/omega.py +982 -0
- sage/schemes/all__sagemath_polyhedra.py +2 -0
- sage/schemes/toric/all.py +10 -0
- sage/schemes/toric/chow_group.py +1248 -0
- sage/schemes/toric/divisor.py +2082 -0
- sage/schemes/toric/divisor_class.cpython-314-x86_64-linux-musl.so +0 -0
- sage/schemes/toric/divisor_class.pyx +322 -0
- sage/schemes/toric/fano_variety.py +1606 -0
- sage/schemes/toric/homset.py +650 -0
- sage/schemes/toric/ideal.py +451 -0
- sage/schemes/toric/library.py +1322 -0
- sage/schemes/toric/morphism.py +1958 -0
- sage/schemes/toric/points.py +1032 -0
- sage/schemes/toric/sheaf/all.py +1 -0
- sage/schemes/toric/sheaf/constructor.py +302 -0
- sage/schemes/toric/sheaf/klyachko.py +921 -0
- sage/schemes/toric/toric_subscheme.py +905 -0
- sage/schemes/toric/variety.py +3460 -0
- sage/schemes/toric/weierstrass.py +1078 -0
- sage/schemes/toric/weierstrass_covering.py +457 -0
- sage/schemes/toric/weierstrass_higher.py +288 -0
- sage_wheels/share/reflexive_polytopes/Full2d/zzdb.info +10 -0
- sage_wheels/share/reflexive_polytopes/Full2d/zzdb.v03 +0 -0
- sage_wheels/share/reflexive_polytopes/Full2d/zzdb.v04 +0 -0
- sage_wheels/share/reflexive_polytopes/Full2d/zzdb.v05 +1 -0
- sage_wheels/share/reflexive_polytopes/Full2d/zzdb.v06 +1 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.info +22 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v04 +0 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v05 +0 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v06 +0 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v07 +0 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v08 +0 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v09 +0 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v10 +0 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v11 +1 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v12 +1 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v13 +1 -0
- sage_wheels/share/reflexive_polytopes/reflexive_polytopes_2d +80 -0
- sage_wheels/share/reflexive_polytopes/reflexive_polytopes_3d +37977 -0
|
@@ -0,0 +1,665 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-polyhedra
|
|
2
|
+
r"""
|
|
3
|
+
Knapsack Problems
|
|
4
|
+
|
|
5
|
+
This module implements a number of solutions to various knapsack problems,
|
|
6
|
+
otherwise known as linear integer programming problems. Solutions to the
|
|
7
|
+
following knapsack problems are implemented:
|
|
8
|
+
|
|
9
|
+
- Solving the subset sum problem for super-increasing sequences.
|
|
10
|
+
- General case using Linear Programming
|
|
11
|
+
|
|
12
|
+
AUTHORS:
|
|
13
|
+
|
|
14
|
+
- Minh Van Nguyen (2009-04): initial version
|
|
15
|
+
- Nathann Cohen (2009-08): Linear Programming version
|
|
16
|
+
|
|
17
|
+
Definition of Knapsack problems
|
|
18
|
+
-------------------------------
|
|
19
|
+
|
|
20
|
+
You have already had a knapsack problem, so you should know, but in case you do
|
|
21
|
+
not, a knapsack problem is what happens when you have hundred of items to put
|
|
22
|
+
into a bag which is too small, and you want to pack the most useful of them.
|
|
23
|
+
|
|
24
|
+
When you formally write it, here is your problem:
|
|
25
|
+
|
|
26
|
+
* Your bag can contain a weight of at most `W`.
|
|
27
|
+
* Each item `i` has a weight `w_i`.
|
|
28
|
+
* Each item `i` has a usefulness `u_i`.
|
|
29
|
+
|
|
30
|
+
You then want to maximize the total usefulness of the items you will store into
|
|
31
|
+
your bag, while keeping sure the weight of the bag will not go over `W`.
