passagemath-polyhedra 10.6.31rc3__cp314-cp314-macosx_13_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-polyhedra might be problematic. Click here for more details.

Files changed (205) hide show
  1. passagemath_polyhedra-10.6.31rc3.dist-info/METADATA +368 -0
  2. passagemath_polyhedra-10.6.31rc3.dist-info/METADATA.bak +371 -0
  3. passagemath_polyhedra-10.6.31rc3.dist-info/RECORD +205 -0
  4. passagemath_polyhedra-10.6.31rc3.dist-info/WHEEL +6 -0
  5. passagemath_polyhedra-10.6.31rc3.dist-info/top_level.txt +2 -0
  6. passagemath_polyhedra.dylibs/libgmp.10.dylib +0 -0
  7. sage/all__sagemath_polyhedra.py +50 -0
  8. sage/game_theory/all.py +8 -0
  9. sage/game_theory/catalog.py +6 -0
  10. sage/game_theory/catalog_normal_form_games.py +923 -0
  11. sage/game_theory/cooperative_game.py +844 -0
  12. sage/game_theory/matching_game.py +1181 -0
  13. sage/game_theory/normal_form_game.py +2697 -0
  14. sage/game_theory/parser.py +275 -0
  15. sage/geometry/all__sagemath_polyhedra.py +22 -0
  16. sage/geometry/cone.py +6940 -0
  17. sage/geometry/cone_catalog.py +847 -0
  18. sage/geometry/cone_critical_angles.py +1027 -0
  19. sage/geometry/convex_set.py +1119 -0
  20. sage/geometry/fan.py +3743 -0
  21. sage/geometry/fan_isomorphism.py +389 -0
  22. sage/geometry/fan_morphism.py +1884 -0
  23. sage/geometry/hasse_diagram.py +202 -0
  24. sage/geometry/hyperplane_arrangement/affine_subspace.py +390 -0
  25. sage/geometry/hyperplane_arrangement/all.py +1 -0
  26. sage/geometry/hyperplane_arrangement/arrangement.py +3895 -0
  27. sage/geometry/hyperplane_arrangement/check_freeness.py +145 -0
  28. sage/geometry/hyperplane_arrangement/hyperplane.py +773 -0
  29. sage/geometry/hyperplane_arrangement/library.py +825 -0
  30. sage/geometry/hyperplane_arrangement/ordered_arrangement.py +642 -0
  31. sage/geometry/hyperplane_arrangement/plot.py +520 -0
  32. sage/geometry/integral_points.py +35 -0
  33. sage/geometry/integral_points_generic_dense.cpython-314-darwin.so +0 -0
  34. sage/geometry/integral_points_generic_dense.pyx +7 -0
  35. sage/geometry/lattice_polytope.py +5894 -0
  36. sage/geometry/linear_expression.py +773 -0
  37. sage/geometry/newton_polygon.py +767 -0
  38. sage/geometry/point_collection.cpython-314-darwin.so +0 -0
  39. sage/geometry/point_collection.pyx +1008 -0
  40. sage/geometry/polyhedral_complex.py +2616 -0
  41. sage/geometry/polyhedron/all.py +8 -0
  42. sage/geometry/polyhedron/backend_cdd.py +460 -0
  43. sage/geometry/polyhedron/backend_cdd_rdf.py +231 -0
  44. sage/geometry/polyhedron/backend_field.py +347 -0
  45. sage/geometry/polyhedron/backend_normaliz.py +2503 -0
  46. sage/geometry/polyhedron/backend_number_field.py +168 -0
  47. sage/geometry/polyhedron/backend_polymake.py +765 -0
  48. sage/geometry/polyhedron/backend_ppl.py +582 -0
  49. sage/geometry/polyhedron/base.py +1206 -0
  50. sage/geometry/polyhedron/base0.py +1444 -0
  51. sage/geometry/polyhedron/base1.py +886 -0
  52. sage/geometry/polyhedron/base2.py +812 -0
  53. sage/geometry/polyhedron/base3.py +1845 -0
  54. sage/geometry/polyhedron/base4.py +1262 -0
  55. sage/geometry/polyhedron/base5.py +2700 -0
  56. sage/geometry/polyhedron/base6.py +1741 -0
  57. sage/geometry/polyhedron/base7.py +997 -0
  58. sage/geometry/polyhedron/base_QQ.py +1258 -0
  59. sage/geometry/polyhedron/base_RDF.py +98 -0
  60. sage/geometry/polyhedron/base_ZZ.py +934 -0
  61. sage/geometry/polyhedron/base_mutable.py +215 -0
  62. sage/geometry/polyhedron/base_number_field.py +122 -0
  63. sage/geometry/polyhedron/cdd_file_format.py +155 -0
  64. sage/geometry/polyhedron/combinatorial_polyhedron/all.py +1 -0
  65. sage/geometry/polyhedron/combinatorial_polyhedron/base.cpython-314-darwin.so +0 -0
  66. sage/geometry/polyhedron/combinatorial_polyhedron/base.pxd +76 -0
  67. sage/geometry/polyhedron/combinatorial_polyhedron/base.pyx +3859 -0
  68. sage/geometry/polyhedron/combinatorial_polyhedron/combinatorial_face.cpython-314-darwin.so +0 -0
  69. sage/geometry/polyhedron/combinatorial_polyhedron/combinatorial_face.pxd +39 -0
  70. sage/geometry/polyhedron/combinatorial_polyhedron/combinatorial_face.pyx +1038 -0
  71. sage/geometry/polyhedron/combinatorial_polyhedron/conversions.cpython-314-darwin.so +0 -0
  72. sage/geometry/polyhedron/combinatorial_polyhedron/conversions.pxd +9 -0
  73. sage/geometry/polyhedron/combinatorial_polyhedron/conversions.pyx +501 -0
  74. sage/geometry/polyhedron/combinatorial_polyhedron/face_data_structure.pxd +207 -0
  75. sage/geometry/polyhedron/combinatorial_polyhedron/face_iterator.cpython-314-darwin.so +0 -0
  76. sage/geometry/polyhedron/combinatorial_polyhedron/face_iterator.pxd +102 -0
  77. sage/geometry/polyhedron/combinatorial_polyhedron/face_iterator.pyx +2274 -0
  78. sage/geometry/polyhedron/combinatorial_polyhedron/face_list_data_structure.cpython-314-darwin.so +0 -0
  79. sage/geometry/polyhedron/combinatorial_polyhedron/face_list_data_structure.pxd +370 -0
  80. sage/geometry/polyhedron/combinatorial_polyhedron/face_list_data_structure.pyx +84 -0
  81. sage/geometry/polyhedron/combinatorial_polyhedron/list_of_faces.cpython-314-darwin.so +0 -0
  82. sage/geometry/polyhedron/combinatorial_polyhedron/list_of_faces.pxd +31 -0
  83. sage/geometry/polyhedron/combinatorial_polyhedron/list_of_faces.pyx +587 -0
  84. sage/geometry/polyhedron/combinatorial_polyhedron/polyhedron_face_lattice.cpython-314-darwin.so +0 -0
  85. sage/geometry/polyhedron/combinatorial_polyhedron/polyhedron_face_lattice.pxd +52 -0
  86. sage/geometry/polyhedron/combinatorial_polyhedron/polyhedron_face_lattice.pyx +560 -0
  87. sage/geometry/polyhedron/constructor.py +773 -0
  88. sage/geometry/polyhedron/double_description.py +753 -0
  89. sage/geometry/polyhedron/double_description_inhomogeneous.py +564 -0
  90. sage/geometry/polyhedron/face.py +1060 -0
  91. sage/geometry/polyhedron/generating_function.py +1810 -0
  92. sage/geometry/polyhedron/lattice_euclidean_group_element.py +178 -0
  93. sage/geometry/polyhedron/library.py +3502 -0
  94. sage/geometry/polyhedron/misc.py +121 -0
  95. sage/geometry/polyhedron/modules/all.py +1 -0
  96. sage/geometry/polyhedron/modules/formal_polyhedra_module.py +155 -0
  97. sage/geometry/polyhedron/palp_database.py +447 -0
  98. sage/geometry/polyhedron/parent.py +1279 -0
  99. sage/geometry/polyhedron/plot.py +1986 -0
  100. sage/geometry/polyhedron/ppl_lattice_polygon.py +556 -0
  101. sage/geometry/polyhedron/ppl_lattice_polytope.py +1257 -0
  102. sage/geometry/polyhedron/representation.py +1723 -0
  103. sage/geometry/pseudolines.py +515 -0
  104. sage/geometry/relative_interior.py +445 -0
  105. sage/geometry/toric_plotter.py +1103 -0
  106. sage/geometry/triangulation/all.py +2 -0
  107. sage/geometry/triangulation/base.cpython-314-darwin.so +0 -0
  108. sage/geometry/triangulation/base.pyx +963 -0
  109. sage/geometry/triangulation/data.h +147 -0
  110. sage/geometry/triangulation/data.pxd +4 -0
  111. sage/geometry/triangulation/element.py +914 -0
  112. sage/geometry/triangulation/functions.h +10 -0
  113. sage/geometry/triangulation/functions.pxd +4 -0
  114. sage/geometry/triangulation/point_configuration.py +2256 -0
  115. sage/geometry/triangulation/triangulations.h +49 -0
  116. sage/geometry/triangulation/triangulations.pxd +7 -0
  117. sage/geometry/voronoi_diagram.py +319 -0
  118. sage/interfaces/all__sagemath_polyhedra.py +1 -0
  119. sage/interfaces/polymake.py +2028 -0
  120. sage/numerical/all.py +13 -0
  121. sage/numerical/all__sagemath_polyhedra.py +11 -0
  122. sage/numerical/backends/all.py +1 -0
  123. sage/numerical/backends/all__sagemath_polyhedra.py +1 -0
  124. sage/numerical/backends/cvxopt_backend.cpython-314-darwin.so +0 -0
  125. sage/numerical/backends/cvxopt_backend.pyx +1006 -0
  126. sage/numerical/backends/cvxopt_backend_test.py +19 -0
  127. sage/numerical/backends/cvxopt_sdp_backend.cpython-314-darwin.so +0 -0
  128. sage/numerical/backends/cvxopt_sdp_backend.pyx +382 -0
  129. sage/numerical/backends/cvxpy_backend.cpython-314-darwin.so +0 -0
  130. sage/numerical/backends/cvxpy_backend.pxd +41 -0
  131. sage/numerical/backends/cvxpy_backend.pyx +934 -0
  132. sage/numerical/backends/cvxpy_backend_test.py +13 -0
  133. sage/numerical/backends/generic_backend_test.py +24 -0
  134. sage/numerical/backends/interactivelp_backend.cpython-314-darwin.so +0 -0
  135. sage/numerical/backends/interactivelp_backend.pxd +36 -0
  136. sage/numerical/backends/interactivelp_backend.pyx +1231 -0
  137. sage/numerical/backends/interactivelp_backend_test.py +12 -0
  138. sage/numerical/backends/logging_backend.py +391 -0
  139. sage/numerical/backends/matrix_sdp_backend.cpython-314-darwin.so +0 -0
  140. sage/numerical/backends/matrix_sdp_backend.pxd +15 -0
  141. sage/numerical/backends/matrix_sdp_backend.pyx +478 -0
  142. sage/numerical/backends/ppl_backend.cpython-314-darwin.so +0 -0
  143. sage/numerical/backends/ppl_backend.pyx +1126 -0
  144. sage/numerical/backends/ppl_backend_test.py +13 -0
  145. sage/numerical/backends/scip_backend.cpython-314-darwin.so +0 -0
  146. sage/numerical/backends/scip_backend.pxd +22 -0
  147. sage/numerical/backends/scip_backend.pyx +1289 -0
  148. sage/numerical/backends/scip_backend_test.py +13 -0
  149. sage/numerical/interactive_simplex_method.py +5338 -0
  150. sage/numerical/knapsack.py +665 -0
  151. sage/numerical/linear_functions.cpython-314-darwin.so +0 -0
  152. sage/numerical/linear_functions.pxd +31 -0
  153. sage/numerical/linear_functions.pyx +1648 -0
  154. sage/numerical/linear_tensor.py +470 -0
  155. sage/numerical/linear_tensor_constraints.py +448 -0
  156. sage/numerical/linear_tensor_element.cpython-314-darwin.so +0 -0
  157. sage/numerical/linear_tensor_element.pxd +6 -0
  158. sage/numerical/linear_tensor_element.pyx +459 -0
  159. sage/numerical/mip.cpython-314-darwin.so +0 -0
  160. sage/numerical/mip.pxd +40 -0
  161. sage/numerical/mip.pyx +3667 -0
  162. sage/numerical/sdp.cpython-314-darwin.so +0 -0
  163. sage/numerical/sdp.pxd +39 -0
  164. sage/numerical/sdp.pyx +1433 -0
  165. sage/rings/all__sagemath_polyhedra.py +3 -0
  166. sage/rings/polynomial/all__sagemath_polyhedra.py +10 -0
  167. sage/rings/polynomial/omega.py +982 -0
  168. sage/schemes/all__sagemath_polyhedra.py +2 -0
  169. sage/schemes/toric/all.py +10 -0
  170. sage/schemes/toric/chow_group.py +1248 -0
  171. sage/schemes/toric/divisor.py +2082 -0
  172. sage/schemes/toric/divisor_class.cpython-314-darwin.so +0 -0
  173. sage/schemes/toric/divisor_class.pyx +322 -0
  174. sage/schemes/toric/fano_variety.py +1606 -0
  175. sage/schemes/toric/homset.py +650 -0
  176. sage/schemes/toric/ideal.py +451 -0
  177. sage/schemes/toric/library.py +1322 -0
  178. sage/schemes/toric/morphism.py +1958 -0
  179. sage/schemes/toric/points.py +1032 -0
  180. sage/schemes/toric/sheaf/all.py +1 -0
  181. sage/schemes/toric/sheaf/constructor.py +302 -0
  182. sage/schemes/toric/sheaf/klyachko.py +921 -0
  183. sage/schemes/toric/toric_subscheme.py +905 -0
  184. sage/schemes/toric/variety.py +3460 -0
  185. sage/schemes/toric/weierstrass.py +1078 -0
  186. sage/schemes/toric/weierstrass_covering.py +457 -0
  187. sage/schemes/toric/weierstrass_higher.py +288 -0
  188. sage_wheels/share/reflexive_polytopes/Full2d/zzdb.info +10 -0
  189. sage_wheels/share/reflexive_polytopes/Full2d/zzdb.v03 +0 -0
  190. sage_wheels/share/reflexive_polytopes/Full2d/zzdb.v04 +0 -0
  191. sage_wheels/share/reflexive_polytopes/Full2d/zzdb.v05 +1 -0
  192. sage_wheels/share/reflexive_polytopes/Full2d/zzdb.v06 +1 -0
  193. sage_wheels/share/reflexive_polytopes/Full3d/zzdb.info +22 -0
  194. sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v04 +0 -0
  195. sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v05 +0 -0
  196. sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v06 +0 -0
  197. sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v07 +0 -0
  198. sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v08 +0 -0
  199. sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v09 +0 -0
  200. sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v10 +0 -0
  201. sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v11 +1 -0
  202. sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v12 +1 -0
  203. sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v13 +1 -0
  204. sage_wheels/share/reflexive_polytopes/reflexive_polytopes_2d +80 -0
  205. sage_wheels/share/reflexive_polytopes/reflexive_polytopes_3d +37977 -0
@@ -0,0 +1,2697 @@
1
+ # sage_setup: distribution = sagemath-polyhedra
2
+ r"""
3
+ Normal form games with N players.
4
+
5
+ This module implements a class for normal form games (strategic form games)
6
+ [NN2007]_. At present the following algorithms are implemented to
7
+ compute equilibria of these games:
8
+
9
+ * ``'enumeration'`` - An implementation of the support enumeration
10
+ algorithm built in Sage.
11
+
12
+ * ``'LCP'`` - An interface with the 'gambit' solver's implementation
13
+ of the Lemke-Howson algorithm.
14
+
15
+ * ``'lp'`` - A built-in Sage implementation (with a gambit alternative)
16
+ of a zero-sum game solver using linear programming. See
17
+ :class:`MixedIntegerLinearProgram` for more on MILP solvers in Sage.
18
+
19
+ * ``'lrs'`` - A solver interfacing with the 'lrslib' library.
20
+
21
+ The architecture for the class is based on the gambit architecture to
22
+ ensure an easy transition between gambit and Sage. At present the
23
+ algorithms for the computation of equilibria only solve 2 player games.
24
+
25
+ A very simple and well known example of normal form game is referred
26
+ to as the 'Battle of the Sexes' in which two players Amy and Bob
27
+ are modeled. Amy prefers to play video games and Bob prefers to
28
+ watch a movie. They both however want to spend their evening together.
29
+ This can be modeled using the following two matrices:
30
+
31
+ .. MATH::
32
+
33
+ A = \begin{pmatrix}
34
+ 3&1\\
35
+ 0&2\\
36
+ \end{pmatrix}
37
+
38
+
39
+ B = \begin{pmatrix}
40
+ 2&1\\
41
+ 0&3\\
42
+ \end{pmatrix}
43
+
44
+ Matrix `A` represents the utilities of Amy and matrix `B` represents the
45
+ utility of Bob. The choices of Amy correspond to the rows of the matrices:
46
+
47
+ * The first row corresponds to video games.
48
+
49
+ * The second row corresponds to movies.
50
+
51
+ Similarly Bob's choices are represented by the columns:
52
+
53
+ * The first column corresponds to video games.
54
+
55
+ * The second column corresponds to movies.
56
+
57
+ Thus, if both Amy and Bob choose to play video games: Amy receives a
58
+ utility of 3 and Bob a utility of 2. If Amy is indeed going to stick
59
+ with video games Bob has no incentive to deviate (and vice versa).
60
+
61
+ This situation repeats itself if both Amy and Bob choose to watch a movie:
62
+ neither has an incentive to deviate.
63
+
64
+ This loosely described situation is referred to as a Nash Equilibrium.