|
|
32
|
+
|
|
33
|
+
As a linear program, this problem can be represented this way (if you define
|
|
34
|
+
`b_i` as the binary variable indicating whether the item `i` is to be included
|
|
35
|
+
in your bag):
|
|
36
|
+
|
|
37
|
+
.. MATH::
|
|
38
|
+
|
|
39
|
+
\mbox{Maximize: }\sum_i b_i u_i \\
|
|
40
|
+
\mbox{Such that: }
|
|
41
|
+
\sum_i b_i w_i \leq W \\
|
|
42
|
+
\forall i, b_i \mbox{ binary variable} \\
|
|
43
|
+
|
|
44
|
+
(For more information, see the :wikipedia:`Knapsack_problem`)
|
|
45
|
+
|
|
46
|
+
Examples
|
|
47
|
+
--------
|
|
48
|
+
|
|
49
|
+
If your knapsack problem is composed of three items (weight, value)
|
|
50
|
+
defined by (1,2), (1.5,1), (0.5,3), and a bag of maximum weight 2,
|
|
51
|
+
you can easily solve it this way::
|
|
52
|
+
|
|
53
|
+
sage: from sage.numerical.knapsack import knapsack
|
|
54
|
+
sage: knapsack( [(1,2), (1.5,1), (0.5,3)], max=2)
|
|
55
|
+
[5.0, [(1, 2), (0.500000000000000, 3)]]
|
|
56
|
+
|
|
57
|
+
Super-increasing sequences
|
|
58
|
+
--------------------------
|
|
59
|
+
|
|
60
|
+
We can test for whether or not a sequence is super-increasing::
|
|
61
|
+
|
|
62
|
+
sage: from sage.numerical.knapsack import Superincreasing
|
|
63
|
+
sage: L = [1, 2, 5, 21, 69, 189, 376, 919]
|
|
64
|
+
sage: seq = Superincreasing(L)
|
|
65
|
+
sage: seq
|
|
66
|
+
Super-increasing sequence of length 8
|
|
67
|
+
sage: seq.is_superincreasing()
|
|
68
|
+
True
|
|
69
|
+
sage: Superincreasing().is_superincreasing([1,3,5,7])
|
|
70
|
+
False
|
|
71
|
+
|
|
72
|
+
Solving the subset sum problem for a super-increasing sequence
|
|
73
|
+
and target sum::
|
|
74
|
+
|
|
75
|
+
sage: L = [1, 2, 5, 21, 69, 189, 376, 919]
|
|
76
|
+
sage: Superincreasing(L).subset_sum(98)
|
|
77
|
+
[69, 21, 5, 2, 1]
|
|
78
|
+
"""
|
|
79
|
+
|
|
80
|
+
# ***************************************************************************
|
|
81
|
+
# Copyright (C) 2009 Minh Van Nguyen <nguyenminh2@gmail.com>
|
|
82
|
+
#
|
|
83
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
84
|
+
#
|
|
85
|
+
# https://www.gnu.org/licenses/
|
|
86
|
+
#
|
|
87
|
+
# This program is free software; you can redistribute it and/or modify
|
|
88
|
+
# it under the terms of the GNU General Public License as published by
|
|
89
|
+
# the Free Software Foundation; either version 2 of the License, or
|
|
90
|
+
# (at your option) any later version.
|
|
91
|
+
#
|
|
92
|
+
# This program is distributed in the hope that it will be useful,
|
|
93
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
94
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
95
|
+
# GNU General Public License for more details.
|
|
96
|
+
# ***************************************************************************
|
|
97
|
+
|
|
98
|
+
from sage.misc.latex import latex
|
|
99
|
+
from sage.rings.integer import Integer
|
|
100
|
+
from sage.structure.sage_object import SageObject
|
|
101
|
+
|
|
102
|
+
|
|
103
|
+
class Superincreasing(SageObject):
|
|
104
|
+
r"""
|
|
105
|
+
A class for super-increasing sequences.
|
|
106
|
+
|
|
107
|
+
Let `L = (a_1, a_2, a_3, \dots, a_n)` be a non-empty sequence of
|
|
108
|
+
nonnegative integers. Then `L` is said to be super-increasing if
|
|
109
|
+
each `a_i` is strictly greater than the sum of all previous values.
|
|
110
|
+
That is, for each `a_i \in L` the sequence `L` must satisfy the property
|
|
111
|
+
|
|
112
|
+
.. MATH::
|
|
113
|
+
|
|
114
|
+
a_i > \sum_{k=1}^{i-1} a_k
|
|
115
|
+
|
|
116
|
+
in order to be called a super-increasing sequence, where `|L| \geq 2`.
|
|
117
|
+
If `L` has only one element, it is also defined to be a
|
|
118
|
+
super-increasing sequence.
|
|
119
|
+
|
|
120
|
+
If ``seq`` is ``None``, then construct an empty sequence. By
|
|
121
|
+
definition, this empty sequence is not super-increasing.
|
|
122
|
+
|
|
123
|
+
INPUT:
|
|
124
|
+
|
|
125
|
+
- ``seq`` -- (default: ``None``) a non-empty sequence
|
|
126
|
+
|
|
127
|
+
EXAMPLES::
|
|
128
|
+
|
|
129
|
+
sage: from sage.numerical.knapsack import Superincreasing
|
|
130
|
+
sage: L = [1, 2, 5, 21, 69, 189, 376, 919]
|
|
131
|
+
sage: Superincreasing(L).is_superincreasing()
|
|
132
|
+
True
|
|
133
|
+
sage: Superincreasing().is_superincreasing([1,3,5,7])
|
|
134
|
+
False
|
|
135
|
+
sage: seq = Superincreasing(); seq
|
|
136
|
+
An empty sequence.
|
|
137
|
+
sage: seq = Superincreasing([1, 3, 6]); seq
|
|
138
|
+
Super-increasing sequence of length 3
|
|
139
|
+
sage: seq = Superincreasing([1, 2, 5, 21, 69, 189, 376, 919]); seq
|
|
140
|
+
Super-increasing sequence of length 8
|
|
141
|
+
"""
|
|
142
|
+
|
|
143
|
+
def __init__(self, seq=None):
|
|
144
|
+
r"""
|
|
145
|
+
Constructing a super-increasing sequence object from ``seq``.
|
|
146
|
+
|
|
147
|
+
If ``seq`` is ``None``, then construct an empty sequence. By
|
|
148
|
+
definition, this empty sequence is not super-increasing.
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
INPUT:
|
|
152
|
+
|
|
153
|
+
- ``seq`` -- (default: ``None``) a non-empty sequence
|
|
154
|
+
|
|
155
|
+
EXAMPLES::
|
|
156
|
+
|
|
157
|
+
sage: from sage.numerical.knapsack import Superincreasing
|
|
158
|
+
sage: L = [1, 2, 5, 21, 69, 189, 376, 919]
|
|
159
|
+
sage: Superincreasing(L).is_superincreasing()
|
|
160
|
+
True
|
|
161
|
+
sage: Superincreasing().is_superincreasing([1,3,5,7])
|
|
162
|
+
False
|
|
163
|
+
"""
|
|
164
|
+
# argument seq is None, so construct an empty sequence
|
|
165
|
+
if seq is None:
|
|
166
|
+
self._seq = None
|
|
167
|
+
# now seq is known to be not None, so try to construct a
|
|
168
|
+
# super-increasing sequence from seq
|
|
169
|
+
else:
|
|
170
|
+
if self.is_superincreasing(seq):
|
|
171
|
+
self._seq = seq
|
|
172
|
+
else:
|
|
173
|
+
raise ValueError("seq must be a super-increasing sequence")
|
|
174
|
+
|
|
175
|
+
def __eq__(self, other):
|
|
176
|
+
r"""
|
|
177
|
+
Comparing ``self`` to ``other``.
|
|
178
|
+
|
|
179
|
+
TESTS::
|
|
180
|
+
|
|
181
|
+
sage: from sage.numerical.knapsack import Superincreasing
|
|
182
|
+
sage: L = [1, 2, 5, 21, 69, 189, 376, 919]
|
|
183
|
+
sage: seq = Superincreasing(L)
|
|
184
|
+
sage: seq == loads(dumps(seq))
|
|
185
|
+
True
|
|
186
|
+
"""
|
|
187
|
+
return self._seq == other._seq
|
|
188
|
+
|
|
189
|
+
def __ne__(self, other):
|
|
190
|
+
r"""
|
|
191
|
+
Comparing ``self`` to ``other``.
|
|
192
|
+
|
|
193
|
+
TESTS::
|
|
194
|
+
|
|
195
|
+
sage: from sage.numerical.knapsack import Superincreasing
|
|
196
|
+
sage: L = [1, 2, 5, 21, 69, 189, 376, 919]
|
|
197
|
+
sage: seq = Superincreasing(L)
|
|
198
|
+
sage: seq != seq
|
|
199
|
+
False
|
|
200
|
+
"""
|
|
201
|
+
return not self.__eq__(other)
|
|
202
|
+
|
|
203
|
+
def __repr__(self):
|
|
204
|
+
r"""
|
|
205
|
+
Return a string representation of this super-increasing
|
|
206
|
+
sequence object.
|
|
207
|
+
|
|
208
|
+
EXAMPLES::
|
|
209
|
+
|
|
210
|
+
sage: from sage.numerical.knapsack import Superincreasing
|
|
211
|
+
sage: seq = Superincreasing(); seq
|
|
212
|
+
An empty sequence.
|
|
213
|
+
sage: seq = Superincreasing([1, 3, 6]); seq
|
|
214
|
+
Super-increasing sequence of length 3
|
|
215
|
+
sage: seq = Superincreasing([1, 2, 5, 21, 69, 189, 376, 919]); seq
|
|
216
|
+
Super-increasing sequence of length 8
|
|
217
|
+
"""
|
|
218
|
+
if self._seq is None:
|
|
219
|
+
return "An empty sequence."
|
|
220
|
+
else:
|
|
221
|
+
return "Super-increasing sequence of length %s" % len(self._seq)
|
|
222
|
+
|
|
223
|
+
def largest_less_than(self, N):
|
|
224
|
+
r"""
|
|
225
|
+
Return the largest integer in the sequence ``self`` that is less than
|
|
226
|
+
or equal to ``N``.
|
|
227
|
+
|
|
228
|
+
This function narrows down the candidate solution using a binary trim,
|
|
229
|
+
similar to the way binary search halves the sequence at each iteration.
|
|
230
|
+
|
|
231
|
+
|
|
232
|
+
INPUT:
|
|
233
|
+
|
|
234
|
+
- ``N`` -- integer; the target value to search for
|
|
235
|
+
|
|
236
|
+
OUTPUT:
|
|
237
|
+
|
|
238
|
+
The largest integer in ``self`` that is less than or equal to ``N``. If
|
|
239
|
+
no solution exists, then return ``None``.