65
+ We can use Sage to find them, and more importantly, see if there is any
66
+ other situation where Amy and Bob have no reason to change their choice
67
+ of action:
68
+
69
+ Here is how we create the game in Sage::
70
+
71
+ sage: A = matrix([[3, 1], [0, 2]])
72
+ sage: B = matrix([[2, 1], [0, 3]])
73
+ sage: battle_of_the_sexes = NormalFormGame([A, B])
74
+ sage: battle_of_the_sexes
75
+ Normal Form Game with the following utilities: {(0, 0): [3, 2],
76
+ (0, 1): [1, 1], (1, 0): [0, 0], (1, 1): [2, 3]}
77
+
78
+ To obtain the Nash equilibria we run the ``obtain_nash()`` method. In the
79
+ first few examples, we will use the 'support enumeration' algorithm.
80
+ A discussion about the different algorithms will be given later::
81
+
82
+ sage: battle_of_the_sexes.obtain_nash(algorithm='enumeration')
83
+ [[(0, 1), (0, 1)], [(3/4, 1/4), (1/4, 3/4)], [(1, 0), (1, 0)]]
84
+
85
+ If we look a bit closer at our output we see that a list of three
86
+ pairs of tuples have been returned. Each of these correspond to a
87
+ Nash Equilibrium, represented as a probability distribution over the
88
+ available strategies:
89
+
90
+ * `[(1, 0), (1, 0)]` corresponds to the first player only
91
+ playing their first strategy and the second player also only playing
92
+ their first strategy. In other words Amy and Bob both play video games.
93
+
94
+ * `[(0, 1), (0, 1)]` corresponds to the first player only
95
+ playing their second strategy and the second player also only playing
96
+ their second strategy. In other words Amy and Bob both watch movies.
97
+
98
+ * `[(3/4, 1/4), (1/4, 3/4)]` corresponds to players `mixing` their
99
+ strategies. Amy plays video games 75% of the time and Bob watches
100
+ movies 75% of the time. At this equilibrium point Amy and Bob will
101
+ only ever do the same activity `3/8` of the time.
102
+
103
+ We can use Sage to compute the expected utility for any mixed strategy
104
+ pair `(\sigma_1, \sigma_2)`. The payoff to player 1 is given by the
105
+ vector/matrix multiplication:
106
+
107
+ .. MATH::
108
+
109
+ \sigma_1 A \sigma_2
110
+
111
+ The payoff to player 2 is given by:
112
+
113
+ .. MATH::
114
+
115
+ \sigma_1 B \sigma_2
116
+
117
+ To compute this in Sage we have::
118
+
119
+ sage: for ne in battle_of_the_sexes.obtain_nash(algorithm='enumeration'):
120
+ ....: print("Utility for {}: ".format(ne))
121
+ ....: print("{} {}".format(vector(ne[0]) * A * vector(ne[1]), vector(ne[0]) * B * vector(ne[1])))
122
+ Utility for [(0, 1), (0, 1)]:
123
+ 2 3
124
+ Utility for [(3/4, 1/4), (1/4, 3/4)]:
125
+ 3/2 3/2
126
+ Utility for [(1, 0), (1, 0)]:
127
+ 3 2
128
+
129
+ Allowing players to play mixed strategies ensures that there will always
130
+ be a Nash Equilibrium for a normal form game. This result is called Nash's
131
+ Theorem ([Nas1950]_).
132
+
133
+ Let us consider the game called 'matching pennies' where two players each
134
+ present a coin with either HEADS or TAILS showing. If the coins show the
135
+ same side then player 1 wins, otherwise player 2 wins:
136
+
137
+
138
+ .. MATH::
139
+
140
+ A = \begin{pmatrix}
141
+ 1&-1\\
142
+ -1&1\\
143
+ \end{pmatrix}
144
+
145
+
146
+ B = \begin{pmatrix}
147
+ -1&1\\
148
+ 1&-1\\
149
+ \end{pmatrix}
150
+
151
+ It should be relatively straightforward to observe, that there is no
152
+ situation, where both players always do the same thing, and have no
153
+ incentive to deviate.
154
+
155
+ We can plot the utility of player 1 when player 2 is playing a mixed
156
+ strategy `\sigma_2 = (y, 1-y)` (so that the utility to player 1 for
157
+ playing strategy number `i` is given by the matrix/vector multiplication
158
+ `(Ay)_i`, ie element in position `i` of the matrix/vector multiplication
159
+ `Ay`) ::
160
+
161
+ sage: y = var('y') # needs sage.symbolic
162
+ sage: A = matrix([[1, -1], [-1, 1]])
163
+ sage: p = plot((A * vector([y, 1 - y]))[0], y, 0, 1, color='blue', # needs sage.symbolic
164
+ ....: legend_label='$u_1(r_1, (y, 1-y))$', axes_labels=['$y$', ''])
165
+ sage: p += plot((A * vector([y, 1 - y]))[1], y, 0, 1, color='red', # needs sage.symbolic
166
+ ....: legend_label='$u_1(r_2, (y, 1-y))$'); p
167
+ Graphics object consisting of 2 graphics primitives
168
+
169
+ We see that the only point at which player 1 is indifferent amongst
170
+ the available strategies is when `y = 1/2`.
171
+
172
+ If we compute the Nash equilibria we see that this corresponds to a point
173
+ at which both players are indifferent::
174
+
175
+ sage: A = matrix([[1, -1], [-1, 1]])
176
+ sage: B = matrix([[-1, 1], [1, -1]])
177
+ sage: matching_pennies = NormalFormGame([A, B])
178
+ sage: matching_pennies.obtain_nash(algorithm='enumeration')
179
+ [[(1/2, 1/2), (1/2, 1/2)]]
180
+
181
+ The utilities to both players at this Nash equilibrium
182
+ is easily computed::
183
+
184
+ sage: [vector([1/2, 1/2]) * M * vector([1/2, 1/2])
185
+ ....: for M in matching_pennies.payoff_matrices()]
186
+ [0, 0]
187
+
188
+ Note that the above uses the ``payoff_matrices`` method
189
+ which returns the payoff matrices for a 2 player game::
190
+
191
+ sage: matching_pennies.payoff_matrices()
192
+ (
193
+ [ 1 -1] [-1 1]
194
+ [-1 1], [ 1 -1]
195
+ )
196
+
197
+ One can also input a single matrix and then a zero sum game is constructed.
198
+ Here is an instance of `Rock-Paper-Scissors-Lizard-Spock
199
+ <http://www.samkass.com/theories/RPSSL.html>`_::
200
+
201
+ sage: A = matrix([[0, -1, 1, 1, -1],
202
+ ....: [1, 0, -1, -1, 1],
203
+ ....: [-1, 1, 0, 1 , -1],
204
+ ....: [-1, 1, -1, 0, 1],
205
+ ....: [1, -1, 1, -1, 0]])
206
+ sage: g = NormalFormGame([A])
207
+ sage: g.obtain_nash(algorithm='enumeration')
208
+ [[(1/5, 1/5, 1/5, 1/5, 1/5), (1/5, 1/5, 1/5, 1/5, 1/5)]]
209
+
210
+ We can also study games where players aim to minimize their utility.
211
+ Here is the Prisoner's Dilemma (where players are aiming to reduce
212
+ time spent in prison)::
213
+
214
+ sage: A = matrix([[2, 5], [0, 4]])
215
+ sage: B = matrix([[2, 0], [5, 4]])
216
+ sage: prisoners_dilemma = NormalFormGame([A, B])
217
+ sage: prisoners_dilemma.obtain_nash(algorithm='enumeration', maximization=False)
218
+ [[(0, 1), (0, 1)]]
219
+
220
+ When obtaining Nash equilibrium the following algorithms are
221
+ currently available:
222
+
223
+ * ``'lp'``: A solver for constant sum 2 player games using linear
224
+ programming. This constructs a
225
+ :mod:`MixedIntegerLinearProgram <sage.numerical.MILP>` using the
226
+ solver which was passed in with ``solver`` to solve the linear
227
+ programming representation of the game. See
228
+ :class:`MixedIntegerLinearProgram` for more on MILP solvers in Sage.
229
+
230
+ * ``'lrs'``: Reverse search vertex enumeration for 2 player games. This
231
+ algorithm uses the optional 'lrslib' package. To install it, type
232
+ ``sage -i lrslib`` in the shell. For more information, see [Av2000]_.
233
+
234
+ * ``'LCP'``: Linear complementarity program algorithm for 2 player games.
235
+ This algorithm uses the open source game theory package:
236
+ `Gambit <http://gambit.sourceforge.net/>`_ [Gambit]_. At present this is
237
+ the only gambit algorithm available in sage but further development will
238
+ hope to implement more algorithms
239
+ (in particular for games with more than 2 players).
240
+
241
+ * ``'enumeration'``: Support enumeration for 2 player games. This
242
+ algorithm is hard coded in Sage and checks through all potential
243
+ supports of a strategy. Supports of a given size with a conditionally
244
+ dominated strategy are ignored. Note: this is not the preferred
245
+ algorithm. The algorithm implemented is a combination of a basic
246
+ algorithm described in [NN2007]_ and a pruning component described
247
+ in [SLB2008]_.
248
+
249
+ Below we show how the these algorithms are called::
250
+
251
+ sage: matching_pennies.obtain_nash(algorithm='lrs') # optional - lrslib
252
+ [[(1/2, 1/2), (1/2, 1/2)]]
253
+ sage: matching_pennies.obtain_nash(algorithm='LCP') # optional - gambit
254
+ [[(0.5, 0.5), (0.5, 0.5)]]
255
+ sage: matching_pennies.obtain_nash(algorithm='lp', solver='PPL')
256
+ [[(1/2, 1/2), (1/2, 1/2)]]
257
+ sage: matching_pennies.obtain_nash(algorithm='lp', solver='gambit') # optional - gambit
258
+ [[(0.5, 0.5), (0.5, 0.5)]]
259
+ sage: matching_pennies.obtain_nash(algorithm='enumeration')
260
+ [[(1/2, 1/2), (1/2, 1/2)]]
261
+
262
+ Note that if no algorithm argument is passed then the default will be
263
+ selected according to the following order (if the corresponding package is
264
+ installed):
265
+
266
+ 1. ``'lp'`` (if the game is constant-sum; uses the solver chosen by Sage)
267
+ 2. ``'lrs'`` (requires 'lrslib')
268
+ 3. ``'enumeration'``
269
+
270
+ Here is a game being constructed using gambit syntax (note that a
271
+ ``NormalFormGame`` object acts like a dictionary with pure strategy tuples as
272
+ keys and payoffs as their values)::
273
+
274
+ sage: f = NormalFormGame()
275
+ sage: f.add_player(2) # Adding first player with 2 strategies
276
+ sage: f.add_player(2) # Adding second player with 2 strategies
277
+ sage: f[0,0][0] = 1
278
+ sage: f[0,0][1] = 3
279
+ sage: f[0,1][0] = 2
280
+ sage: f[0,1][1] = 3
281
+ sage: f[1,0][0] = 3
282
+ sage: f[1,0][1] = 1
283
+ sage: f[1,1][0] = 4
284
+ sage: f[1,1][1] = 4
285
+ sage: f
286
+ Normal Form Game with the following utilities: {(0, 0): [1, 3],
287
+ (0, 1): [2, 3], (1, 0): [3, 1], (1, 1): [4, 4]}
288
+
289
+ Once this game is constructed we can view the payoff matrices and solve the
290
+ game::
291
+
292
+ sage: f.payoff_matrices()
293
+ (
294
+ [1 2] [3 3]
295
+ [3 4], [1 4]
296
+ )
297
+ sage: f.obtain_nash(algorithm='enumeration')
298
+ [[(0, 1), (0, 1)]]
299
+
300
+ We can add an extra strategy to the first player::
301
+
302
+ sage: f.add_strategy(0)
303
+ sage: f
304
+ Normal Form Game with the following utilities: {(0, 0): [1, 3],
305
+ (0, 1): [2, 3],
306
+ (1, 0): [3, 1],
307
+ (1, 1): [4, 4],
308
+ (2, 0): [False, False],
309
+ (2, 1): [False, False]}
310
+
311
+ If we do this and try and obtain the Nash equilibrium or view the payoff
312
+ matrices(without specifying the utilities), an error is returned::
313
+
314
+ sage: f.obtain_nash()
315
+ Traceback (most recent call last):
316
+ ...
317
+ ValueError: utilities have not been populated
318
+ sage: f.payoff_matrices()
319
+ Traceback (most recent call last):
320
+ ...
321
+ ValueError: utilities have not been populated
322
+
323
+ Here we populate the missing utilities::
324
+
325
+ sage: f[2, 1] = [5, 3]
326
+ sage: f[2, 0] = [2, 1]
327
+ sage: f.payoff_matrices()
328
+ (
329
+ [1 2] [3 3]
330
+ [3 4] [1 4]
331
+ [2 5], [1 3]
332
+ )
333
+ sage: f.obtain_nash()
334
+ [[(0, 0, 1), (0, 1)]]
335
+
336
+ We can use the same syntax as above to create games with
337
+ more than 2 players::
338
+
339
+ sage: threegame = NormalFormGame()
340
+ sage: threegame.add_player(2) # Adding first player with 2 strategies
341
+ sage: threegame.add_player(2) # Adding second player with 2 strategies
342
+ sage: threegame.add_player(2) # Adding third player with 2 strategies
343
+ sage: threegame[0, 0, 0][0] = 3
344
+ sage: threegame[0, 0, 0][1] = 1
345
+ sage: threegame[0, 0, 0][2] = 4
346
+ sage: threegame[0, 0, 1][0] = 1
347
+ sage: threegame[0, 0, 1][1] = 5
348
+ sage: threegame[0, 0, 1][2] = 9
349
+ sage: threegame[0, 1, 0][0] = 2
350
+ sage: threegame[0, 1, 0][1] = 6
351
+ sage: threegame[0, 1, 0][2] = 5
352
+ sage: threegame[0, 1, 1][0] = 3
353
+ sage: threegame[0, 1, 1][1] = 5
354
+ sage: threegame[0, 1, 1][2] = 8
355
+ sage: threegame[1, 0, 0][0] = 9
356
+ sage: threegame[1, 0, 0][1] = 7
357
+ sage: threegame[1, 0, 0][2] = 9
358
+ sage: threegame[1, 0, 1][0] = 3
359
+ sage: threegame[1, 0, 1][1] = 2
360
+ sage: threegame[1, 0, 1][2] = 3
361
+ sage: threegame[1, 1, 0][0] = 8
362
+ sage: threegame[1, 1, 0][1] = 4
363
+ sage: threegame[1, 1, 0][2] = 6
364
+ sage: threegame[1, 1, 1][0] = 2
365
+ sage: threegame[1, 1, 1][1] = 6
366
+ sage: threegame[1, 1, 1][2] = 4
367
+ sage: threegame
368
+ Normal Form Game with the following utilities: {(0, 0, 0): [3, 1, 4],
369
+ (0, 0, 1): [1, 5, 9],
370
+ (0, 1, 0): [2, 6, 5],
371
+ (0, 1, 1): [3, 5, 8],
372
+ (1, 0, 0): [9, 7, 9],
373
+ (1, 0, 1): [3, 2, 3],
374
+ (1, 1, 0): [8, 4, 6],
375
+ (1, 1, 1): [2, 6, 4]}
376
+
377
+ The above requires a lot of input that could be simplified if there is
378
+ another data structure with our utilities and/or a structure to the
379
+ utilities. The following example creates a game with a relatively strange
380
+ utility function::
381
+
382
+ sage: def utility(strategy_triplet, player):
383
+ ....: return sum(strategy_triplet) * player
384
+ sage: threegame = NormalFormGame()
385
+ sage: threegame.add_player(2) # Adding first player with 2 strategies
386
+ sage: threegame.add_player(2) # Adding second player with 2 strategies
387
+ sage: threegame.add_player(2) # Adding third player with 2 strategies
388
+ sage: for i, j, k in [(i, j, k) for i in [0,1] for j in [0,1] for k in [0,1]]:
389
+ ....: for p in range(3):
390
+ ....: threegame[i, j, k][p] = utility([i, j, k], p)
391
+ sage: threegame
392
+ Normal Form Game with the following utilities: {(0, 0, 0): [0, 0, 0],
393
+ (0, 0, 1): [0, 1, 2],
394
+ (0, 1, 0): [0, 1, 2],
395
+ (0, 1, 1): [0, 2, 4],
396
+ (1, 0, 0): [0, 1, 2],
397
+ (1, 0, 1): [0, 2, 4],
398
+ (1, 1, 0): [0, 2, 4],
399
+ (1, 1, 1): [0, 3, 6]}
400
+
401
+ At present no algorithm has been implemented in Sage for games with
402
+ more than 2 players::
403
+
404
+ sage: threegame.obtain_nash()
405
+ Traceback (most recent call last):
406
+ ...
407
+ NotImplementedError: Nash equilibrium for games with more than 2 players
408
+ have not been implemented yet. Please see the gambit website
409
+ (http://gambit.sourceforge.net/) that has a variety of available algorithms
410
+
411
+ There are however a variety of such algorithms available in gambit,
412
+ further compatibility between Sage and gambit is actively being developed:
413
+ https://github.com/tturocy/gambit/tree/sage_integration.
414
+
415
+ It can be shown that linear scaling of the payoff matrices conserves the
416
+ equilibrium values::
417
+
418
+ sage: A = matrix([[2, 1], [1, 2.5]])
419
+ sage: B = matrix([[-1, 3], [2, 1]])
420
+ sage: g = NormalFormGame([A, B])
421
+ sage: g.obtain_nash(algorithm='enumeration')
422
+ [[(1/5, 4/5), (3/5, 2/5)]]
423
+ sage: g.obtain_nash(algorithm='lrs') # optional - lrslib
424
+ [[(1/5, 4/5), (3/5, 2/5)]]
425
+ sage: A = 2 * A
426
+ sage: g = NormalFormGame([A, B])
427
+ sage: g.obtain_nash(algorithm='LCP') # optional - gambit
428
+ [[(0.2, 0.8), (0.6, 0.4)]]
429
+
430
+ It is also possible to generate a Normal form game from a gambit Game::
431
+
432
+ sage: # optional - gambit
433
+ sage: from gambit import Game
434
+ sage: gambitgame= Game.new_table([2, 2])
435
+ sage: gambitgame[int(0), int(0)][int(0)] = int(8)
436
+ sage: gambitgame[int(0), int(0)][int(1)] = int(8)
437
+ sage: gambitgame[int(0), int(1)][int(0)] = int(2)
438
+ sage: gambitgame[int(0), int(1)][int(1)] = int(10)
439
+ sage: gambitgame[int(1), int(0)][int(0)] = int(10)
440
+ sage: gambitgame[int(1), int(0)][int(1)] = int(2)
441
+ sage: gambitgame[int(1), int(1)][int(0)] = int(5)
442
+ sage: gambitgame[int(1), int(1)][int(1)] = int(5)
443
+ sage: g = NormalFormGame(gambitgame); g
444
+ Normal Form Game with the following utilities: {(0, 0): [8.0, 8.0],
445
+ (0, 1): [2.0, 10.0],
446
+ (1, 0): [10.0, 2.0],
447
+ (1, 1): [5.0, 5.0]}
448
+
449
+ For more information on using Gambit in Sage see: :mod:`Using Gambit in
450
+ Sage<sage.game_theory.gambit_docs>`. This includes how to access Gambit
451
+ directly using the version of iPython shipped with Sage and an explanation
452
+ as to why the ``int`` calls are needed to handle the Sage preparser.
453
+
454
+ Here is a slightly longer game that would take too long to solve with
455
+ ``'enumeration'``. Consider the following:
456
+
457
+ An airline loses two suitcases belonging to two different travelers. Both
458
+ suitcases happen to be identical and contain identical antiques. An
459
+ airline manager tasked to settle the claims of both travelers explains
460
+ that the airline is liable for a maximum of 10 per suitcase, and in order
461
+ to determine an honest appraised value of the antiques the manager
462
+ separates both travelers so they can't confer, and asks them to write down
463
+ the amount of their value at no less than 2 and no larger than 10. He
464
+ also tells them that if both write down the same number, he will treat
465
+ that number as the true dollar value of both suitcases and reimburse both
466
+ travelers that amount.
467
+
468
+ However, if one writes down a smaller number than the other, this smaller
469
+ number will be taken as the true dollar value, and both travelers will
470
+ receive that amount along with a bonus/malus: 2 extra will be paid to the
471
+ traveler who wrote down the lower value and a 2 deduction will be taken
472
+ from the person who wrote down the higher amount. The challenge is: what
473
+ strategy should both travelers follow to decide the value they should
474
+ write down?
475
+
476
+ In the following we create the game (with a max value of 10) and solve it::
477
+
478
+ sage: K = 10 # Modifying this value lets us play with games of any size
479
+ sage: A = matrix([[min(i,j) + 2 * sign(j-i) for j in range(K, 1, -1)]
480
+ ....: for i in range(K, 1, -1)])
481
+ sage: B = matrix([[min(i,j) + 2 * sign(i-j) for j in range(K, 1, -1)]
482
+ ....: for i in range(K, 1, -1)])
483
+ sage: g = NormalFormGame([A, B])
484
+ sage: g.obtain_nash(algorithm='lrs') # optional - lrslib
485
+ [[(0, 0, 0, 0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 0, 0, 0, 1)]]
486
+ sage: g.obtain_nash(algorithm='LCP') # optional - gambit
487
+ [[(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0),
488
+ (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)]]
489
+
490
+ The output is a pair of vectors (as before) showing the Nash equilibrium.
491
+ In particular it here shows that out of the 10 possible strategies both
492
+ players should choose the last. Recall that the above considers a reduced
493
+ version of the game where individuals can claim integer values from 10
494
+ to 2. The equilibrium strategy is thus for both players to state that
495
+ the value of their suitcase is 2.
496
+
497
+ Several standard Normal Form Games have also been implemented.
498
+ For more information on how to access these, see:
499
+ :mod:`Game Theory Catalog<sage.game_theory.catalog>`.
500
+ Included is information on the situation each Game models.
501
+ For example::
502
+
503
+ sage: g = game_theory.normal_form_games.PrisonersDilemma()
504
+ sage: g
505
+ Prisoners dilemma - Normal Form Game with the following utilities: ...
506
+ sage: d = {(0, 1): [-5, 0], (1, 0): [0, -5],
507
+ ....: (0, 0): [-2, -2], (1, 1): [-4, -4]}
508
+ sage: g == d
509
+ True
510
+ sage: g.obtain_nash()
511
+ [[(0, 1), (0, 1)]]
512
+
513
+ We can easily obtain the best response for a player to a given strategy. In
514
+ this example we obtain the best responses for Player 1, when Player 2 uses two
515
+ different strategies::
516
+
517
+ sage: A = matrix([[3, 0], [0, 3], [1.5, 1.5]])
518
+ sage: B = matrix([[4, 3], [2, 6], [3, 1]])
519
+ sage: g = NormalFormGame([A, B])
520
+ sage: g.best_responses((1/2, 1/2), player=0)
521
+ [0, 1, 2]
522
+ sage: g.best_responses((3/4, 1/4), player=0)
523
+ [0]
524
+
525
+ Here we do the same for player 2::
526
+
527
+ sage: g.best_responses((4/5, 1/5, 0), player=1)
528
+ [0, 1]
529
+
530
+ We see that for the game `Rock-Paper-Scissors-Lizard-Spock
531
+ <http://www.samkass.com/theories/RPSSL.html>`_ any pure strategy has two best
532
+ responses::
533
+
534
+ sage: g = game_theory.normal_form_games.RPSLS()
535
+ sage: A, B = g.payoff_matrices()
536
+ sage: A, B
537
+ (
538
+ [ 0 -1 1 1 -1] [ 0 1 -1 -1 1]
539
+ [ 1 0 -1 -1 1] [-1 0 1 1 -1]
540
+ [-1 1 0 1 -1] [ 1 -1 0 -1 1]
541
+ [-1 1 -1 0 1] [ 1 -1 1 0 -1]
542
+ [ 1 -1 1 -1 0], [-1 1 -1 1 0]
543
+ )
544
+ sage: g.best_responses((1, 0, 0, 0, 0), player=0)
545
+ [1, 4]
546
+ sage: g.best_responses((0, 1, 0, 0, 0), player=0)
547
+ [2, 3]
548
+ sage: g.best_responses((0, 0, 1, 0, 0), player=0)
549
+ [0, 4]
550
+ sage: g.best_responses((0, 0, 0, 1, 0), player=0)
551
+ [0, 2]
552
+ sage: g.best_responses((0, 0, 0, 0, 1), player=0)
553
+ [1, 3]
554
+ sage: g.best_responses((1, 0, 0, 0, 0), player=1)
555
+ [1, 4]
556
+ sage: g.best_responses((0, 1, 0, 0, 0), player=1)
557
+ [2, 3]
558
+ sage: g.best_responses((0, 0, 1, 0, 0), player=1)
559
+ [0, 4]
560
+ sage: g.best_responses((0, 0, 0, 1, 0), player=1)
561
+ [0, 2]
562
+ sage: g.best_responses((0, 0, 0, 0, 1), player=1)
563
+ [1, 3]
564
+
565
+ Note that degenerate games can cause problems for most algorithms.
566
+ The following example in fact has an infinite quantity of equilibria which
567
+ is evidenced by the various algorithms returning different solutions::
568
+
569
+ sage: A = matrix([[3,3],[2,5],[0,6]])
570
+ sage: B = matrix([[3,3],[2,6],[3,1]])
571
+ sage: degenerate_game = NormalFormGame([A,B])
572
+ sage: degenerate_game.obtain_nash(algorithm='lrs') # random, optional - lrslib
573
+ [[(0, 1/3, 2/3), (1/3, 2/3)], [(1, 0, 0), (1/2, 3)], [(1, 0, 0), (1, 3)]]
574
+ sage: degenerate_game.obtain_nash(algorithm='LCP') # optional - gambit
575
+ [[(0.0, 0.3333333333, 0.6666666667), (0.3333333333, 0.6666666667)],
576
+ [(1.0, -0.0, 0.0), (0.6666666667, 0.3333333333)],
577
+ [(1.0, 0.0, 0.0), (1.0, 0.0)]]
578
+ sage: degenerate_game.obtain_nash(algorithm='enumeration')
579
+ [[(0, 1/3, 2/3), (1/3, 2/3)], [(1, 0, 0), (1, 0)]]
580
+
581
+ We can check the cause of this by using ``is_degenerate()``::
582
+
583
+ sage: degenerate_game.is_degenerate()
584
+ True
585
+
586
+ Note the 'negative' `-0.0` output by gambit. This is due to the numerical
587
+ nature of the algorithm used.
588
+
589
+ Here is an example with the trivial game where all payoffs are 0::
590
+
591
+ sage: g = NormalFormGame()
592
+ sage: g.add_player(3) # Adding first player with 3 strategies
593
+ sage: g.add_player(3) # Adding second player with 3 strategies
594
+ sage: for key in g:
595
+ ....: g[key] = [0, 0]
596
+ sage: g.payoff_matrices()
597
+ (
598
+ [0 0 0] [0 0 0]
599
+ [0 0 0] [0 0 0]
600
+ [0 0 0], [0 0 0]
601
+ )
602
+ sage: g.obtain_nash(algorithm='enumeration')
603
+ [[(0, 0, 1), (0, 0, 1)], [(0, 0, 1), (0, 1, 0)], [(0, 0, 1), (1, 0, 0)],
604
+ [(0, 1, 0), (0, 0, 1)], [(0, 1, 0), (0, 1, 0)], [(0, 1, 0), (1, 0, 0)],
605
+ [(1, 0, 0), (0, 0, 1)], [(1, 0, 0), (0, 1, 0)], [(1, 0, 0), (1, 0, 0)]]
606
+
607
+ A good description of degenerate games can be found in [NN2007]_.
608
+
609
+ REFERENCES:
610
+
611
+ - [Nas1950]_
612
+
613
+ - [NN2007]_
614
+
615
+ - [Av2000]_
616
+
617
+ - [Gambit]_
618
+
619
+ - [SLB2008]_
620
+
621
+ AUTHORS:
622
+
623
+ - James Campbell and Vince Knight (06-2014): Original version
624
+
625
+ - Tobenna P. Igwe: Constant-sum game solvers
626
+ """
627
+
628
+ # ****************************************************************************
629
+ # Copyright (C) 2014 James Campbell james.campbell@tanti.org.uk
630
+ #
631
+ # This program is free software: you can redistribute it and/or modify
632
+ # it under the terms of the GNU General Public License as published by
633
+ # the Free Software Foundation, either version 3 of the License, or
634
+ # (at your option) any later version.
635
+ # https://www.gnu.org/licenses/
636
+ # ****************************************************************************
637
+
638
+ from collections.abc import MutableMapping
639
+ from itertools import product
640
+ from .parser import Parser
641
+ from sage.misc.latex import latex
642
+ from sage.combinat.subset import powerset
643
+ from sage.rings.rational_field import QQ
644
+ from sage.structure.sage_object import SageObject
645
+ from sage.matrix.constructor import matrix
646
+ from sage.matrix.constructor import vector
647
+ from sage.misc.temporary_file import tmp_filename
648
+ from sage.numerical.mip import MixedIntegerLinearProgram
649
+ from sage.cpython.string import bytes_to_str
650
+
651
+ try:
652
+ from gambit import Game
653
+ from gambit.nash import ExternalLPSolver, ExternalLCPSolver
654
+ except ImportError:
655
+ Game = None
656
+ ExternalLPSolver = None
657
+ ExternalLCPSolver = None
658
+
659
+
660
+ class NormalFormGame(SageObject, MutableMapping):
661
+ r"""
662
+ An object representing a Normal Form Game. Primarily used to compute the
663
+ Nash Equilibria.
664
+
665
+ INPUT:
666
+
667
+ - ``generator`` -- can be a list of 2 matrices, a single matrix or left
668
+ blank
669
+ """
670
+
671
+ def __init__(self, generator=None):
672
+ r"""
673
+ Initialize a Normal Form game and checks the inputs.
674
+
675
+ EXAMPLES:
676
+
677
+ Can have games with more than 2 players::
678
+
679
+ sage: threegame = NormalFormGame()
680
+ sage: threegame.add_player(2) # Adding first player with 2 strategies
681
+ sage: threegame.add_player(2) # Adding second player with 2 strategies
682
+ sage: threegame.add_player(2) # Adding third player with 2 strategies
683
+ sage: threegame[0, 0, 0][0] = 3
684
+ sage: threegame[0, 0, 0][1] = 1
685
+ sage: threegame[0, 0, 0][2] = 4
686
+ sage: threegame[0, 0, 1][0] = 1
687
+ sage: threegame[0, 0, 1][1] = 5
688
+ sage: threegame[0, 0, 1][2] = 9
689
+ sage: threegame[0, 1, 0][0] = 2
690
+ sage: threegame[0, 1, 0][1] = 6
691
+ sage: threegame[0, 1, 0][2] = 5
692
+ sage: threegame[0, 1, 1][0] = 3
693
+ sage: threegame[0, 1, 1][1] = 5
694
+ sage: threegame[0, 1, 1][2] = 8
695
+ sage: threegame[1, 0, 0][0] = 9
696
+ sage: threegame[1, 0, 0][1] = 7
697
+ sage: threegame[1, 0, 0][2] = 9
698
+ sage: threegame[1, 0, 1][0] = 3
699
+ sage: threegame[1, 0, 1][1] = 2
700
+ sage: threegame[1, 0, 1][2] = 3
701
+ sage: threegame[1, 1, 0][0] = 8
702
+ sage: threegame[1, 1, 0][1] = 4
703
+ sage: threegame[1, 1, 0][2] = 6
704
+ sage: threegame[1, 1, 1][0] = 2
705
+ sage: threegame[1, 1, 1][1] = 6
706
+ sage: threegame[1, 1, 1][2] = 4
707
+ sage: threegame.obtain_nash()
708
+ Traceback (most recent call last):
709
+ ...
710
+ NotImplementedError: Nash equilibrium for games with more than
711
+ 2 players have not been implemented yet. Please see the gambit
712
+ website (http://gambit.sourceforge.net/) that has a variety of
713
+ available algorithms
714
+
715
+ Can initialise a game from a gambit game object::
716
+
717
+ sage: # optional - gambit
718
+ sage: from gambit import Game
719
+ sage: gambitgame= Game.new_table([2, 2])
720
+ sage: gambitgame[int(0), int(0)][int(0)] = int(5)
721
+ sage: gambitgame[int(0), int(0)][int(1)] = int(8)
722
+ sage: gambitgame[int(0), int(1)][int(0)] = int(2)
723
+ sage: gambitgame[int(0), int(1)][int(1)] = int(11)
724
+ sage: gambitgame[int(1), int(0)][int(0)] = int(10)
725
+ sage: gambitgame[int(1), int(0)][int(1)] = int(7)
726
+ sage: gambitgame[int(1), int(1)][int(0)] = int(5)
727
+ sage: gambitgame[int(1), int(1)][int(1)] = int(5)
728
+ sage: g = NormalFormGame(gambitgame); g
729
+ Normal Form Game with the following utilities: {(0, 0): [5.0, 8.0],
730
+ (0, 1): [2.0, 11.0],
731
+ (1, 0): [10.0, 7.0],
732
+ (1, 1): [5.0, 5.0]}
733
+
734
+ TESTS:
735
+
736
+ Raise error if matrices aren't the same size::
737
+
738
+ sage: p1 = matrix([[1, 2], [3, 4]])
739
+ sage: p2 = matrix([[3, 3], [1, 4], [6, 6]])
740
+ sage: error = NormalFormGame([p1, p2])
741
+ Traceback (most recent call last):
742
+ ...
743
+ ValueError: matrices must be the same size
744
+
745
+ Note that when initializing, a single argument must be passed::
746
+
747
+ sage: p1 = matrix([[1, 2], [3, 4]])
748
+ sage: p2 = matrix([[3, 3], [1, 4], [6, 6]])
749
+ sage: error = NormalFormGame(p1, p2)
750
+ Traceback (most recent call last):
751
+ ...
752
+ TypeError: ...__init__() takes from 1 to 2 positional arguments but 3 were given
753
+
754
+ When initiating, argument passed must be a list or nothing::
755
+
756
+ sage: error = NormalFormGame({4:6, 6:9})
757
+ Traceback (most recent call last):
758
+ ...
759
+ TypeError: Generator function must be a list, gambit game or nothing
760
+
761
+ When passing nothing, the utilities then need to be entered manually::
762
+
763
+ sage: game = NormalFormGame()
764
+ sage: game
765
+ Normal Form Game with the following utilities: {}
766
+ """
767
+ self.players = []
768
+ self.utilities = {}
769
+ matrices = []
770
+ if generator is not None:
771
+ if type(generator) is not list and type(generator) is not Game:
772
+ raise TypeError("Generator function must be a list, gambit game or nothing")
773
+
774
+ if type(generator) is list:
775
+ if len(generator) == 1:
776
+ generator.append(-generator[-1])
777
+ matrices = generator
778
+ if matrices[0].dimensions() != matrices[1].dimensions():
779
+ raise ValueError("matrices must be the same size")
780
+ self._two_matrix_game(matrices)
781
+ elif type(generator) is Game:
782
+ game = generator
783
+ self._gambit_game(game)
784
+
785
+ def __delitem__(self, key):
786
+ r"""
787
+ This method is one of a collection that aims to make a game
788
+ instance behave like a dictionary which can be used if a game
789
+ is to be generated without using a matrix.