|
|
240
|
+
|
|
241
|
+
EXAMPLES:
|
|
242
|
+
|
|
243
|
+
When a solution is found, return it::
|
|
244
|
+
|
|
245
|
+
sage: from sage.numerical.knapsack import Superincreasing
|
|
246
|
+
sage: L = [2, 3, 7, 25, 67, 179, 356, 819]
|
|
247
|
+
sage: Superincreasing(L).largest_less_than(207)
|
|
248
|
+
179
|
|
249
|
+
sage: L = (2, 3, 7, 25, 67, 179, 356, 819)
|
|
250
|
+
sage: Superincreasing(L).largest_less_than(2)
|
|
251
|
+
2
|
|
252
|
+
|
|
253
|
+
But if no solution exists, return ``None``::
|
|
254
|
+
|
|
255
|
+
sage: L = [2, 3, 7, 25, 67, 179, 356, 819]
|
|
256
|
+
sage: Superincreasing(L).largest_less_than(-1) is None
|
|
257
|
+
True
|
|
258
|
+
|
|
259
|
+
TESTS:
|
|
260
|
+
|
|
261
|
+
The target ``N`` must be an integer::
|
|
262
|
+
|
|
263
|
+
sage: from sage.numerical.knapsack import Superincreasing
|
|
264
|
+
sage: L = [2, 3, 7, 25, 67, 179, 356, 819]
|
|
265
|
+
sage: Superincreasing(L).largest_less_than(2.30)
|
|
266
|
+
Traceback (most recent call last):
|
|
267
|
+
...
|
|
268
|
+
TypeError: N (= 2.30000000000000) must be an integer.
|
|
269
|
+
|
|
270
|
+
The sequence that ``self`` represents must also be non-empty::
|
|
271
|
+
|
|
272
|
+
sage: Superincreasing([]).largest_less_than(2)
|
|
273
|
+
Traceback (most recent call last):
|
|
274
|
+
...
|
|
275
|
+
ValueError: seq must be a super-increasing sequence
|
|
276
|
+
sage: Superincreasing(list()).largest_less_than(2)
|
|
277
|
+
Traceback (most recent call last):
|
|
278
|
+
...
|
|
279
|
+
ValueError: seq must be a super-increasing sequence
|
|
280
|
+
"""
|
|
281
|
+
from sage.functions.other import Function_floor
|
|
282
|
+
floor = Function_floor()
|
|
283
|
+
# input error handling
|
|
284
|
+
if len(self._seq) == 0:
|
|
285
|
+
raise TypeError("self must be a non-empty list of integers.")
|
|
286
|
+
if (not isinstance(N, Integer)) and (not isinstance(N, int)):
|
|
287
|
+
raise TypeError("N (= %s) must be an integer." % N)
|
|
288
|
+
|
|
289
|
+
# halving the list at each iteration, just like binary search
|
|
290
|
+
# TODO: some error handling to ensure that self only contains integers?
|
|
291
|
+
low = 0
|
|
292
|
+
high = len(self._seq) - 1
|
|
293
|
+
while low <= high:
|
|
294
|
+
mid = floor((low + high) / 2)
|
|
295
|
+
if N == self._seq[mid]:
|
|
296
|
+
return self._seq[mid]
|
|
297
|
+
if N < self._seq[mid]:
|
|
298
|
+
high = mid - 1
|
|
299
|
+
else:
|
|
300
|
+
low = mid + 1
|
|
301
|
+
if N >= self._seq[high]:
|
|
302
|
+
return self._seq[high]
|
|
303
|
+
else:
|
|
304
|
+
return None
|
|
305
|
+
|
|
306
|
+
def _latex_(self):
|
|
307
|
+
r"""
|
|
308
|
+
Return LaTeX representation of ``self``.
|
|
309
|
+
|
|
310
|
+
EXAMPLES::
|
|
311
|
+
|
|
312
|
+
sage: from sage.numerical.knapsack import Superincreasing
|
|
313
|
+
sage: latex(Superincreasing())
|
|
314
|
+
\left[\right]
|
|
315
|
+
sage: seq = Superincreasing([1, 2, 5, 21, 69, 189, 376, 919])
|
|
316
|
+
sage: latex(seq)
|
|
317
|
+
<BLANKLINE>
|
|
318
|
+
\left[1,
|
|
319
|
+
2,
|
|
320
|
+
5,
|
|
321
|
+
21,
|
|
322
|
+
69,
|
|
323
|
+
189,
|
|
324
|
+
376,
|
|
325
|
+
919\right]
|
|
326
|
+
"""
|
|
327
|
+
if self._seq is None:
|
|
328
|
+
return latex([])
|
|
329
|
+
else:
|
|
330
|
+
return latex(self._seq)
|
|
331
|
+
|
|
332
|
+
def is_superincreasing(self, seq=None):
|
|
333
|
+
r"""
|
|
334
|
+
Determine whether or not ``seq`` is super-increasing.
|
|
335
|
+
|
|
336
|
+
If ``seq=None`` then determine whether or not ``self`` is
|
|
337
|
+
super-increasing.
|
|
338
|
+
|
|
339
|
+
Let `L = (a_1, a_2, a_3, \dots, a_n)` be a non-empty sequence of
|
|
340
|
+
nonnegative integers. Then `L` is said to be super-increasing if
|
|
341
|
+
each `a_i` is strictly greater than the sum of all previous values.
|
|
342
|
+
That is, for each `a_i \in L` the sequence `L` must satisfy the
|
|
343
|
+
property
|
|
344
|
+
|
|
345
|
+
.. MATH::
|
|
346
|
+
|
|
347
|
+
a_i > \sum_{k=1}^{i-1} a_k
|
|
348
|
+
|
|
349
|
+
in order to be called a super-increasing sequence, where `|L| \geq 2`.
|
|
350
|
+
If `L` has exactly one element, then it is also defined to be a
|
|
351
|
+
super-increasing sequence.
|
|
352
|
+
|
|
353
|
+
INPUT:
|
|
354
|
+
|
|
355
|
+
- ``seq`` -- (default: ``None``) a sequence to test
|
|
356
|
+
|
|
357
|
+
OUTPUT:
|
|
358
|
+
|
|
359
|
+
- If ``seq`` is ``None``, then test ``self`` to determine whether or
|
|
360
|
+
not it is super-increasing. In that case, return ``True`` if
|
|
361
|
+
``self`` is super-increasing; ``False`` otherwise.
|
|
362
|
+
|
|
363
|
+
- If ``seq`` is not ``None``, then test ``seq`` to determine whether
|
|
364
|
+
or not it is super-increasing. Return ``True`` if ``seq`` is
|
|
365
|
+
super-increasing; ``False`` otherwise.
|
|
366
|
+
|
|
367
|
+
EXAMPLES:
|
|
368
|
+
|
|
369
|
+
By definition, an empty sequence is not super-increasing::
|
|
370
|
+
|
|
371
|
+
sage: from sage.numerical.knapsack import Superincreasing
|
|
372
|
+
sage: Superincreasing().is_superincreasing([])
|
|
373
|
+
False
|
|
374
|
+
sage: Superincreasing().is_superincreasing()
|
|
375
|
+
False
|
|
376
|
+
sage: Superincreasing().is_superincreasing(tuple())
|
|
377
|
+
False
|
|
378
|
+
sage: Superincreasing().is_superincreasing(())
|
|
379
|
+
False
|
|
380
|
+
|
|
381
|
+
But here is an example of a super-increasing sequence::
|
|
382
|
+
|
|
383
|
+
sage: L = [1, 2, 5, 21, 69, 189, 376, 919]
|
|
384
|
+
sage: Superincreasing(L).is_superincreasing()
|
|
385
|
+
True
|
|
386
|
+
sage: L = (1, 2, 5, 21, 69, 189, 376, 919)
|
|
387
|
+
sage: Superincreasing(L).is_superincreasing()
|
|
388
|
+
True
|
|
389
|
+
|
|
390
|
+
A super-increasing sequence can have zero as one of its elements::
|
|
391
|
+
|
|
392
|
+
sage: L = [0, 1, 2, 4]
|
|
393
|
+
sage: Superincreasing(L).is_superincreasing()
|
|
394
|
+
True
|
|
395
|
+
|
|
396
|
+
A super-increasing sequence can be of length 1::
|
|
397
|
+
|
|
398
|
+
sage: Superincreasing([randint(0, 100)]).is_superincreasing()
|
|
399
|
+
True
|
|
400
|
+
|
|
401
|
+
|
|
402
|
+
TESTS:
|
|
403
|
+
|
|
404
|
+
The sequence must contain only integers::
|
|
405
|
+
|
|
406
|
+
sage: # needs sage.symbolic
|
|
407
|
+
sage: from sage.numerical.knapsack import Superincreasing
|
|
408
|
+
sage: L = [1.0, 2.1, pi, 21, 69, 189, 376, 919]
|
|
409
|
+
sage: Superincreasing(L).is_superincreasing()
|
|
410
|
+
Traceback (most recent call last):
|
|
411
|
+
...
|
|
412
|
+
TypeError: Element e (= 1.00000000000000) of seq must be a nonnegative integer.
|
|
413
|
+
sage: L = [1, 2.1, pi, 21, 69, 189, 376, 919]
|
|
414
|
+
sage: Superincreasing(L).is_superincreasing()
|
|
415
|
+
Traceback (most recent call last):
|
|
416
|
+
...
|
|
417
|
+
TypeError: Element e (= 2.10000000000000) of seq must be a nonnegative integer.