790
+
791
+ Here we set up deleting an element of the utilities dictionary::
792
+
793
+ sage: A = matrix([[2, 5], [0, 4]])
794
+ sage: B = matrix([[2, 0], [5, 4]])
795
+ sage: prisoners_dilemma = NormalFormGame([A, B])
796
+ sage: prisoners_dilemma
797
+ Normal Form Game with the following utilities: {(0, 0): [2, 2],
798
+ (0, 1): [5, 0], (1, 0): [0, 5], (1, 1): [4, 4]}
799
+ sage: del(prisoners_dilemma[(0,1)])
800
+ sage: prisoners_dilemma
801
+ Normal Form Game with the following utilities: {(0, 0): [2, 2],
802
+ (1, 0): [0, 5], (1, 1): [4, 4]}
803
+ """
804
+ self.utilities.pop(key, None)
805
+
806
+ def __getitem__(self, key):
807
+ r"""
808
+ This method is one of a collection that aims to make a game
809
+ instance behave like a dictionary which can be used if a game
810
+ is to be generated without using a matrix.
811
+
812
+ Here we allow for querying a key::
813
+
814
+ sage: A = matrix([[2, 5], [0, 4]])
815
+ sage: B = matrix([[2, 0], [5, 4]])
816
+ sage: prisoners_dilemma = NormalFormGame([A, B])
817
+ sage: prisoners_dilemma[(0, 1)]
818
+ [5, 0]
819
+ sage: del(prisoners_dilemma[(0,1)])
820
+ sage: prisoners_dilemma[(0, 1)]
821
+ Traceback (most recent call last):
822
+ ...
823
+ KeyError: (0, 1)
824
+ """
825
+
826
+ return self.utilities[key]
827
+
828
+ def __iter__(self):
829
+ r"""
830
+ This method is one of a collection that aims to make a game
831
+ instance behave like a dictionary which can be used if a game
832
+ is to be generated without using a matrix.
833
+
834
+ Here we allow for iteration over the game to correspond to
835
+ iteration over keys of the utility dictionary::
836
+
837
+ sage: A = matrix([[2, 5], [0, 4]])
838
+ sage: B = matrix([[2, 0], [5, 4]])
839
+ sage: prisoners_dilemma = NormalFormGame([A, B])
840
+ sage: for key, value in sorted(prisoners_dilemma.items()):
841
+ ....: print("The strategy pair {} gives utilities {}".format(key, value))
842
+ The strategy pair (0, 0) gives utilities [2, 2]
843
+ The strategy pair (0, 1) gives utilities [5, 0]
844
+ The strategy pair (1, 0) gives utilities [0, 5]
845
+ The strategy pair (1, 1) gives utilities [4, 4]
846
+ """
847
+ return iter(self.utilities)
848
+
849
+ def __setitem__(self, key, value):
850
+ r"""
851
+ This method is one of a collection that aims to make a game
852
+ instance behave like a dictionary which can be used if a game
853
+ is to be generated without using a matrix.
854
+
855
+ Here we set up setting the value of a key::
856
+
857
+ sage: A = matrix([[2, 5], [0, 4]])
858
+ sage: B = matrix([[2, 0], [5, 4]])
859
+ sage: prisoners_dilemma = NormalFormGame([A, B])
860
+ sage: del(prisoners_dilemma[(0,1)])
861
+ sage: prisoners_dilemma[(0,1)] = [5,6]
862
+ sage: prisoners_dilemma.payoff_matrices()
863
+ (
864
+ [2 5] [2 6]
865
+ [0 4], [5 4]
866
+ )
867
+
868
+ We can use the dictionary-like interface to overwrite a strategy
869
+ profile::
870
+
871
+ sage: prisoners_dilemma[(0,1)] = [-3,-30]
872
+ sage: prisoners_dilemma.payoff_matrices()
873
+ (
874
+ [ 2 -3] [ 2 -30]
875
+ [ 0 4], [ 5 4]
876
+ )
877
+ """
878
+ self.utilities[key] = value
879
+
880
+ def __len__(self):
881
+ r"""
882
+ Return the length of the game to be the length of the utilities.
883
+
884
+ EXAMPLES::
885
+
886
+ sage: A = matrix([[2, 5], [0, 4]])
887
+ sage: B = matrix([[2, 0], [5, 4]])
888
+ sage: prisoners_dilemma = NormalFormGame([A, B])
889
+ sage: len(prisoners_dilemma)
890
+ 4
891
+ """
892
+ return len(self.utilities)
893
+
894
+ def _repr_(self) -> str:
895
+ r"""
896
+ Return the strategy_profiles of the game.
897
+
898
+ EXAMPLES:
899
+
900
+ Basic description of the game shown when calling the game instance::
901
+
902
+ sage: p1 = matrix([[1, 2], [3, 4]])
903
+ sage: p2 = matrix([[3, 3], [1, 4]])
904
+ sage: g = NormalFormGame([p1, p2])
905
+ sage: g
906
+ Normal Form Game with the following utilities: {(0, 0): [1, 3],
907
+ (0, 1): [2, 3], (1, 0): [3, 1], (1, 1): [4, 4]}
908
+ """
909
+ from pprint import pformat
910
+ base_str = "Normal Form Game with the following utilities: {}"
911
+ return base_str.format(pformat(self.utilities))
912
+
913
+ def _latex_(self) -> str:
914
+ r"""
915
+ Return the LaTeX code representing the ``NormalFormGame``.
916
+
917
+ EXAMPLES:
918
+
919
+ LaTeX method shows the two payoff matrices for a two player game::
920
+
921
+ sage: A = matrix([[-1, -2], [-12, 2]])
922
+ sage: B = matrix([[1, 0], [1, -1]])
923
+ sage: g = NormalFormGame([A, B])
924
+ sage: latex(g)
925
+ \left(\left(\begin{array}{rr}
926
+ -1 & -2 \\
927
+ -12 & 2
928
+ \end{array}\right), \left(\begin{array}{rr}
929
+ 1 & 0 \\
930
+ 1 & -1
931
+ \end{array}\right)\right)
932
+
933
+ LaTeX method shows nothing interesting for games with more players::
934
+
935
+ sage: g = NormalFormGame()
936
+ sage: g.add_player(2) # Adding first player with 2 strategies
937
+ sage: g.add_player(2) # Adding second player with 2 strategies
938
+ sage: g.add_player(2) # Creating a game with three players
939
+ sage: latex(g)
940
+ \begin{array}{l}
941
+ \text{\texttt{Normal{ }Form{ }Game{ }with{ }the{ }...
942
+ ...
943
+ \end{array}
944
+ """
945
+ if len(self.players) == 2:
946
+ M1, M2 = self.payoff_matrices()
947
+ return r"\left(%s, %s\right)" % (M1._latex_(), M2._latex_())
948
+ return latex(str(self))
949
+
950
+ def _two_matrix_game(self, matrices):
951
+ r"""
952
+ Populate ``self.utilities`` with the values from 2 matrices.
953
+
954
+ EXAMPLES:
955
+
956
+ A small example game::
957
+
958
+ sage: A = matrix([[1, 0], [-2, 3]])
959
+ sage: B = matrix([[3, 2], [-1, 0]])
960
+ sage: two_game = NormalFormGame()
961
+ sage: two_game._two_matrix_game([A, B])
962
+ """
963
+ self.players = []
964
+ self.utilities = {}
965
+ self.add_player(matrices[0].dimensions()[0])
966
+ self.add_player(matrices[1].dimensions()[1])
967
+ for strategy_profile in self.utilities:
968
+ self.utilities[strategy_profile] = [matrices[0][strategy_profile],
969
+ matrices[1][strategy_profile]]
970
+
971
+ def _gambit_game(self, game):
972
+ r"""
973
+ Create a ``NormalFormGame`` object from a Gambit game.
974
+
975
+ TESTS::
976
+
977
+ sage: # optional - gambit
978
+ sage: from gambit import Game
979
+ sage: testgame = Game.new_table([2, 2])
980
+ sage: testgame[int(0), int(0)][int(0)] = int(8)
981
+ sage: testgame[int(0), int(0)][int(1)] = int(8)
982
+ sage: testgame[int(0), int(1)][int(0)] = int(2)
983
+ sage: testgame[int(0), int(1)][int(1)] = int(10)
984
+ sage: testgame[int(1), int(0)][int(0)] = int(10)
985
+ sage: testgame[int(1), int(0)][int(1)] = int(2)
986
+ sage: testgame[int(1), int(1)][int(0)] = int(5)
987
+ sage: testgame[int(1), int(1)][int(1)] = int(5)
988
+ sage: g = NormalFormGame()
989
+ sage: g._gambit_game(testgame); g
990
+ Normal Form Game with the following utilities: {(0, 0): [8.0, 8.0],
991
+ (0, 1): [2.0, 10.0],
992
+ (1, 0): [10.0, 2.0],
993
+ (1, 1): [5.0, 5.0]}
994
+ """
995
+ self.players = []
996
+ self.utilities = {}
997
+ for player in game.players:
998
+ num_strategies = len(player.strategies)
999
+ self.add_player(num_strategies)
1000
+ for strategy_profile in self.utilities:
1001
+ utility_vector = [float(game[strategy_profile][i]) for i in range(len(self.players))]
1002
+ self.utilities[strategy_profile] = utility_vector
1003
+
1004
+ def _gambit_(self, as_integer=False, maximization=True):
1005
+ r"""
1006
+ Create a Gambit game from a ``NormalFormGame`` object.
1007
+
1008
+ INPUT:
1009
+
1010
+ - ``as_integer`` -- boolean; whether the gambit representation
1011
+ should have the payoffs represented as integers or decimals
1012
+
1013
+ - ``maximization`` -- boolean; whether a player is trying to
1014
+ maximize their utility or minimize it
1015
+
1016
+ TESTS::
1017
+
1018
+ sage: # optional - gambit
1019
+ sage: from gambit import Game
1020
+ sage: A = matrix([[2, 1], [1, 2.5]])
1021
+ sage: g = NormalFormGame([A])
1022
+ sage: gg = g._gambit_(); gg
1023
+ NFG 1 R "" { "1" "2" }
1024
+ <BLANKLINE>
1025
+ { { "1" "2" }
1026
+ { "1" "2" }
1027
+ }
1028
+ ""
1029
+ <BLANKLINE>
1030
+ {
1031
+ { "" 2, -2 }
1032
+ { "" 1, -1 }
1033
+ { "" 1, -1 }
1034
+ { "" 2.5, -2.5 }
1035
+ }
1036
+ 1 2 3 4
1037
+ <BLANKLINE>
1038
+ sage: gg = g._gambit_(as_integer=True); gg
1039
+ NFG 1 R "" { "1" "2" }
1040
+ <BLANKLINE>
1041
+ { { "1" "2" }
1042
+ { "1" "2" }
1043
+ }
1044
+ ""
1045
+ <BLANKLINE>
1046
+ {
1047
+ { "" 2, -2 }
1048
+ { "" 1, -1 }
1049
+ { "" 1, -1 }
1050
+ { "" 2, -2 }
1051
+ }
1052
+ 1 2 3 4
1053
+ <BLANKLINE>
1054
+
1055
+ ::
1056
+
1057
+ sage: # optional - gambit
1058
+ sage: A = matrix([[2, 1], [1, 2.5]])
1059
+ sage: B = matrix([[3, 2], [5.5, 4]])
1060
+ sage: g = NormalFormGame([A, B])
1061
+ sage: gg = g._gambit_(); gg
1062
+ NFG 1 R "" { "1" "2" }
1063
+ <BLANKLINE>
1064
+ { { "1" "2" }
1065
+ { "1" "2" }
1066
+ }
1067
+ ""
1068
+ <BLANKLINE>
1069
+ {
1070
+ { "" 2, 3 }
1071
+ { "" 1, 5.5 }
1072
+ { "" 1, 2 }
1073
+ { "" 2.5, 4 }
1074
+ }
1075
+ 1 2 3 4
1076
+ <BLANKLINE>
1077
+ sage: gg = g._gambit_(as_integer = True); gg
1078
+ NFG 1 R "" { "1" "2" }
1079
+ <BLANKLINE>
1080
+ { { "1" "2" }
1081
+ { "1" "2" }
1082
+ }
1083
+ ""
1084
+ <BLANKLINE>
1085
+ {
1086
+ { "" 2, 3 }
1087
+ { "" 1, 5 }
1088
+ { "" 1, 2 }
1089
+ { "" 2, 4 }
1090
+ }
1091
+ 1 2 3 4
1092
+ <BLANKLINE>
1093
+
1094
+ ::
1095
+
1096
+ sage: # optional - gambit
1097
+ sage: threegame = NormalFormGame()
1098
+ sage: threegame.add_player(2)
1099
+ sage: threegame.add_player(2)
1100
+ sage: threegame.add_player(2)
1101
+ sage: threegame[0, 0, 0][0] = 3
1102
+ sage: threegame[0, 0, 0][1] = 1
1103
+ sage: threegame[0, 0, 0][2] = 4
1104
+ sage: threegame[0, 0, 1][0] = 1
1105
+ sage: threegame[0, 0, 1][1] = 5
1106
+ sage: threegame[0, 0, 1][2] = 9
1107
+ sage: threegame[0, 1, 0][0] = 2
1108
+ sage: threegame[0, 1, 0][1] = 6
1109
+ sage: threegame[0, 1, 0][2] = 5
1110
+ sage: threegame[0, 1, 1][0] = 3
1111
+ sage: threegame[0, 1, 1][1] = 5
1112
+ sage: threegame[0, 1, 1][2] = 8
1113
+ sage: threegame[1, 0, 0][0] = 9
1114
+ sage: threegame[1, 0, 0][1] = 7
1115
+ sage: threegame[1, 0, 0][2] = 9
1116
+ sage: threegame[1, 0, 1][0] = 3
1117
+ sage: threegame[1, 0, 1][1] = 2
1118
+ sage: threegame[1, 0, 1][2] = 3
1119
+ sage: threegame[1, 1, 0][0] = 8
1120
+ sage: threegame[1, 1, 0][1] = 4
1121
+ sage: threegame[1, 1, 0][2] = 6
1122
+ sage: threegame[1, 1, 1][0] = 2
1123
+ sage: threegame[1, 1, 1][1] = 6
1124
+ sage: threegame[1, 1, 1][2] = 4
1125
+ sage: threegame._gambit_(as_integer = True)
1126
+ NFG 1 R "" { "1" "2" "3" }
1127
+ <BLANKLINE>
1128
+ { { "1" "2" }
1129
+ { "1" "2" }
1130
+ { "1" "2" }
1131
+ }
1132
+ ""
1133
+ <BLANKLINE>
1134
+ {
1135
+ { "" 3, 1, 4 }
1136
+ { "" 9, 7, 9 }
1137
+ { "" 2, 6, 5 }
1138
+ { "" 8, 4, 6 }
1139
+ { "" 1, 5, 9 }
1140
+ { "" 3, 2, 3 }
1141
+ { "" 3, 5, 8 }
1142
+ { "" 2, 6, 4 }
1143
+ }
1144
+ 1 2 3 4 5 6 7 8
1145
+ <BLANKLINE>
1146
+ """
1147
+ from decimal import Decimal
1148
+ strategy_sizes = [p.num_strategies for p in self.players]
1149
+ g = Game.new_table(strategy_sizes)
1150
+
1151
+ sgn = 1
1152
+ if not maximization:
1153
+ sgn = -1
1154
+
1155
+ players = len(strategy_sizes)
1156
+
1157
+ for strategy_profile in self.utilities:
1158
+ for i in range(players):
1159
+ if as_integer:
1160
+ g[strategy_profile][i] = sgn * int(self.utilities[strategy_profile][i])
1161
+ else:
1162
+ g[strategy_profile][i] = sgn * Decimal(float(self.utilities[strategy_profile][i]))
1163
+ return g
1164
+
1165
+ def is_constant_sum(self):
1166
+ r"""
1167
+ Check if the game is constant sum.
1168
+
1169
+ EXAMPLES::
1170
+
1171
+ sage: A = matrix([[2, 1], [1, 2.5]])
1172
+ sage: g = NormalFormGame([A])
1173
+ sage: g.is_constant_sum()
1174
+ True
1175
+ sage: g = NormalFormGame([A, A])
1176
+ sage: g.is_constant_sum()
1177
+ False
1178
+ sage: A = matrix([[1, 1], [1, 1]])
1179
+ sage: g = NormalFormGame([A, A])
1180
+ sage: g.is_constant_sum()
1181
+ True
1182
+ sage: A = matrix([[1, 1, 2], [1, 1, -1], [1, -1, 1]])
1183
+ sage: B = matrix([[2, 2, 1], [2, 2, 4], [2, 4, 2]])
1184
+ sage: g = NormalFormGame([A, B])
1185
+ sage: g.is_constant_sum()
1186
+ True
1187
+ sage: A = matrix([[1, 1, 2], [1, 1, -1], [1, -1, 1]])
1188
+ sage: B = matrix([[2, 2, 1], [2, 2.1, 4], [2, 4, 2]])
1189
+ sage: g = NormalFormGame([A, B])
1190
+ sage: g.is_constant_sum()
1191
+ False
1192
+ """
1193
+ import sys
1194
+ if len(self.players) > 2:
1195
+ return False
1196
+ m1, m2 = self.payoff_matrices()
1197
+ c = m1 + m2
1198
+ t = c[0, 0]
1199
+
1200
+ for row in c:
1201
+ for i in row:
1202
+ if abs(t - i) > sys.float_info.epsilon:
1203
+ return False
1204
+
1205
+ return True
1206
+
1207
+ def payoff_matrices(self):
1208
+ r"""
1209
+ Return 2 matrices representing the payoffs for each player.
1210
+
1211
+ EXAMPLES::
1212
+
1213
+ sage: p1 = matrix([[1, 2], [3, 4]])
1214
+ sage: p2 = matrix([[3, 3], [1, 4]])
1215
+ sage: g = NormalFormGame([p1, p2])
1216
+ sage: g.payoff_matrices()
1217
+ (
1218
+ [1 2] [3 3]
1219
+ [3 4], [1 4]
1220
+ )
1221
+
1222
+ If we create a game with 3 players we will not be able to
1223
+ obtain payoff matrices::
1224
+
1225
+ sage: g = NormalFormGame()
1226
+ sage: g.add_player(2) # adding first player with 2 strategies
1227
+ sage: g.add_player(2) # adding second player with 2 strategies
1228
+ sage: g.add_player(2) # adding third player with 2 strategies
1229
+ sage: g.payoff_matrices()
1230
+ Traceback (most recent call last):
1231
+ ...