|
|
418
|
+
"""
|
|
419
|
+
# argument seq is None, so test self for super-increasing
|
|
420
|
+
if seq is None:
|
|
421
|
+
# self must be a non-empty sequence
|
|
422
|
+
if (self._seq is None) or len(self._seq) == 0:
|
|
423
|
+
return False
|
|
424
|
+
# so now self is known to represent a non-empty sequence
|
|
425
|
+
if (not isinstance(self._seq[0], Integer)) and (not isinstance(self._seq[0], int)):
|
|
426
|
+
raise TypeError("Element e (= %s) of self must be a non-negative integer." % self._seq[0])
|
|
427
|
+
if self._seq[0] < 0:
|
|
428
|
+
raise TypeError("Element e (= %s) of self must be a non-negative integer." % self._seq[0])
|
|
429
|
+
cumSum = self._seq[0] # the cumulative sum of the sequence represented by self
|
|
430
|
+
for e in self._seq[1:]:
|
|
431
|
+
if (not isinstance(e, Integer)) and (not isinstance(e, int)):
|
|
432
|
+
raise TypeError("Element e (= %s) of self must be a non-negative integer." % e)
|
|
433
|
+
if e < 0:
|
|
434
|
+
raise TypeError("Element e (= %s) of self must be a non-negative integer." % e)
|
|
435
|
+
if e <= cumSum:
|
|
436
|
+
return False
|
|
437
|
+
cumSum += e
|
|
438
|
+
return True
|
|
439
|
+
# now we know that seq is not None, so test seq for super-increasing
|
|
440
|
+
else:
|
|
441
|
+
# seq must be a non-empty sequence
|
|
442
|
+
if len(seq) == 0:
|
|
443
|
+
return False
|
|
444
|
+
# so now seq is known to represent a non-empty sequence
|
|
445
|
+
if (not isinstance(seq[0], Integer)) and (not isinstance(seq[0], int)):
|
|
446
|
+
raise TypeError("Element e (= %s) of seq must be a nonnegative integer." % seq[0])
|
|
447
|
+
if seq[0] < 0:
|
|
448
|
+
raise TypeError("Element e (= %s) of seq must be a nonnegative integer." % seq[0])
|
|
449
|
+
cumSum = seq[0] # the cumulative sum of the sequence seq
|
|
450
|
+
for e in seq[1:]:
|
|
451
|
+
if (not isinstance(e, Integer)) and (not isinstance(e, int)):
|
|
452
|
+
raise TypeError("Element e (= %s) of seq must be a nonnegative integer." % e)
|
|
453
|
+
if e < 0:
|
|
454
|
+
raise TypeError("Element e (= %s) of seq must be a nonnegative integer." % e)
|
|
455
|
+
if e <= cumSum:
|
|
456
|
+
return False
|
|
457
|
+
cumSum += e
|
|
458
|
+
return True
|
|
459
|
+
|
|
460
|
+
def subset_sum(self, N):
|
|
461
|
+
r"""
|
|
462
|
+
Solving the subset sum problem for a super-increasing sequence.
|
|
463
|
+
|
|
464
|
+
Let `S = (s_1, s_2, s_3, \dots, s_n)` be a non-empty sequence of
|
|
465
|
+
nonnegative integers, and let `N \in \ZZ` be nonnegative. The
|
|
466
|
+
subset sum problem asks for a subset `A \subseteq S` all of whose
|
|
467
|
+
elements sum to `N`. This method specializes the subset sum problem
|
|
468
|
+
to the case of super-increasing sequences. If a solution exists, then
|
|
469
|
+
it is also a super-increasing sequence.
|
|
470
|
+
|
|
471
|
+
.. NOTE::
|
|
472
|
+
|
|
473
|
+
This method only solves the subset sum problem for
|
|
474
|
+
super-increasing sequences. In general, solving the subset sum
|
|
475
|
+
problem for an arbitrary sequence is known to be computationally
|
|
476
|
+
hard.
|
|
477
|
+
|
|
478
|
+
INPUT:
|
|
479
|
+
|
|
480
|
+
- ``N`` -- nonnegative integer
|
|
481
|
+
|
|
482
|
+
OUTPUT:
|
|
483
|
+
|
|
484
|
+
- A non-empty subset of ``self`` whose elements sum to ``N``. This
|
|
485
|
+
subset is also a super-increasing sequence. If no such subset
|
|
486
|
+
exists, then return the empty list.
|
|
487
|
+
|
|
488
|
+
ALGORITHM:
|
|
489
|
+
|
|
490
|
+
The algorithm used is adapted from page 355 of [HPS2008]_.
|
|
491
|
+
|
|
492
|
+
EXAMPLES:
|
|
493
|
+
|
|
494
|
+
Solving the subset sum problem for a super-increasing sequence
|
|
495
|
+
and target sum::
|
|
496
|
+
|
|
497
|
+
sage: from sage.numerical.knapsack import Superincreasing
|
|
498
|
+
sage: L = [1, 2, 5, 21, 69, 189, 376, 919]
|
|
499
|
+
sage: Superincreasing(L).subset_sum(98)
|
|
500
|
+
[69, 21, 5, 2, 1]
|
|
501
|
+
|
|
502
|
+
|
|
503
|
+
TESTS:
|
|
504
|
+
|
|
505
|
+
The target ``N`` must be a nonnegative integer::
|
|
506
|
+
|
|
507
|
+
sage: from sage.numerical.knapsack import Superincreasing
|
|
508
|
+
sage: L = [0, 1, 2, 4]
|
|
509
|
+
sage: Superincreasing(L).subset_sum(-6)
|
|
510
|
+
Traceback (most recent call last):
|
|
511
|
+
...
|
|
512
|
+
TypeError: N (= -6) must be a nonnegative integer.
|
|
513
|
+
sage: Superincreasing(L).subset_sum(-6.2)
|
|
514
|
+
Traceback (most recent call last):
|
|
515
|
+
...
|
|
516
|
+
TypeError: N (= -6.20000000000000) must be a nonnegative integer.
|
|
517
|
+
|
|
518
|
+
The sequence that ``self`` represents must only contain nonnegative
|
|
519
|
+
integers::
|
|
520
|
+
|
|
521
|
+
sage: L = [-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1]
|
|
522
|
+
sage: Superincreasing(L).subset_sum(1)
|
|
523
|
+
Traceback (most recent call last):
|
|
524
|
+
...
|
|
525
|
+
TypeError: Element e (= -10) of seq must be a nonnegative integer.
|
|
526
|
+
"""
|
|
527
|
+
# input error handling
|
|
528
|
+
if not self.is_superincreasing():
|
|
529
|
+
raise TypeError("self is not super-increasing. Only super-increasing sequences are currently supported.")
|
|
530
|
+
if (not isinstance(N, Integer)) and (not isinstance(N, int)):
|
|
531
|
+
raise TypeError("N (= %s) must be a nonnegative integer." % N)
|
|
532
|
+
if N < 0:
|
|
533
|
+
raise TypeError("N (= %s) must be a nonnegative integer." % N)
|
|
534
|
+
|
|
535
|
+
# solve subset sum problem for super-increasing sequence
|
|
536
|
+
candidates = []
|
|
537
|
+
a = self.largest_less_than(N)
|
|
538
|
+
while a is not None:
|
|
539
|
+
candidates.append(a)
|
|
540
|
+
a = self.largest_less_than(N - sum(candidates))
|
|
541
|
+
|
|
542
|
+
lst = list(set(candidates)) # removing any duplicate elements
|
|
543
|
+
if len(lst) != len(candidates):
|
|
544
|
+
return []
|
|
545
|
+
if sum(candidates) == N:
|
|
546
|
+
return candidates
|
|
547
|
+
else:
|
|
548
|
+
return []
|
|
549
|
+
|
|
550
|
+
|
|
551
|
+
def knapsack(seq, binary=True, max=1, value_only=False, solver=None, verbose=0,
|
|
552
|
+
*, integrality_tolerance=1e-3):
|
|
553
|
+
r"""
|
|
554
|
+
Solve the knapsack problem.
|
|
555
|
+
|
|
556
|
+
For more information on the knapsack problem, see the documentation of the
|
|
557
|
+
:mod:`knapsack module <sage.numerical.knapsack>` or the
|
|
558
|
+
:wikipedia:`Knapsack_problem`.
|
|
559
|
+
|
|
560
|
+
INPUT:
|
|
561
|
+
|
|
562
|
+
- ``seq`` -- two different possible types:
|
|
563
|
+
|
|
564
|
+
- A sequence of tuples ``(weight, value, something1, something2,
|
|
565
|
+
...)``. Note that only the first two coordinates (``weight`` and
|
|
566
|
+
``values``) will be taken into account. The rest (if any) will be
|
|
567
|
+
ignored. This can be useful if you need to attach some information to
|
|
568
|
+
the items.
|
|
569
|
+
|
|
570
|
+
- A sequence of reals (a value of 1 is assumed).
|
|
571
|
+
|
|
572
|
+
- ``binary`` -- when set to ``True``, an item can be taken 0 or 1 time
|
|
573
|
+
When set to ``False``, an item can be taken any amount of times (while
|
|
574
|
+
staying integer and positive).
|
|
575
|
+
|
|
576
|
+
- ``max`` -- maximum admissible weight
|
|
577
|
+
|
|
578
|
+
- ``value_only`` -- when set to ``True``, only the maximum useful value is
|
|
579
|
+
returned. When set to ``False``, both the maximum useful value and an
|
|
580
|
+
assignment are returned.
|
|
581
|
+
|
|
582
|
+
- ``solver`` -- (default: ``None``) specify a Mixed Integer Linear Programming
|
|
583
|
+
(MILP) solver to be used. If set to ``None``, the default one is used. For
|
|
584
|
+
more information on MILP solvers and which default solver is used, see
|
|
585
|
+
the method
|
|
586
|
+
:meth:`solve <sage.numerical.mip.MixedIntegerLinearProgram.solve>`
|
|
587
|
+
of the class
|
|
588
|
+
:class:`MixedIntegerLinearProgram <sage.numerical.mip.MixedIntegerLinearProgram>`.
|
|
589
|
+
|
|
590
|
+
- ``verbose`` -- integer (default: 0); sets the level of verbosity. Set
|
|
591
|
+
to 0 by default, which means quiet.
|
|
592
|
+
|
|
593
|
+
- ``integrality_tolerance`` -- parameter for use with MILP solvers over an
|
|
594
|
+
inexact base ring; see :meth:`MixedIntegerLinearProgram.get_values`
|
|
595
|
+
|
|
596
|
+
OUTPUT:
|
|
597
|
+
|
|
598
|
+
If ``value_only`` is set to ``True``, only the maximum useful value is
|
|
599
|
+
returned. Else (the default), the function returns a pair ``[value,list]``,
|
|
600
|
+
where ``list`` can be of two types according to the type of ``seq``:
|
|
601
|
+
|
|
602
|
+
- The list of tuples `(w_i, u_i, ...)` occurring in the solution.
|
|
603
|
+
|
|
604
|
+
- A list of reals where each real is repeated the number of times it is
|
|
605
|
+
taken into the solution.