1232
+ ValueError: Only available for 2 player games
1233
+
1234
+ If we do create a two player game but it is not complete
1235
+ then an error is also raised::
1236
+
1237
+ sage: g = NormalFormGame()
1238
+ sage: g.add_player(1) # Adding first player with 1 strategy
1239
+ sage: g.add_player(1) # Adding second player with 1 strategy
1240
+ sage: g.payoff_matrices()
1241
+ Traceback (most recent call last):
1242
+ ...
1243
+ ValueError: utilities have not been populated
1244
+
1245
+ The above creates a 2 player game where each player has
1246
+ a single strategy. Here we populate the strategies and
1247
+ can then view the payoff matrices::
1248
+
1249
+ sage: g[0, 0] = [1,2]
1250
+ sage: g.payoff_matrices()
1251
+ ([1], [2])
1252
+ """
1253
+ if len(self.players) != 2:
1254
+ raise ValueError("Only available for 2 player games")
1255
+
1256
+ if not self._is_complete():
1257
+ raise ValueError("utilities have not been populated")
1258
+
1259
+ m1 = matrix(QQ, self.players[0].num_strategies, self.players[1].num_strategies)
1260
+ m2 = matrix(QQ, self.players[0].num_strategies, self.players[1].num_strategies)
1261
+ for strategy_profile in self.utilities:
1262
+ m1[strategy_profile] = self[strategy_profile][0]
1263
+ m2[strategy_profile] = self[strategy_profile][1]
1264
+ return m1, m2
1265
+
1266
+ def add_player(self, num_strategies):
1267
+ r"""
1268
+ Add a player to a NormalFormGame.
1269
+
1270
+ INPUT:
1271
+
1272
+ - ``num_strategies`` -- the number of strategies the player should have
1273
+
1274
+ EXAMPLES::
1275
+
1276
+ sage: g = NormalFormGame()
1277
+ sage: g.add_player(2) # Adding first player with 2 strategies
1278
+ sage: g.add_player(1) # Adding second player with 1 strategy
1279
+ sage: g.add_player(1) # Adding third player with 1 strategy
1280
+ sage: g
1281
+ Normal Form Game with the following utilities:
1282
+ {(0, 0, 0): [False, False, False],
1283
+ (1, 0, 0): [False, False, False]}
1284
+ """
1285
+ self.players.append(_Player(num_strategies))
1286
+ self._generate_utilities(True)
1287
+
1288
+ def _generate_utilities(self, replacement):
1289
+ r"""
1290
+ Create all the required keys for ``self.utilities``.
1291
+
1292
+ This is used when generating players and/or adding strategies.
1293
+
1294
+ INPUT:
1295
+
1296
+ - ``replacement`` -- boolean value of whether previously created
1297
+ profiles should be replaced or not
1298
+
1299
+ TESTS::
1300
+
1301
+ sage: from sage.game_theory.normal_form_game import _Player
1302
+ sage: g = NormalFormGame()
1303
+ sage: g.players.append(_Player(2))
1304
+ sage: g.players.append(_Player(2))
1305
+ sage: g
1306
+ Normal Form Game with the following utilities: {}
1307
+
1308
+ sage: g._generate_utilities(True)
1309
+ sage: g
1310
+ Normal Form Game with the following utilities: {(0, 0): [False, False],
1311
+ (0, 1): [False, False],
1312
+ (1, 0): [False, False],
1313
+ (1, 1): [False, False]}
1314
+
1315
+ sage: g[(0,1)] = [2, 3]
1316
+ sage: g.add_strategy(1)
1317
+ sage: g._generate_utilities(False)
1318
+ sage: g
1319
+ Normal Form Game with the following utilities: {(0, 0): [False, False],
1320
+ (0, 1): [2, 3],
1321
+ (0, 2): [False, False],
1322
+ (1, 0): [False, False],
1323
+ (1, 1): [False, False],
1324
+ (1, 2): [False, False]}
1325
+
1326
+ sage: g._generate_utilities(True)
1327
+ sage: g
1328
+ Normal Form Game with the following utilities: {(0, 0): [False, False],
1329
+ (0, 1): [False, False],
1330
+ (0, 2): [False, False],
1331
+ (1, 0): [False, False],
1332
+ (1, 1): [False, False],
1333
+ (1, 2): [False, False]}
1334
+ """
1335
+ strategy_sizes = [range(p.num_strategies) for p in self.players]
1336
+ if replacement is True:
1337
+ self.utilities = {}
1338
+ for profile in product(*strategy_sizes):
1339
+ if profile not in self.utilities.keys():
1340
+ self.utilities[profile] = [False] * len(self.players)
1341
+
1342
+ def add_strategy(self, player):
1343
+ r"""
1344
+ Add a strategy to a player, will not affect already completed
1345
+ strategy profiles.
1346
+
1347
+ INPUT:
1348
+
1349
+ - ``player`` -- the index of the player
1350
+
1351
+ EXAMPLES:
1352
+
1353
+ A simple example::
1354
+
1355
+ sage: s = matrix([[1, 0], [-2, 3]])
1356
+ sage: t = matrix([[3, 2], [-1, 0]])
1357
+ sage: example = NormalFormGame([s, t])
1358
+ sage: example
1359
+ Normal Form Game with the following utilities: {(0, 0): [1, 3],
1360
+ (0, 1): [0, 2], (1, 0): [-2, -1], (1, 1): [3, 0]}
1361
+ sage: example.add_strategy(0)
1362
+ sage: example
1363
+ Normal Form Game with the following utilities: {(0, 0): [1, 3],
1364
+ (0, 1): [0, 2],
1365
+ (1, 0): [-2, -1],
1366
+ (1, 1): [3, 0],
1367
+ (2, 0): [False, False],
1368
+ (2, 1): [False, False]}
1369
+ """
1370
+ self.players[player].add_strategy()
1371
+ self._generate_utilities(False)
1372
+
1373
+ def _is_complete(self):
1374
+ r"""
1375
+ Check if ``utilities`` has been completed and return a
1376
+ boolean.
1377
+
1378
+ EXAMPLES:
1379
+
1380
+ A simple example::
1381
+
1382
+ sage: s = matrix([[1, 0], [-2, 3]])
1383
+ sage: t = matrix([[3, 2], [-1, 0]])
1384
+ sage: example = NormalFormGame([s, t])
1385
+ sage: example.add_strategy(0)
1386
+ sage: example._is_complete()
1387
+ False
1388
+ """
1389
+ results = (all(not isinstance(i, bool) for i in profile)
1390
+ for profile in self.utilities.values())
1391
+ return all(results)
1392
+
1393
+ def obtain_nash(self, algorithm=False, maximization=True, solver=None):
1394
+ r"""
1395
+ A function to return the Nash equilibrium for the game.
1396
+ Optional arguments can be used to specify the algorithm used.
1397
+ If no algorithm is passed then an attempt is made to use the most
1398
+ appropriate algorithm.
1399
+
1400
+ INPUT:
1401
+
1402
+ - ``algorithm`` -- the following algorithms should be available through
1403
+ this function:
1404
+
1405
+ * ``'lrs'`` -- this algorithm is only suited for 2 player games.
1406
+ See the lrs web site (http://cgm.cs.mcgill.ca/~avis/C/lrs.html).
1407
+
1408
+ * ``'LCP'`` -- this algorithm is only suited for 2 player games.
1409
+ See the gambit web site (http://gambit.sourceforge.net/).
1410
+
1411
+ * ``'lp'`` -- this algorithm is only suited for 2 player
1412
+ constant sum games. Uses MILP solver determined by the
1413
+ ``solver`` argument.
1414
+
1415
+ * ``'enumeration'`` -- this is a very inefficient
1416
+ algorithm (in essence a brute force approach).
1417
+
1418
+ 1. For each k in 1...min(size of strategy sets)
1419
+ 2. For each I,J supports of size k
1420
+ 3. Prune: check if supports are dominated
1421
+ 4. Solve indifference conditions and check that have Nash Equilibrium.
1422
+
1423
+ Solving the indifference conditions is done by building the
1424
+ corresponding linear system. If `\rho_1, \rho_2` are the
1425
+ supports player 1 and 2 respectively. Then, indifference implies:
1426
+
1427
+ .. MATH::
1428
+
1429
+ u_1(s_1,\rho_2) = u_1(s_2, \rho_2)
1430
+
1431
+ for all `s_1, s_2` in the support of `\rho_1`. This corresponds to:
1432
+
1433
+ .. MATH::
1434
+
1435
+ \sum_{j\in S(\rho_2)}A_{s_1,j}{\rho_2}_j = \sum_{j\in S(\rho_2)}A_{s_2,j}{\rho_2}_j
1436
+
1437
+ for all `s_1, s_2` in the support of `\rho_1` where `A` is the payoff
1438
+ matrix of player 1. Equivalently we can consider consecutive rows of
1439
+ `A` (instead of all pairs of strategies). Thus the corresponding
1440
+ linear system can be written as:
1441
+
1442
+ .. MATH::
1443
+
1444
+ \left(\sum_{j \in S(\rho_2)}A_{i,j} - A_{i+1,j}\right){\rho_2}_j
1445
+
1446
+ for all `1\leq i \leq |S(\rho_1)|` (where `A` has been modified to only
1447
+ contain the rows corresponding to `S(\rho_1)`). We also require all
1448
+ elements of `\rho_2` to sum to 1:
1449
+
1450
+ .. MATH::
1451
+
1452
+ \sum_{j\in S(\rho_1)}{\rho_2}_j = 1
1453
+
1454
+ - ``maximization`` -- boolean (default: ``True``); whether a player is
1455
+ trying to maximize their utility or minimize it:
1456
+
1457
+ * When set to ``True`` it is assumed that players aim to
1458
+ maximise their utility.
1459
+
1460
+ * When set to ``False`` it is assumed that players aim to
1461
+ minimise their utility.
1462
+
1463
+ - ``solver`` -- (optional) see :class:`MixedIntegerLinearProgram`
1464
+ for more information on the MILP solvers in Sage, may also
1465
+ be ``'gambit'`` to use the MILP solver included with the gambit
1466
+ library. Note that ``None`` means to use the default Sage LP solver,
1467
+ normally GLPK.
1468
+
1469
+ EXAMPLES:
1470
+
1471
+ A game with 1 equilibrium when ``maximization`` is ``True`` and 3 when
1472
+ ``maximization`` is ``False``::
1473
+
1474
+ sage: A = matrix([[10, 500, 44],
1475
+ ....: [15, 10, 105],
1476
+ ....: [19, 204, 55],
1477
+ ....: [20, 200, 590]])
1478
+ sage: B = matrix([[2, 1, 2],
1479
+ ....: [0, 5, 6],
1480
+ ....: [3, 4, 1],
1481
+ ....: [4, 1, 20]])
1482
+ sage: g=NormalFormGame([A, B])
1483
+ sage: g.obtain_nash(algorithm='lrs') # optional - lrslib
1484
+ [[(0, 0, 0, 1), (0, 0, 1)]]
1485
+ sage: g.obtain_nash(algorithm='lrs', maximization=False) # optional - lrslib
1486
+ [[(2/3, 1/12, 1/4, 0), (6333/8045, 247/8045, 293/1609)],
1487
+ [(3/4, 0, 1/4, 0), (0, 11/307, 296/307)],
1488
+ [(5/6, 1/6, 0, 0), (98/99, 1/99, 0)]]
1489
+
1490
+ This particular game has 3 Nash equilibria::
1491
+
1492
+ sage: A = matrix([[3,3],
1493
+ ....: [2,5],
1494
+ ....: [0,6]])
1495
+ sage: B = matrix([[3,2],
1496
+ ....: [2,6],
1497
+ ....: [3,1]])
1498
+ sage: g = NormalFormGame([A, B])
1499
+ sage: g.obtain_nash(algorithm='enumeration')
1500
+ [[(0, 1/3, 2/3), (1/3, 2/3)],
1501
+ [(4/5, 1/5, 0), (2/3, 1/3)],
1502
+ [(1, 0, 0), (1, 0)]]
1503
+
1504
+ Here is a slightly larger game::
1505
+
1506
+ sage: A = matrix([[160, 205, 44],
1507
+ ....: [175, 180, 45],
1508
+ ....: [201, 204, 50],
1509
+ ....: [120, 207, 49]])
1510
+ sage: B = matrix([[2, 2, 2],
1511
+ ....: [1, 0, 0],
1512
+ ....: [3, 4, 1],
1513
+ ....: [4, 1, 2]])
1514
+ sage: g=NormalFormGame([A, B])
1515
+ sage: g.obtain_nash(algorithm='enumeration')
1516
+ [[(0, 0, 3/4, 1/4), (1/28, 27/28, 0)]]
1517
+ sage: g.obtain_nash(algorithm='lrs') # optional - lrslib
1518
+ [[(0, 0, 3/4, 1/4), (1/28, 27/28, 0)]]
1519
+ sage: g.obtain_nash(algorithm='LCP') # optional - gambit
1520
+ [[(0.0, 0.0, 0.75, 0.25), (0.0357142857, 0.9642857143, 0.0)]]
1521
+
1522
+ 2 random matrices::
1523
+
1524
+ sage: player1 = matrix([[2, 8, -1, 1, 0],
1525
+ ....: [1, 1, 2, 1, 80],
1526
+ ....: [0, 2, 15, 0, -12],
1527
+ ....: [-2, -2, 1, -20, -1],
1528
+ ....: [1, -2, -1, -2, 1]])
1529
+ sage: player2 = matrix([[0, 8, 4, 2, -1],
1530
+ ....: [6, 14, -5, 1, 0],
1531
+ ....: [0, -2, -1, 8, -1],
1532
+ ....: [1, -1, 3, -3, 2],
1533
+ ....: [8, -4, 1, 1, -17]])
1534
+ sage: fivegame = NormalFormGame([player1, player2])
1535
+ sage: fivegame.obtain_nash(algorithm='enumeration')
1536
+ [[(1, 0, 0, 0, 0), (0, 1, 0, 0, 0)]]
1537
+ sage: fivegame.obtain_nash(algorithm='lrs') # optional - lrslib
1538
+ [[(1, 0, 0, 0, 0), (0, 1, 0, 0, 0)]]
1539
+ sage: fivegame.obtain_nash(algorithm='LCP') # optional - gambit
1540
+ [[(1.0, 0.0, 0.0, 0.0, 0.0), (0.0, 1.0, 0.0, 0.0, 0.0)]]
1541
+
1542
+ Here are some examples of finding Nash equilibria for constant-sum games::
1543
+
1544
+ sage: A = matrix.identity(2)
1545
+ sage: cg = NormalFormGame([A])
1546
+ sage: cg.obtain_nash(algorithm='lp')
1547
+ [[(0.5, 0.5), (0.5, 0.5)]]
1548
+ sage: cg.obtain_nash(algorithm='lp', solver='Coin') # optional - sage_numerical_backends_coin
1549
+ [[(0.5, 0.5), (0.5, 0.5)]]
1550
+ sage: cg.obtain_nash(algorithm='lp', solver='PPL')
1551
+ [[(1/2, 1/2), (1/2, 1/2)]]
1552
+ sage: cg.obtain_nash(algorithm='lp', solver='gambit') # optional - gambit
1553
+ [[(0.5, 0.5), (0.5, 0.5)]]
1554
+ sage: A = matrix([[2, 1], [1, 3]])
1555
+ sage: cg = NormalFormGame([A])
1556
+ sage: ne = cg.obtain_nash(algorithm='lp', solver='glpk')
1557
+ sage: [[[round(el, 6) for el in v] for v in eq] for eq in ne]
1558
+ [[[0.666667, 0.333333], [0.666667, 0.333333]]]
1559
+ sage: ne = cg.obtain_nash(algorithm='lp', solver='Coin') # optional - sage_numerical_backends_coin
1560
+ sage: [[[round(el, 6) for el in v] for v in eq] for eq in ne] # optional - sage_numerical_backends_coin
1561
+ [[[0.666667, 0.333333], [0.666667, 0.333333]]]
1562
+ sage: cg.obtain_nash(algorithm='lp', solver='PPL')
1563
+ [[(2/3, 1/3), (2/3, 1/3)]]
1564
+ sage: ne = cg.obtain_nash(algorithm='lp', solver='gambit') # optional - gambit
1565
+ sage: [[[round(el, 6) for el in v] for v in eq] for eq in ne] # optional - gambit
1566
+ [[[0.666667, 0.333333], [0.666667, 0.333333]]]
1567
+ sage: A = matrix([[1, 2, 1], [1, 1, 2], [2, 1, 1]])
1568
+ sage: B = matrix([[2, 1, 2], [2, 2, 1], [1, 2, 2]])
1569
+ sage: cg = NormalFormGame([A, B])
1570
+ sage: ne = cg.obtain_nash(algorithm='lp', solver='glpk')
1571
+ sage: [[[round(el, 6) for el in v] for v in eq] for eq in ne]
1572
+ [[[0.333333, 0.333333, 0.333333], [0.333333, 0.333333, 0.333333]]]
1573
+ sage: ne = cg.obtain_nash(algorithm='lp', solver='Coin') # optional - sage_numerical_backends_coin
1574
+ sage: [[[round(el, 6) for el in v] for v in eq] for eq in ne] # optional - sage_numerical_backends_coin
1575
+ [[[0.333333, 0.333333, 0.333333], [0.333333, 0.333333, 0.333333]]]
1576
+ sage: cg.obtain_nash(algorithm='lp', solver='PPL')
1577
+ [[(1/3, 1/3, 1/3), (1/3, 1/3, 1/3)]]
1578
+ sage: ne = cg.obtain_nash(algorithm='lp', solver='gambit') # optional - gambit
1579
+ sage: [[[round(el, 6) for el in v] for v in eq] for eq in ne] # optional - gambit
1580
+ [[[0.333333, 0.333333, 0.333333], [0.333333, 0.333333, 0.333333]]]
1581
+ sage: A = matrix([[160, 205, 44],
1582
+ ....: [175, 180, 45],
1583
+ ....: [201, 204, 50],
1584
+ ....: [120, 207, 49]])
1585
+ sage: cg = NormalFormGame([A])
1586
+ sage: cg.obtain_nash(algorithm='lp', solver='PPL')
1587
+ [[(0, 0, 1, 0), (0, 0, 1)]]
1588
+
1589
+ Running the constant-sum solver on a game which is not a constant sum
1590
+ game generates a :exc:`ValueError`::
1591
+
1592
+ sage: cg = NormalFormGame([A, A])
1593
+ sage: cg.obtain_nash(algorithm='lp', solver='glpk')
1594
+ Traceback (most recent call last):
1595
+ ...