|
|
606
|
+
|
|
607
|
+
EXAMPLES:
|
|
608
|
+
|
|
609
|
+
If your knapsack problem is composed of three items ``(weight, value)``
|
|
610
|
+
defined by ``(1,2), (1.5,1), (0.5,3)``, and a bag of maximum weight `2`, you
|
|
611
|
+
can easily solve it this way::
|
|
612
|
+
|
|
613
|
+
sage: from sage.numerical.knapsack import knapsack
|
|
614
|
+
sage: knapsack( [(1,2), (1.5,1), (0.5,3)], max=2)
|
|
615
|
+
[5.0, [(1, 2), (0.500000000000000, 3)]]
|
|
616
|
+
|
|
617
|
+
sage: knapsack( [(1,2), (1.5,1), (0.5,3)], max=2, value_only=True)
|
|
618
|
+
5.0
|
|
619
|
+
|
|
620
|
+
Besides weight and value, you may attach any data to the items::
|
|
621
|
+
|
|
622
|
+
sage: from sage.numerical.knapsack import knapsack
|
|
623
|
+
sage: knapsack( [(1, 2, 'spam'), (0.5, 3, 'a', 'lot')])
|
|
624
|
+
[3.0, [(0.500000000000000, 3, 'a', 'lot')]]
|
|
625
|
+
|
|
626
|
+
In the case where all the values (usefulness) of the items are equal to one,
|
|
627
|
+
you do not need embarrass yourself with the second values, and you can just
|
|
628
|
+
type for items `(1,1), (1.5,1), (0.5,1)` the command::
|
|
629
|
+
|
|
630
|
+
sage: from sage.numerical.knapsack import knapsack
|
|
631
|
+
sage: knapsack([1,1.5,0.5], max=2, value_only=True)
|
|
632
|
+
2.0
|
|
633
|
+
"""
|
|
634
|
+
reals = not isinstance(seq[0], tuple)
|
|
635
|
+
if reals:
|
|
636
|
+
seq = [(x,1) for x in seq]
|
|
637
|
+
|
|
638
|
+
from sage.numerical.mip import MixedIntegerLinearProgram
|
|
639
|
+
from sage.rings.integer_ring import ZZ
|
|
640
|
+
|
|
641
|
+
p = MixedIntegerLinearProgram(solver=solver, maximization=True)
|
|
642
|
+
|
|
643
|
+
if binary:
|
|
644
|
+
present = p.new_variable(binary=True)
|
|
645
|
+
else:
|
|
646
|
+
present = p.new_variable(integer=True)
|
|
647
|
+
|
|
648
|
+
p.set_objective(p.sum([present[i] * seq[i][1] for i in range(len(seq))]))
|
|
649
|
+
p.add_constraint(p.sum([present[i] * seq[i][0] for i in range(len(seq))]), max=max)
|
|
650
|
+
|
|
651
|
+
if value_only:
|
|
652
|
+
return p.solve(objective_only=True, log=verbose)
|
|
653
|
+
|
|
654
|
+
else:
|
|
655
|
+
objective = p.solve(log=verbose)
|
|
656
|
+
present = p.get_values(present, convert=ZZ, tolerance=integrality_tolerance)
|
|
657
|
+
|
|
658
|
+
val = []
|
|
659
|
+
|
|
660
|
+
if reals:
|
|
661
|
+
[val.extend([seq[i][0]] * present[i]) for i in range(len(seq))]
|
|
662
|
+
else:
|
|
663
|
+
[val.extend([seq[i]] * present[i]) for i in range(len(seq))]
|
|
664
|
+
|
|
665
|
+
return [objective,val]
|
|
Binary file
|
|
@@ -0,0 +1,31 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-polyhedra
|
|
2
|
+
from sage.structure.parent cimport Parent, Parent_richcmp_element_without_coercion
|
|
3
|
+
from sage.structure.element cimport ModuleElement, RingElement, Element
|
|
4
|
+
|
|
5
|
+
cpdef is_LinearFunction(x)
|
|
6
|
+
|
|
7
|
+
cdef class LinearFunctionOrConstraint(ModuleElement):
|
|
8
|
+
pass
|
|
9
|
+
|
|
10
|
+
cdef class LinearFunctionsParent_class(Parent):
|
|
11
|
+
cpdef _element_constructor_(self, x)
|
|
12
|
+
cpdef _coerce_map_from_(self, R)
|
|
13
|
+
cdef public _multiplication_symbol
|
|
14
|
+
|
|
15
|
+
cdef class LinearFunction(LinearFunctionOrConstraint):
|
|
16
|
+
cdef dict _f
|
|
17
|
+
cpdef _add_(self, other)
|
|
18
|
+
cpdef iteritems(self)
|
|
19
|
+
cpdef _acted_upon_(self, x, bint self_on_left)
|
|
20
|
+
cpdef is_zero(self)
|
|
21
|
+
cpdef equals(LinearFunction left, LinearFunction right)
|
|
22
|
+
|
|
23
|
+
cdef class LinearConstraintsParent_class(Parent):
|
|
24
|
+
cdef LinearFunctionsParent_class _LF
|
|
25
|
+
cpdef _element_constructor_(self, left, right=?, equality=?)
|
|
26
|
+
cpdef _coerce_map_from_(self, R)
|
|
27
|
+
|
|
28
|
+
cdef class LinearConstraint(LinearFunctionOrConstraint):
|
|
29
|
+
cdef bint equality
|
|
30
|
+
cdef list constraints
|
|
31
|
+
cpdef equals(LinearConstraint left, LinearConstraint right)
|