1596
+ ValueError: Input game needs to be a two player constant sum game
1597
+
1598
+ Here is an example of a 3 by 2 game with 3 Nash equilibrium::
1599
+
1600
+ sage: A = matrix([[3,3],
1601
+ ....: [2,5],
1602
+ ....: [0,6]])
1603
+ sage: B = matrix([[3,2],
1604
+ ....: [2,6],
1605
+ ....: [3,1]])
1606
+ sage: g = NormalFormGame([A, B])
1607
+ sage: g.obtain_nash(algorithm='enumeration')
1608
+ [[(0, 1/3, 2/3), (1/3, 2/3)], [(4/5, 1/5, 0), (2/3, 1/3)], [(1, 0, 0), (1, 0)]]
1609
+
1610
+ Of the algorithms implemented, only ``'lrs'`` and ``'enumeration'``
1611
+ are guaranteed to find all Nash equilibria in a game. The solver for
1612
+ constant sum games only ever finds one Nash equilibrium. Although it
1613
+ is possible for the ``'LCP'`` solver to find all Nash equilibria
1614
+ in some instances, there are instances where it will not be able to
1615
+ find all Nash equilibria.::
1616
+
1617
+ sage: A = matrix(2, 2)
1618
+ sage: gg = NormalFormGame([A])
1619
+ sage: gg.obtain_nash(algorithm='enumeration')
1620
+ [[(0, 1), (0, 1)], [(0, 1), (1, 0)], [(1, 0), (0, 1)], [(1, 0), (1, 0)]]
1621
+ sage: gg.obtain_nash(algorithm='lrs') # optional - lrs
1622
+ [[(0, 1), (0, 1)], [(0, 1), (1, 0)], [(1, 0), (0, 1)], [(1, 0), (1, 0)]]
1623
+ sage: gg.obtain_nash(algorithm='lp', solver='glpk')
1624
+ [[(1.0, 0.0), (1.0, 0.0)]]
1625
+ sage: gg.obtain_nash(algorithm='LCP') # optional - gambit
1626
+ [[(1.0, 0.0), (1.0, 0.0)]]
1627
+ sage: gg.obtain_nash(algorithm='enumeration', maximization=False)
1628
+ [[(0, 1), (0, 1)], [(0, 1), (1, 0)], [(1, 0), (0, 1)], [(1, 0), (1, 0)]]
1629
+ sage: gg.obtain_nash(algorithm='lrs', maximization=False) # optional - lrs
1630
+ [[(0, 1), (0, 1)], [(0, 1), (1, 0)], [(1, 0), (0, 1)], [(1, 0), (1, 0)]]
1631
+ sage: gg.obtain_nash(algorithm='lp', solver='glpk', maximization=False)
1632
+ [[(1.0, 0.0), (1.0, 0.0)]]
1633
+ sage: gg.obtain_nash(algorithm='LCP', maximization=False) # optional - gambit
1634
+ [[(1.0, 0.0), (1.0, 0.0)]]
1635
+
1636
+ Note that outputs for all algorithms are as lists of lists of
1637
+ tuples and the equilibria have been sorted so that all algorithms give
1638
+ a comparable output (although ``'LCP'`` returns floats)::
1639
+
1640
+ sage: enumeration_eqs = g.obtain_nash(algorithm='enumeration')
1641
+ sage: [[type(s) for s in eq] for eq in enumeration_eqs]
1642
+ [[<... 'tuple'>, <... 'tuple'>], [<... 'tuple'>, <... 'tuple'>], [<... 'tuple'>, <... 'tuple'>]]
1643
+ sage: lrs_eqs = g.obtain_nash(algorithm='lrs') # optional - lrslib
1644
+ sage: [[type(s) for s in eq] for eq in lrs_eqs] # optional - lrslib
1645
+ [[<... 'tuple'>, <... 'tuple'>], [<... 'tuple'>, <... 'tuple'>], [<... 'tuple'>, <... 'tuple'>]]
1646
+ sage: LCP_eqs = g.obtain_nash(algorithm='LCP') # optional - gambit
1647
+ sage: [[type(s) for s in eq] for eq in LCP_eqs] # optional - gambit
1648
+ [[<... 'tuple'>, <... 'tuple'>], [<... 'tuple'>, <... 'tuple'>], [<... 'tuple'>, <... 'tuple'>]]
1649
+ sage: enumeration_eqs == sorted(enumeration_eqs)
1650
+ True
1651
+ sage: lrs_eqs == sorted(lrs_eqs) # optional - lrslib
1652
+ True
1653
+ sage: LCP_eqs == sorted(LCP_eqs) # optional - gambit
1654
+ True
1655
+ sage: lrs_eqs == enumeration_eqs # optional - lrslib
1656
+ True
1657
+ sage: enumeration_eqs == LCP_eqs # optional - gambit
1658
+ False
1659
+ sage: [[[round(float(p), 6) for p in str] for str in eq] for eq in enumeration_eqs] == [[[round(float(p), 6) for p in str] for str in eq] for eq in LCP_eqs] # optional - gambit
1660
+ True
1661
+
1662
+ Also, not specifying a valid solver would lead to an error::
1663
+
1664
+ sage: A = matrix.identity(2)
1665
+ sage: g = NormalFormGame([A])
1666
+ sage: g.obtain_nash(algorithm='invalid')
1667
+ Traceback (most recent call last):
1668
+ ...
1669
+ ValueError: 'algorithm' should be set to 'enumeration', 'LCP', 'lp' or 'lrs'
1670
+ sage: g.obtain_nash(algorithm='lp', solver='invalid')
1671
+ Traceback (most recent call last):
1672
+ ...
1673
+ ValueError: 'solver' should be set to 'GLPK', ..., None
1674
+ (in which case the default one is used), or a callable.
1675
+ """
1676
+ if len(self.players) > 2:
1677
+ raise NotImplementedError("Nash equilibrium for games with more "
1678
+ "than 2 players have not been "
1679
+ "implemented yet. Please see the gambit "
1680
+ "website (http://gambit.sourceforge.net/) that has a variety of "
1681
+ "available algorithms")
1682
+
1683
+ if not self._is_complete():
1684
+ raise ValueError("utilities have not been populated")
1685
+
1686
+ from sage.features.lrs import LrsNash
1687
+ if not algorithm:
1688
+ if self.is_constant_sum():
1689
+ algorithm = "lp"
1690
+ elif LrsNash().is_present():
1691
+ algorithm = "lrs"
1692
+ else:
1693
+ algorithm = "enumeration"
1694
+
1695
+ if algorithm == "lrs":
1696
+ LrsNash().require()
1697
+ return self._solve_lrs(maximization)
1698
+
1699
+ if algorithm == "LCP":
1700
+ if Game is None:
1701
+ raise RuntimeError("gambit not found") # should later become a FeatureNotFoundError
1702
+ return self._solve_LCP(maximization)
1703
+
1704
+ if algorithm.startswith('lp'):
1705
+ return self._solve_LP(solver=solver, maximization=maximization)
1706
+
1707
+ if algorithm == "enumeration":
1708
+ return self._solve_enumeration(maximization)
1709
+
1710
+ raise ValueError("'algorithm' should be set to 'enumeration', 'LCP', 'lp' or 'lrs'")
1711
+
1712
+ def _solve_lrs(self, maximization=True):
1713
+ r"""
1714
+ EXAMPLES:
1715
+
1716
+ A simple game::
1717
+
1718
+ sage: A = matrix([[1, 2], [3, 4]])
1719
+ sage: B = matrix([[3, 3], [1, 4]])
1720
+ sage: C = NormalFormGame([A, B])
1721
+ sage: C._solve_lrs() # optional - lrslib
1722
+ [[(0, 1), (0, 1)]]
1723
+
1724
+ 2 random matrices::
1725
+
1726
+ sage: p1 = matrix([[-1, 4, 0, 2, 0],
1727
+ ....: [-17, 246, -5, 1, -2],
1728
+ ....: [0, 1, 1, -4, -4],
1729
+ ....: [1, -3, 9, 6, -1],
1730
+ ....: [2, 53, 0, -5, 0]])
1731
+ sage: p2 = matrix([[0, 1, 1, 3, 1],
1732
+ ....: [3, 9, 44, -1, -1],
1733
+ ....: [1, -4, -1, -3, 1],
1734
+ ....: [1, 0, 0, 0, 0,],
1735
+ ....: [1, -3, 1, 21, -2]])
1736
+ sage: biggame = NormalFormGame([p1, p2])
1737
+ sage: biggame._solve_lrs() # optional - lrslib
1738
+ [[(0, 0, 0, 20/21, 1/21), (11/12, 0, 0, 1/12, 0)]]
1739
+
1740
+ Another test::
1741
+
1742
+ sage: p1 = matrix([[-7, -5, 5],
1743
+ ....: [5, 5, 3],
1744
+ ....: [1, -6, 1]])
1745
+ sage: p2 = matrix([[-9, 7, 9],
1746
+ ....: [6, -2, -3],
1747
+ ....: [-4, 6, -10]])
1748
+ sage: biggame = NormalFormGame([p1, p2])
1749
+ sage: biggame._solve_lrs() # optional - lrslib
1750
+ [[(0, 1, 0), (1, 0, 0)],
1751
+ [(1/3, 2/3, 0), (0, 1/6, 5/6)],
1752
+ [(1/3, 2/3, 0), (1/7, 0, 6/7)],
1753
+ [(1, 0, 0), (0, 0, 1)]]
1754
+ """
1755
+ from subprocess import PIPE, Popen
1756
+ m1, m2 = self.payoff_matrices()
1757
+ if maximization is False:
1758
+ m1 = - m1
1759
+ m2 = - m2
1760
+
1761
+ game_str = self._lrs_nash_format(m1, m2)
1762
+ game_name = tmp_filename()
1763
+ with open(game_name, 'w') as game_file:
1764
+ game_file.write(game_str)
1765
+
1766
+ from sage.features.lrs import LrsNash
1767
+ LrsNash().require()
1768
+ process = Popen([LrsNash().absolute_filename(), game_name],
1769
+ stdout=PIPE, stderr=PIPE)
1770
+
1771
+ lrs_output = [bytes_to_str(row) for row in process.stdout]
1772
+ process.terminate()
1773
+
1774
+ nasheq = Parser(lrs_output).format_lrs()
1775
+ return sorted(nasheq)
1776
+
1777
+ def _solve_LCP(self, maximization):
1778
+ r"""
1779
+ Solve a :class:`NormalFormGame` using Gambit's LCP algorithm.
1780
+
1781
+ EXAMPLES::
1782
+
1783
+ sage: a = matrix([[1, 0], [1, 4]])
1784
+ sage: b = matrix([[2, 3], [2, 4]])
1785
+ sage: c = NormalFormGame([a, b])
1786
+ sage: c._solve_LCP(maximization=True) # optional - gambit
1787
+ [[(0.0, 1.0), (0.0, 1.0)]]
1788
+ """
1789
+ g = self._gambit_(maximization)
1790
+ output = ExternalLCPSolver().solve(g)
1791
+ nasheq = Parser(output).format_gambit(g)
1792
+ return sorted(nasheq)
1793
+
1794
+ def _solve_gambit_LP(self, maximization=True):
1795
+ r"""
1796
+ Solve a constant sum :class:`NormalFormGame` using Gambit's
1797
+ LP implementation.
1798
+
1799
+ EXAMPLES::
1800
+
1801
+ sage: A = matrix([[2, 1], [1, 2.5]])
1802
+ sage: g = NormalFormGame([A])
1803
+ sage: g._solve_gambit_LP() # optional - gambit
1804
+ [[(0.6, 0.4), (0.6, 0.4)]]
1805
+ sage: A = matrix.identity(2)
1806
+ sage: g = NormalFormGame([A])
1807
+ sage: g._solve_gambit_LP() # optional - gambit
1808
+ [[(0.5, 0.5), (0.5, 0.5)]]
1809
+ sage: g = NormalFormGame([A,A])
1810
+ sage: g._solve_gambit_LP() # optional - gambit
1811
+ Traceback (most recent call last):
1812
+ ...
1813
+ RuntimeError: Method only valid for constant-sum games.
1814
+ """
1815
+ if Game is None:
1816
+ raise NotImplementedError("gambit is not installed")
1817
+ g = self._gambit_(maximization=maximization)
1818
+ output = ExternalLPSolver().solve(g)
1819
+ nasheq = Parser(output).format_gambit(g)
1820
+ return sorted(nasheq)
1821
+
1822
+ def _solve_LP(self, solver='glpk', maximization=True):
1823
+ r"""
1824
+ Solve a constant sum :class:`NormalFormGame` using
1825
+ the specified LP solver.
1826
+
1827
+ INPUT:
1828
+
1829
+ - ``solver`` -- the solver to be used to solve the LP:
1830
+
1831
+ * ``'gambit'`` -- his uses the solver included within the gambit
1832
+ library to create and solve the LP
1833
+
1834
+ * for further possible values, see :class:`MixedIntegerLinearProgram`
1835
+
1836
+ EXAMPLES::
1837
+
1838
+ sage: A = matrix.identity(2)
1839
+ sage: g = NormalFormGame([A])
1840
+ sage: g._solve_LP()
1841
+ [[(0.5, 0.5), (0.5, 0.5)]]
1842
+ sage: g._solve_LP('gambit') # optional - gambit
1843
+ [[(0.5, 0.5), (0.5, 0.5)]]
1844
+ sage: g._solve_LP('Coin') # optional - sage_numerical_backends_coin
1845
+ [[(0.5, 0.5), (0.5, 0.5)]]
1846
+ sage: g._solve_LP('PPL')
1847
+ [[(1/2, 1/2), (1/2, 1/2)]]
1848
+ sage: A = matrix([[2, 1], [1, 3]])
1849
+ sage: g = NormalFormGame([A])
1850
+ sage: ne = g._solve_LP()
1851
+ sage: [[[round(el, 6) for el in v] for v in eq] for eq in ne]
1852
+ [[[0.666667, 0.333333], [0.666667, 0.333333]]]
1853
+ sage: ne = g._solve_LP('gambit') # optional - gambit
1854
+ sage: [[[round(el, 6) for el in v] for v in eq] for eq in ne] # optional - gambit
1855
+ [[[0.666667, 0.333333], [0.666667, 0.333333]]]
1856
+ sage: ne = g._solve_LP('Coin') # optional - sage_numerical_backends_coin
1857
+ sage: [[[round(el, 6) for el in v] for v in eq] for eq in ne] # optional - sage_numerical_backends_coin
1858
+ [[[0.666667, 0.333333], [0.666667, 0.333333]]]
1859
+ sage: g._solve_LP('PPL')
1860
+ [[(2/3, 1/3), (2/3, 1/3)]]
1861
+
1862
+ An exception is raised if the input game is not constant sum::
1863
+
1864
+ sage: A = matrix.identity(2)
1865
+ sage: B = A.transpose()
1866
+ sage: g = NormalFormGame([A, B])
1867
+ sage: g._solve_LP()
1868
+ Traceback (most recent call last):
1869
+ ...
1870
+ ValueError: Input game needs to be a two player constant sum game
1871
+ """
1872
+ if not self.is_constant_sum():
1873
+ raise ValueError("Input game needs to be a two player constant sum game")
1874
+ if solver == 'gambit':
1875
+ return self._solve_gambit_LP(maximization)
1876
+
1877
+ sgn = 1
1878
+ if not maximization:
1879
+ sgn = -1
1880
+
1881
+ strategy_sizes = [p.num_strategies for p in self.players]
1882
+
1883
+ p = MixedIntegerLinearProgram(maximization=False, solver=solver)
1884
+ y = p.new_variable(nonnegative=True)
1885
+ v = p.new_variable(nonnegative=False)
1886
+ p.add_constraint(sgn * self.payoff_matrices()[0] * y - v[0] <= 0)
1887
+ p.add_constraint(matrix([[1] * strategy_sizes[1]]) * y == 1)
1888
+ p.set_objective(v[0])
1889
+ p.solve()
1890
+ y = tuple(p.get_values(y).values())
1891
+
1892
+ p = MixedIntegerLinearProgram(maximization=False, solver=solver)
1893
+ x = p.new_variable(nonnegative=True)
1894
+ u = p.new_variable(nonnegative=False)
1895
+ p.add_constraint(sgn * -self.payoff_matrices()[0].T * x - u[0] <= 0)
1896
+ p.add_constraint(matrix([[1] * strategy_sizes[0]]) * x == 1)
1897
+ p.set_objective(u[0])
1898
+ p.solve()
1899
+ x = tuple(p.get_values(x).values())
1900
+ return [[x, y]]
1901
+
1902
+ def _solve_enumeration(self, maximization=True):
1903
+ r"""
1904
+ Obtain the Nash equilibria using support enumeration.
1905
+
1906
+ Algorithm implemented here is Algorithm 3.4 of [NN2007]_
1907
+ with an aspect of pruning from [SLB2008]_.
1908
+
1909
+ 1. For each k in 1...min(size of strategy sets)
1910
+ 2. For each I,J supports of size k
1911
+ 3. Prune: check if supports are dominated
1912
+ 4. Solve indifference conditions and check that have Nash Equilibrium.
1913
+
1914
+ EXAMPLES:
1915
+
1916
+ A Game::
1917
+
1918
+ sage: A = matrix([[160, 205, 44],
1919
+ ....: [175, 180, 45],
1920
+ ....: [201, 204, 50],
1921
+ ....: [120, 207, 49]])
1922
+ sage: B = matrix([[2, 2, 2],
1923
+ ....: [1, 0, 0],
1924
+ ....: [3, 4, 1],
1925
+ ....: [4, 1, 2]])
1926
+ sage: g=NormalFormGame([A, B])
1927
+ sage: g._solve_enumeration()
1928
+ [[(0, 0, 3/4, 1/4), (1/28, 27/28, 0)]]
1929
+
1930
+ A game with 3 equilibria::
1931
+
1932
+ sage: A = matrix([[3,3],
1933
+ ....: [2,5],
1934
+ ....: [0,6]])
1935
+ sage: B = matrix([[3,2],
1936
+ ....: [2,6],
1937
+ ....: [3,1]])
1938
+ sage: g = NormalFormGame([A, B])
1939
+ sage: g._solve_enumeration(maximization=False)
1940
+ [[(1, 0, 0), (0, 1)]]
1941
+
1942
+ A simple example::
1943
+
1944
+ sage: s = matrix([[1, 0], [-2, 3]])
1945
+ sage: t = matrix([[3, 2], [-1, 0]])
1946
+ sage: example = NormalFormGame([s, t])
1947
+ sage: example._solve_enumeration()
1948
+ [[(0, 1), (0, 1)], [(1/2, 1/2), (1/2, 1/2)], [(1, 0), (1, 0)]]
1949
+
1950
+ Another::
1951
+
1952
+ sage: A = matrix([[0, 1, 7, 1],
1953
+ ....: [2, 1, 3, 1],
1954
+ ....: [3, 1, 3, 5],
1955
+ ....: [6, 4, 2, 7]])
1956
+ sage: B = matrix([[3, 2, 8, 4],
1957
+ ....: [6, 2, 0, 3],
1958
+ ....: [1, 3, -1, 1],
1959
+ ....: [3, 2, 1, 1]])
1960
+ sage: C = NormalFormGame([A, B])
1961
+ sage: C._solve_enumeration()
1962
+ [[(0, 0, 0, 1), (1, 0, 0, 0)],
1963
+ [(2/7, 0, 0, 5/7), (5/11, 0, 6/11, 0)],
1964
+ [(1, 0, 0, 0), (0, 0, 1, 0)]]
1965
+
1966
+ Again::
1967
+
1968
+ sage: X = matrix([[1, 4, 2],
1969
+ ....: [4, 0, 3],
1970
+ ....: [2, 3, 5]])
1971
+ sage: Y = matrix([[3, 9, 2],
1972
+ ....: [0, 3, 1],
1973
+ ....: [5, 4, 6]])
1974
+ sage: Z = NormalFormGame([X, Y])
1975
+ sage: Z._solve_enumeration()
1976
+ [[(0, 0, 1), (0, 0, 1)], [(2/9, 0, 7/9), (0, 3/4, 1/4)], [(1, 0, 0), (0, 1, 0)]]
1977
+
1978
+ TESTS:
1979
+
1980
+ Due to the nature of the linear equations solved in this algorithm
1981
+ some negative vectors can be returned. Here is a test that ensures
1982
+ this doesn't happen (the particular payoff matrices chosen give a
1983
+ linear system that would have negative valued vectors as solution)::
1984
+
1985
+ sage: a = matrix([[-13, 59],
1986
+ ....: [27, 86]])
1987
+ sage: b = matrix([[14, 6],
1988
+ ....: [58, -14]])
1989
+ sage: c = NormalFormGame([a, b])
1990
+ sage: c._solve_enumeration()
1991
+ [[(0, 1), (1, 0)]]
1992
+
1993
+ Testing against an error in ``_is_NE``. Note that 1 equilibrium is
1994
+ missing: ``[(2/3, 1/3), (0, 1)]``, however this equilibrium has
1995
+ supports of different sizes. This only occurs in degenerate games
1996
+ and is not supported in the `enumeration` algorithm::
1997
+
1998
+ sage: N = NormalFormGame([matrix(2,[0,-1,-2,-1]),matrix(2,[1,0,0,2])])
1999
+ sage: N._solve_enumeration()
2000
+ [[(0, 1), (0, 1)], [(1, 0), (1, 0)]]
2001
+
2002
+ In this instance the `lrs` algorithm is able to find all
2003
+ three equilibria::
2004
+
2005
+ sage: N = NormalFormGame([matrix(2,[0,-1,-2,-1]),matrix(2,[1,0,0,2])])
2006
+ sage: N.obtain_nash(algorithm='lrs') # optional - lrslib
2007
+ [[(0, 1), (0, 1)], [(2/3, 1/3), (0, 1)], [(1, 0), (1, 0)]]
2008
+
2009
+ Here is another::
2010
+
2011
+ sage: N = NormalFormGame([matrix(2,[7,-8,-4,-8,7,0]),matrix(2,[-9,-1,-8,3,2,3])])
2012
+ sage: N._solve_enumeration()
2013
+ [[(0, 1), (0, 0, 1)]]
2014
+ """
2015
+
2016
+ M1, M2 = self.payoff_matrices()
2017
+ if maximization is False:
2018
+ M1 = -M1
2019
+ M2 = -M2
2020
+
2021
+ potential_supports = [[tuple(support) for support in
2022
+ powerset(range(player.num_strategies))]
2023
+ for player in self.players]
2024
+
2025
+ potential_support_pairs = (pair for pair in product(*potential_supports) if len(pair[0]) == len(pair[1]))
2026
+
2027
+ equilibria = []
2028
+ for pair in potential_support_pairs:
2029
+ # Check if any supports are dominated for row player
2030
+ if (self._row_cond_dominance(pair[0], pair[1], M1)
2031
+ # Check if any supports are dominated for col player
2032
+ and self._row_cond_dominance(pair[1], pair[0], M2.transpose())):
2033
+ a = self._solve_indifference(pair[0], pair[1], M2)
2034
+ b = self._solve_indifference(pair[1], pair[0], M1.transpose())
2035
+ if a and b and self._is_NE(a, b, pair[0], pair[1], M1, M2):
2036
+ equilibria.append([tuple(a), tuple(b)])
2037
+
2038
+ return sorted(equilibria)
2039
+
2040
+ def _row_cond_dominance(self, p1_sup, p2_sup, matrix):
2041
+ r"""
2042
+ Check if any row strategies of a sub matrix defined
2043
+ by a given pair of supports are conditionally dominated.
2044
+ Return ``False`` if a row is conditionally dominated.
2045
+
2046
+ TESTS:
2047
+
2048
+ A matrix that depending on the support for the column player
2049
+ has a dominated row::
2050
+
2051
+ sage: g = NormalFormGame()
2052
+ sage: A = matrix([[1, 1, 5], [2, 2, 0]])
2053
+ sage: g._row_cond_dominance((0, 1), (0, 1), A)
2054
+ False
2055
+
2056
+ or does not have a dominated row::
2057
+
2058
+ sage: g._row_cond_dominance((0, 1), (0, 2), A)
2059
+ True
2060
+ """
2061
+ subm = matrix.matrix_from_rows_and_columns(list(p1_sup), list(p2_sup))
2062
+ nbr_rows = subm.nrows()
2063
+ nbr_cols = subm.ncols()
2064
+ for s in range(nbr_rows):
2065
+ strategy = subm.rows()[s]
2066
+ for r in range(s, nbr_rows):
2067
+ row = subm.rows()[r]
2068
+ if strategy != row:
2069
+ if all(strategy[i] < row[i] for i in range(nbr_cols)):
2070
+ return False
2071
+ if all(row[i] < strategy[i] for i in range(nbr_cols)):
2072
+ return False
2073
+ return True
2074
+
2075
+ def _solve_indifference(self, support1, support2, M):
2076
+ r"""
2077
+ For support1, returns the strategy with support: support2 that makes the
2078
+ column player indifferent for the utilities given by M.
2079
+
2080
+ This is done by building the corresponding linear system.
2081
+ If `\rho_1, \rho_2` are the supports of player 1 and 2 respectively.
2082
+ Then, indifference for player 1 implies:
2083
+
2084
+ .. MATH::
2085
+
2086
+ u_1(s_1,\rho_2) = u_1(s_2, \rho_2)
2087
+
2088
+ for all `s_1, s_2` in the support of `\rho_1`. This corresponds to:
2089
+
2090
+ .. MATH::
2091
+
2092
+ \sum_{j\in S(\rho_2)}A_{s_1,j}{\rho_2}_j =
2093
+ \sum_{j\in S(\rho_2)}A_{s_2,j}{\rho_2}_j
2094
+
2095
+ for all `s_1, s_2` in the support of `\rho_1` where `A` is the payoff
2096
+ matrix of player 1. Equivalently we can consider consecutive rows of
2097
+ `A` (instead of all pairs of strategies). Thus the corresponding
2098
+ linear system can be written as:
2099
+
2100
+ .. MATH::
2101
+
2102
+ \left(\sum_{j \in S(\rho_2)}^{A_{i,j} - A_{i+1,j}\right){\rho_2}_j
2103
+
2104
+ for all `1\leq i \leq |S(\rho_1)|` (where `A` has been modified to only
2105
+ contain the row corresponding to `S(\rho_1)`). We also require all
2106
+ elements of `\rho_2` to sum to 1:
2107
+
2108
+ .. MATH::
2109
+
2110
+ \sum_{j\in S(\rho_1)}{\rho_2}_j = 1.
2111
+
2112
+ TESTS:
2113
+
2114
+ Find the indifference vector for a support pair that has
2115
+ no dominated strategies::
2116
+
2117
+ sage: A = matrix([[1, 1, 5], [2, 2, 0]])
2118
+ sage: g = NormalFormGame([A])
2119
+ sage: g._solve_indifference((0, 1), (0, 2), A)
2120
+ (1/3, 2/3)
2121
+ sage: g._solve_indifference((0, 2), (0, 1), -A.transpose())
2122
+ (5/6, 0, 1/6)
2123
+
2124
+ When a support pair has a dominated strategy there is no
2125
+ solution to the indifference equation::
2126
+
2127
+ sage: g._solve_indifference((0, 1), (0, 1), -A.transpose())
2128
+ <BLANKLINE>
2129
+
2130
+ Particular case of a game with 1 strategy for each for each player::
2131
+
2132
+ sage: A = matrix([[10]])
2133
+ sage: g = NormalFormGame([A])
2134
+ sage: g._solve_indifference((0,), (0,), -A.transpose())
2135
+ (1)
2136
+ """
2137
+ linearsystem = matrix(QQ, len(support2) + 1, M.nrows())
2138
+
2139
+ # Build linear system for player 1
2140
+ for strategy1 in support1:
2141
+ # Checking particular case of supports of pure strategies
2142
+ if len(support2) == 1:
2143
+ for strategy2 in range(M.ncols()):
2144
+ if M[strategy1][support2[0]] < \
2145
+ M[strategy1][strategy2]:
2146
+ return False
2147
+ else:
2148
+ for strategy_pair2 in range(len(support2)):
2149
+ # Coefficients of linear system that ensure indifference
2150
+ # between two consecutive strategies of the support
2151
+ linearsystem[strategy_pair2, strategy1] = \
2152
+ M[strategy1][support2[strategy_pair2]] -\
2153
+ M[strategy1][support2[strategy_pair2 - 1]]
2154
+ # Coefficients of linear system that ensure the vector is
2155
+ # a probability vector. ie. sum to 1
2156
+ linearsystem[-1, strategy1] = 1
2157
+ # Create rhs of linear systems
2158
+ linearsystem_rhs = vector([0 for i in range(len(support2))] + [1])
2159
+
2160
+ # Solve both linear systems
2161
+ try:
2162
+ result = linearsystem.solve_right(linearsystem_rhs)
2163
+ except ValueError:
2164
+ return None
2165
+
2166
+ return result
2167
+
2168
+ def _is_NE(self, a, b, p1_support, p2_support, M1, M2):
2169
+ r"""
2170
+ For vectors that obey indifference for a given support pair,
2171
+ checks if it corresponds to a Nash equilibria (support is obeyed and
2172
+ no negative values, also that no player has incentive to deviate
2173
+ out of supports).
2174
+
2175
+ TESTS::
2176
+
2177
+ sage: X = matrix([[1, 4, 2],
2178
+ ....: [4, 0, 3],
2179
+ ....: [2, 3, 5]])
2180
+ sage: Y = matrix([[3, 9, 2],
2181
+ ....: [0, 3, 1],
2182
+ ....: [5, 4, 6]])
2183
+ sage: Z = NormalFormGame([X, Y])
2184
+ sage: Z._is_NE([0, 1/4, 3/4], [3/5, 2/5, 0], (1, 2,), (0, 1,), X, Y)
2185
+ False
2186
+
2187
+ sage: Z._is_NE([2/9, 0, 7/9], [0, 3/4, 1/4], (0, 2), (1, 2), X, Y)
2188
+ True
2189
+
2190
+ Checking pure strategies are not forgotten::
2191
+
2192
+ sage: A = matrix(2, [0, -1, -2, -1])
2193
+ sage: B = matrix(2, [1, 0, 0, 2])
2194
+ sage: N = NormalFormGame([A, B])
2195
+ sage: N._is_NE([1, 0], [1, 0], (0,), (0,), A, B)
2196
+ True
2197
+ sage: N._is_NE([0, 1], [0, 1], (1,), (1,), A, B)
2198
+ True
2199
+ sage: N._is_NE([1, 0], [0, 1], (0,), (1,), A, B)
2200
+ False
2201
+ sage: N._is_NE([0, 1], [1, 0], (1,), (0,), A, B)
2202
+ False
2203
+
2204
+ sage: A = matrix(3, [-7, -5, 5, 5, 5, 3, 1, -6, 1])
2205
+ sage: B = matrix(3, [-9, 7, 9, 6, -2, -3, -4, 6, -10])
2206
+ sage: N = NormalFormGame([A, B])
2207
+ sage: N._is_NE([1, 0, 0], [0, 0, 1], (0,), (2,), A, B)
2208
+ True
2209
+ sage: N._is_NE([0, 1, 0], [1, 0, 0], (1,), (0,), A, B)
2210
+ True
2211
+ sage: N._is_NE([0, 1, 0], [0, 1, 0], (1,), (1,), A, B)
2212
+ False
2213
+ sage: N._is_NE([0, 0, 1], [0, 1, 0], (2,), (1,), A, B)
2214
+ False
2215
+ sage: N._is_NE([0, 0, 1], [0, 0, 1], (2,), (2,), A, B)
2216
+ False
2217
+ """
2218
+ # Check that supports are obeyed
2219
+ if not (all(a[i] > 0 for i in p1_support) and
2220
+ all(b[j] > 0 for j in p2_support) and
2221
+ all(a[i] == 0 for i in range(len(a))
2222
+ if i not in p1_support) and
2223
+ all(b[j] == 0 for j in range(len(b))
2224
+ if j not in p2_support)):
2225
+ return False
2226
+
2227
+ # Check that have pair of best responses
2228
+
2229
+ p1_payoffs = [sum(v * row[i] for i, v in enumerate(b))
2230
+ for row in M1.rows()]
2231
+ p2_payoffs = [sum(v * col[j] for j, v in enumerate(a))
2232
+ for col in M2.columns()]
2233
+
2234
+ # if p1_payoffs.index(max(p1_payoffs)) not in p1_support:
2235
+ if not any(i in p1_support for i, x in enumerate(p1_payoffs)
2236
+ if x == max(p1_payoffs)):
2237
+ return False
2238
+ if not any(i in p2_support for i, x in enumerate(p2_payoffs)
2239
+ if x == max(p2_payoffs)):
2240
+ return False
2241
+
2242
+ return True
2243
+
2244
+ def _lrs_nash_format(self, m1, m2):
2245
+ r"""
2246
+ Create the input format for ``lrsnash``, version 6.1 or newer.
2247
+
2248
+ EXAMPLES:
2249
+
2250
+ An example from the ``lrsnash`` manual in the old and the format::
2251
+
2252
+ sage: A = matrix([[0, 6], [2, 5], [3, 3]])
2253
+ sage: B = matrix([[1, 0], [0, 2], [4, 3]])
2254
+ sage: C = NormalFormGame([A, B])
2255
+ sage: print(C._lrs_nash_format(A, B))
2256
+ 3 2
2257
+ <BLANKLINE>
2258
+ 0 6
2259
+ 2 5
2260
+ 3 3
2261
+ <BLANKLINE>
2262
+ 1 0
2263
+ 0 2
2264
+ 4 3
2265
+ <BLANKLINE>
2266
+
2267
+ .. NOTE::
2268
+
2269
+ The former legacy format has been removed in :issue:`39464`.
2270
+ """
2271
+ from sage.geometry.polyhedron.misc import _to_space_separated_string
2272
+ m = self.players[0].num_strategies
2273
+ n = self.players[1].num_strategies
2274
+ s = f'{m} {n}\n\n'
2275
+ s += '\n'.join(_to_space_separated_string(r) for r in m1.rows())
2276
+ s += '\n\n'
2277
+ s += '\n'.join(_to_space_separated_string(r) for r in m2.rows())
2278
+ s += '\n'
2279
+ return s
2280
+
2281
+ def is_degenerate(self, certificate=False) -> bool:
2282
+ """
2283
+ A function to check whether the game is degenerate or not.
2284
+
2285
+ Will return a boolean.
2286
+
2287
+ A two-player game is called nondegenerate if no mixed strategy of
2288
+ support size `k` has more than `k` pure best responses [NN2007]_. In a
2289
+ degenerate game, this definition is violated, for example if there
2290
+ is a pure strategy that has two pure best responses.
2291
+
2292
+ The implementation here transforms the search over mixed strategies to a
2293
+ search over supports which is a discrete search. A full explanation of
2294
+ this is given in [CK2015]_. This problem is known to be NP-Hard
2295
+ [Du2009]_. Another possible implementation is via best response
2296
+ polytopes, see :issue:`18958`.
2297
+
2298
+ The game Rock-Paper-Scissors is an example of a non-degenerate game,::
2299
+
2300
+ sage: g = game_theory.normal_form_games.RPS()
2301
+ sage: g.is_degenerate()
2302
+ False
2303
+
2304
+ whereas `Rock-Paper-Scissors-Lizard-Spock
2305
+ <http://www.samkass.com/theories/RPSSL.html>`_ is degenerate because
2306
+ for every pure strategy there are two best responses.::
2307
+
2308
+ sage: g = game_theory.normal_form_games.RPSLS()
2309
+ sage: g.is_degenerate()
2310
+ True
2311
+
2312
+ EXAMPLES:
2313
+
2314
+ Here is an example of a degenerate game given in [DGRB2010]_::
2315
+
2316
+ sage: A = matrix([[3, 3], [2, 5], [0, 6]])
2317
+ sage: B = matrix([[3, 3], [2, 6], [3, 1]])
2318
+ sage: degenerate_game = NormalFormGame([A,B])
2319
+ sage: degenerate_game.is_degenerate()
2320
+ True
2321
+
2322
+ Here is an example of a degenerate game given in [NN2007]_::
2323
+
2324
+ sage: A = matrix([[0, 6], [2, 5], [3, 3]])
2325
+ sage: B = matrix([[1, 0], [0, 2], [4, 4]])
2326
+ sage: d_game = NormalFormGame([A, B])
2327
+ sage: d_game.is_degenerate()
2328
+ True
2329
+
2330
+ Here are some other examples of degenerate games::
2331
+
2332
+ sage: M = matrix([[2, 1], [1, 1]])
2333
+ sage: N = matrix([[1, 1], [1, 2]])
2334
+ sage: game = NormalFormGame([M, N])
2335
+ sage: game.is_degenerate()
2336
+ True
2337
+
2338
+ If more information is required, it may be useful to use
2339
+ ``certificate=True``. This will return a boolean of whether the game is
2340
+ degenerate or not, and if True; a tuple containing the strategy where
2341
+ degeneracy was found and the player it belongs to. ``0`` is the row
2342
+ player and ``1`` is the column player.::
2343
+
2344
+ sage: M = matrix([[2, 1], [1, 1]])
2345
+ sage: N = matrix([[1, 1], [1, 2]])
2346
+ sage: g = NormalFormGame([M, N])
2347
+ sage: test, certificate = g.is_degenerate(certificate=True)
2348
+ sage: test, certificate
2349
+ (True, ((1, 0), 0))
2350
+
2351
+ Using the output, we see that the opponent has more best responses than
2352
+ the size of the support of the strategy in question ``(1, 0)``. (We
2353
+ specify the player as ``(player + 1) % 2`` to ensure that we have the
2354
+ opponent's index.)::
2355
+
2356
+ sage: g.best_responses(certificate[0], (certificate[1] + 1) % 2)
2357
+ [0, 1]
2358
+
2359
+ Another example with a mixed strategy causing degeneracy.::
2360
+
2361
+ sage: A = matrix([[3, 0], [0, 3], [1.5, 1.5]])
2362
+ sage: B = matrix([[4, 3], [2, 6], [3, 1]])
2363
+ sage: g = NormalFormGame([A, B])
2364
+ sage: test, certificate = g.is_degenerate(certificate=True)
2365
+ sage: test, certificate
2366
+ (True, ((1/2, 1/2), 1))
2367
+
2368
+ Again, we see that the opponent has more best responses than the size of
2369
+ the support of the strategy in question ``(1/2, 1/2)``.::
2370
+
2371
+ sage: g.best_responses(certificate[0], (certificate[1] + 1) % 2)
2372
+ [0, 1, 2]
2373
+
2374
+ Sometimes, the different algorithms for obtaining nash_equilibria don't
2375
+ agree with each other. This can happen when games are degenerate::
2376
+
2377
+ sage: a = matrix([[-75, 18, 45, 33],
2378
+ ....: [42, -8, -77, -18],
2379
+ ....: [83, 18, 11, 40],
2380
+ ....: [-10, -38, 76, -9]])
2381
+ sage: b = matrix([[62, 64, 87, 51],
2382
+ ....: [-41, -27, -69, 52],
2383
+ ....: [-17, 25, -97, -82],
2384
+ ....: [30, 31, -1, 50]])
2385
+ sage: d_game = NormalFormGame([a, b])
2386
+ sage: d_game.obtain_nash(algorithm='lrs') # optional - lrslib
2387
+ [[(0, 0, 1, 0), (0, 1, 0, 0)],
2388
+ [(17/29, 0, 0, 12/29), (0, 0, 42/73, 31/73)],
2389
+ [(122/145, 0, 23/145, 0), (0, 1, 0, 0)]]
2390
+ sage: d_game.obtain_nash(algorithm='LCP') # optional - gambit
2391
+ [[(0.5862068966, 0.0, 0.0, 0.4137931034),
2392
+ (0.0, 0.0, 0.5753424658, 0.4246575342)]]
2393
+ sage: d_game.obtain_nash(algorithm='enumeration')
2394
+ [[(0, 0, 1, 0), (0, 1, 0, 0)], [(17/29, 0, 0, 12/29), (0, 0, 42/73, 31/73)]]
2395
+ sage: d_game.is_degenerate()
2396
+ True
2397
+
2398
+ TESTS::
2399
+
2400
+ sage: g = NormalFormGame()
2401
+ sage: g.add_player(3) # Adding first player with 3 strategies
2402
+ sage: g.add_player(3) # Adding second player with 3 strategies
2403
+ sage: for key in g:
2404
+ ....: g[key] = [0, 0]
2405
+ sage: g.is_degenerate()
2406
+ True
2407
+
2408
+ sage: A = matrix([[3, 0], [0, 3], [1.5, 1.5]])
2409
+ sage: B = matrix([[4, 3], [2, 6], [3, 1]])
2410
+ sage: g = NormalFormGame([A, B])
2411
+ sage: g.is_degenerate()
2412
+ True
2413
+
2414
+ sage: A = matrix([[1, -1], [-1, 1]])
2415
+ sage: B = matrix([[-1, 1], [1, -1]])
2416
+ sage: matching_pennies = NormalFormGame([A, B])
2417
+ sage: matching_pennies.is_degenerate()
2418
+ False
2419
+
2420
+ sage: A = matrix([[2, 5], [0, 4]])
2421
+ sage: B = matrix([[2, 0], [5, 4]])
2422
+ sage: prisoners_dilemma = NormalFormGame([A, B])
2423
+ sage: prisoners_dilemma.is_degenerate()
2424
+ False
2425
+
2426
+ sage: g = NormalFormGame()
2427
+ sage: g.add_player(2)
2428
+ sage: g.add_player(2)
2429
+ sage: g.add_player(2)
2430
+ sage: g.is_degenerate()
2431
+ Traceback (most recent call last):
2432
+ ...
2433
+ NotImplementedError: Tests for Degeneracy is not yet implemented for
2434
+ games with more than two players.
2435
+ """
2436
+ if len(self.players) > 2:
2437
+ raise NotImplementedError("Tests for Degeneracy is not yet "
2438
+ "implemented for games with more than "
2439
+ "two players.")
2440
+
2441
+ d = self._is_degenerate_pure(certificate)
2442
+ if d:
2443
+ return d
2444
+
2445
+ M1, M2 = self.payoff_matrices()
2446
+ potential_supports = [[tuple(support) for support in
2447
+ powerset(range(player.num_strategies))]
2448
+ for player in self.players]
2449
+
2450
+ # filter out all supports that are pure or empty
2451
+ potential_supports = [[i for i in k if len(i) > 1]
2452
+ for k in potential_supports]
2453
+
2454
+ potential_support_pairs = [pair for pair in
2455
+ product(*potential_supports) if
2456
+ len(pair[0]) != len(pair[1])]
2457
+
2458
+ # Sort so that solve small linear systems first
2459
+ potential_support_pairs.sort(key=lambda x: sum([len(k) for k in x]))
2460
+
2461
+ for pair in potential_support_pairs:
2462
+ if len(pair[0]) < len(pair[1]):
2463
+ strat = self._solve_indifference(pair[0], pair[1], M2)
2464
+ if strat and len(self.best_responses(strat, player=0)) > len(pair[0]):
2465
+ if certificate:
2466
+ return True, (strat, 0)
2467
+ else:
2468
+ return True
2469
+ elif len(pair[1]) < len(pair[0]):
2470
+ strat = self._solve_indifference(pair[1], pair[0], M1.transpose())
2471
+ if strat and len(self.best_responses(strat, player=0)) > len(pair[1]):
2472
+ if certificate:
2473
+ return True, (strat, 1)
2474
+ else:
2475
+ return True
2476
+
2477
+ if certificate:
2478
+ return False, ()
2479
+ else:
2480
+ return False
2481
+
2482
+ def best_responses(self, strategy, player):
2483
+ """
2484
+ For a given strategy for a player and the index of the opponent,
2485
+ computes the payoff for the opponent and returns a list of the indices
2486
+ of the best responses. Only implemented for two player games
2487
+
2488
+ INPUT:
2489
+
2490
+ - ``strategy`` -- a probability distribution vector
2491
+
2492
+ - ``player`` -- the index of the opponent, ``0`` for the row player,
2493
+ ``1`` for the column player
2494
+
2495
+ EXAMPLES::
2496
+
2497
+ sage: A = matrix([[3, 0], [0, 3], [1.5, 1.5]])
2498
+ sage: B = matrix([[4, 3], [2, 6], [3, 1]])
2499
+ sage: g = NormalFormGame([A, B])
2500
+
2501
+ Now we can obtain the best responses for Player 1, when Player 2 uses
2502
+ different strategies::
2503
+
2504
+ sage: g.best_responses((1/2, 1/2), player=0)
2505
+ [0, 1, 2]
2506
+ sage: g.best_responses((3/4, 1/4), player=0)
2507
+ [0]
2508
+
2509
+ To get the best responses for Player 2 we pass the argument :code:`player=1`::
2510
+
2511
+ sage: g.best_responses((4/5, 1/5, 0), player=1)
2512
+ [0, 1]
2513
+
2514
+ sage: A = matrix([[1, 0], [0, 1], [0, 0]])
2515
+ sage: B = matrix([[1, 0], [0, 1], [0.7, 0.8]])
2516
+ sage: g = NormalFormGame([A, B])
2517
+ sage: g.best_responses((0, 1, 0), player=1)
2518
+ [1]
2519
+
2520
+ sage: A = matrix([[3,3],[2,5],[0,6]])
2521
+ sage: B = matrix([[3,3],[2,6],[3,1]])
2522
+ sage: degenerate_game = NormalFormGame([A,B])
2523
+ sage: degenerate_game.best_responses((1, 0, 0), player=1)
2524
+ [0, 1]
2525
+
2526
+ sage: A = matrix([[3, 0], [0, 3], [1.5, 1.5]])
2527
+ sage: B = matrix([[4, 3], [2, 6], [3, 1]])
2528
+ sage: g = NormalFormGame([A, B])
2529
+ sage: g.best_responses((1/3, 1/3, 1/3), player=1)
2530
+ [1]
2531
+
2532
+ Note that this has only been implemented for 2 player games::
2533
+
2534
+ sage: g = NormalFormGame()
2535
+ sage: g.add_player(2) # adding first player with 2 strategies
2536
+ sage: g.add_player(2) # adding second player with 2 strategies
2537
+ sage: g.add_player(2) # adding third player with 2 strategies
2538
+ sage: g.best_responses((1/2, 1/2), player=2)
2539
+ Traceback (most recent call last):
2540
+ ...
2541
+ ValueError: Only available for 2 player games
2542
+
2543
+ If the strategy is not of the correct dimension for the given player
2544
+ then an error is returned::
2545
+
2546
+ sage: A = matrix([[3, 0], [0, 3], [1.5, 1.5]])
2547
+ sage: B = matrix([[4, 3], [2, 6], [3, 1]])
2548
+ sage: g = NormalFormGame([A, B])
2549
+ sage: g.best_responses((1/2, 1/2), player=1)
2550
+ Traceback (most recent call last):
2551
+ ...
2552
+ ValueError: Strategy is not of correct dimension
2553
+
2554
+ sage: g.best_responses((1/3, 1/3, 1/3), player=0)
2555
+ Traceback (most recent call last):
2556
+ ...
2557
+ ValueError: Strategy is not of correct dimension
2558
+
2559
+ If the strategy is not a true probability vector then an error is
2560
+ passed::
2561
+
2562
+ sage: A = matrix([[3, 0], [0, 3], [1.5, 1.5]])
2563
+ sage: B = matrix([[4, 3], [2, 6], [3, 1]])
2564
+ sage: g = NormalFormGame([A, B])
2565
+ sage: g.best_responses((1/3, 1/2, 0), player=1)
2566
+ Traceback (most recent call last):
2567
+ ...
2568
+ ValueError: Strategy is not a probability distribution vector
2569
+
2570
+ sage: A = matrix([[3, 0], [0, 3], [1.5, 1.5]])
2571
+ sage: B = matrix([[4, 3], [2, 6], [3, 1]])
2572
+ sage: g = NormalFormGame([A, B])
2573
+ sage: g.best_responses((3/2, -1/2), player=0)
2574
+ Traceback (most recent call last):
2575
+ ...
2576
+ ValueError: Strategy is not a probability distribution vector
2577
+
2578
+ If the player specified is not `0` or `1`, an error is raised::
2579
+
2580
+ sage: A = matrix([[3, 0], [0, 3], [1.5, 1.5]])
2581
+ sage: B = matrix([[4, 3], [2, 6], [3, 1]])
2582
+ sage: g = NormalFormGame([A, B])
2583
+ sage: g.best_responses((1/2, 1/2), player='Player1')
2584
+ Traceback (most recent call last):
2585
+ ...
2586
+ ValueError: Player1 is not an index of the opponent, must be 0 or 1
2587
+ """
2588
+ if len(self.players) != 2:
2589
+ raise ValueError('Only available for 2 player games')
2590
+
2591
+ if player != 0 and player != 1:
2592
+ raise ValueError('%s is not an index of the opponent, must be 0 or 1' % player)
2593
+
2594
+ strategy = vector(strategy)
2595
+
2596
+ if sum(strategy) != 1 or min(strategy) < 0:
2597
+ raise ValueError('Strategy is not a probability distribution vector')
2598
+
2599
+ if player == 0:
2600
+ payoff_matrix = self.payoff_matrices()[0]
2601
+ elif player == 1:
2602
+ payoff_matrix = self.payoff_matrices()[1].transpose()
2603
+
2604
+ if len(strategy) != payoff_matrix.dimensions()[1]:
2605
+ raise ValueError('Strategy is not of correct dimension')
2606
+
2607
+ payoffs = list(payoff_matrix * strategy)
2608
+ indices = [i for i, j in enumerate(payoffs) if j == max(payoffs)]
2609
+
2610
+ return indices
2611
+
2612
+ def _is_degenerate_pure(self, certificate=False):
2613
+ """
2614
+ Check whether a game is degenerate in pure strategies.
2615
+
2616
+ TESTS::
2617
+
2618
+ sage: A = matrix([[3,3],[2,5],[0,6]])
2619
+ sage: B = matrix([[3,3],[2,6],[3,1]])
2620
+ sage: degenerate_game = NormalFormGame([A,B])
2621
+ sage: degenerate_game._is_degenerate_pure()
2622
+ True
2623
+
2624
+ sage: A = matrix([[1, 0], [0, 1], [0, 0]])
2625
+ sage: B = matrix([[1, 0], [0, 1], [0.7, 0.8]])
2626
+ sage: g = NormalFormGame([A, B])
2627
+ sage: g._is_degenerate_pure()
2628
+ False
2629
+
2630
+ sage: A = matrix([[2, 5], [0, 4]])
2631
+ sage: B = matrix([[2, 0], [5, 4]])
2632
+ sage: prisoners_dilemma = NormalFormGame([A, B])
2633
+ sage: prisoners_dilemma._is_degenerate_pure()
2634
+ False
2635
+
2636
+ sage: A = matrix([[0, -1, 1, 1, -1],
2637
+ ....: [1, 0, -1, -1, 1],
2638
+ ....: [-1, 1, 0, 1 , -1],
2639
+ ....: [-1, 1, -1, 0, 1],
2640
+ ....: [1, -1, 1, -1, 0]])
2641
+ sage: g = NormalFormGame([A])
2642
+ sage: g._is_degenerate_pure()
2643
+ True
2644
+
2645
+ Whilst this game is not degenerate in pure strategies, it is
2646
+ actually degenerate, but only in mixed strategies::
2647
+
2648
+ sage: A = matrix([[3, 0], [0, 3], [1.5, 1.5]])
2649
+ sage: B = matrix([[4, 3], [2, 6], [3, 1]])
2650
+ sage: g = NormalFormGame([A, B])
2651
+ sage: g._is_degenerate_pure()
2652
+ False
2653
+ """
2654
+ M1, M2 = self.payoff_matrices()
2655
+ for i, row in enumerate(M2.rows()):
2656
+ if list(row).count(max(row)) > 1:
2657
+ if certificate:
2658
+ strat = [0 for k in range(M1.nrows())]
2659
+ strat[i] = 1
2660
+ return True, (tuple(strat), 0)
2661
+ else:
2662
+ return True
2663
+
2664
+ for j, col in enumerate(M1.columns()):
2665
+ if list(col).count(max(col)) > 1:
2666
+ if certificate:
2667
+ strat = [0 for k in range(M1.ncols())]
2668
+ strat[j] = 1
2669
+ return True, (tuple(strat), 1)
2670
+ else:
2671
+ return True
2672
+ return False
2673
+
2674
+
2675
+ class _Player:
2676
+ def __init__(self, num_strategies):
2677
+ r"""
2678
+ TESTS::
2679
+
2680
+ sage: from sage.game_theory.normal_form_game import _Player
2681
+ sage: p = _Player(5)
2682
+ sage: p.num_strategies
2683
+ 5
2684
+ """
2685
+ self.num_strategies = num_strategies
2686
+
2687
+ def add_strategy(self):
2688
+ r"""
2689
+ TESTS::
2690
+
2691
+ sage: from sage.game_theory.normal_form_game import _Player
2692
+ sage: p = _Player(5)
2693
+ sage: p.add_strategy()
2694
+ sage: p.num_strategies
2695
+ 6
2696
+ """
2697
+ self.num_strategies += 1