passagemath-pari 10.6.32__cp314-cp314-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-pari might be problematic. Click here for more details.
- PARIKernel/__init__.py +2 -0
- PARIKernel/__main__.py +5 -0
- PARIKernel/io.cpython-314-x86_64-linux-musl.so +0 -0
- PARIKernel/io.pxd +7 -0
- PARIKernel/io.pyx +84 -0
- PARIKernel/kernel.cpython-314-x86_64-linux-musl.so +0 -0
- PARIKernel/kernel.pyx +260 -0
- PARIKernel/paridecl.pxd +95 -0
- PARIKernel/svg.cpython-314-x86_64-linux-musl.so +0 -0
- PARIKernel/svg.pyx +52 -0
- cypari2/__init__.py +8 -0
- cypari2/auto_paridecl.pxd +1070 -0
- cypari2/closure.cpython-314-x86_64-linux-musl.so +0 -0
- cypari2/closure.pxd +5 -0
- cypari2/closure.pyx +246 -0
- cypari2/convert.cpython-314-x86_64-linux-musl.so +0 -0
- cypari2/convert.pxd +80 -0
- cypari2/convert.pyx +613 -0
- cypari2/custom_block.cpython-314-x86_64-linux-musl.so +0 -0
- cypari2/custom_block.pyx +30 -0
- cypari2/cypari.h +13 -0
- cypari2/gen.cpython-314-x86_64-linux-musl.so +0 -0
- cypari2/gen.pxd +69 -0
- cypari2/gen.pyx +4819 -0
- cypari2/handle_error.cpython-314-x86_64-linux-musl.so +0 -0
- cypari2/handle_error.pxd +7 -0
- cypari2/handle_error.pyx +232 -0
- cypari2/pari_instance.cpython-314-x86_64-linux-musl.so +0 -0
- cypari2/pari_instance.pxd +27 -0
- cypari2/pari_instance.pyx +1438 -0
- cypari2/paridecl.pxd +5353 -0
- cypari2/paripriv.pxd +34 -0
- cypari2/pycore_long.h +98 -0
- cypari2/pycore_long.pxd +9 -0
- cypari2/stack.cpython-314-x86_64-linux-musl.so +0 -0
- cypari2/stack.pxd +27 -0
- cypari2/stack.pyx +278 -0
- cypari2/string_utils.cpython-314-x86_64-linux-musl.so +0 -0
- cypari2/string_utils.pxd +29 -0
- cypari2/string_utils.pyx +65 -0
- cypari2/types.pxd +147 -0
- passagemath_pari-10.6.32.data/data/etc/jupyter/nbconfig/notebook.d/gp-mode.json +5 -0
- passagemath_pari-10.6.32.data/data/share/jupyter/kernels/pari_jupyter/kernel.js +28 -0
- passagemath_pari-10.6.32.data/data/share/jupyter/kernels/pari_jupyter/kernel.json +6 -0
- passagemath_pari-10.6.32.data/data/share/jupyter/kernels/pari_jupyter/logo-64x64.png +0 -0
- passagemath_pari-10.6.32.data/data/share/jupyter/kernels/xeus-gp/kernel.json +13 -0
- passagemath_pari-10.6.32.data/data/share/jupyter/kernels/xeus-gp/logo-32x32.png +0 -0
- passagemath_pari-10.6.32.data/data/share/jupyter/kernels/xeus-gp/logo-64x64.png +0 -0
- passagemath_pari-10.6.32.data/data/share/jupyter/kernels/xeus-gp/logo-svg.svg +75 -0
- passagemath_pari-10.6.32.data/data/share/jupyter/nbextensions/gp-mode/gp.js +284 -0
- passagemath_pari-10.6.32.data/data/share/jupyter/nbextensions/gp-mode/main.js +15 -0
- passagemath_pari-10.6.32.dist-info/METADATA +209 -0
- passagemath_pari-10.6.32.dist-info/RECORD +331 -0
- passagemath_pari-10.6.32.dist-info/WHEEL +5 -0
- passagemath_pari-10.6.32.dist-info/top_level.txt +4 -0
- passagemath_pari.libs/libcrypto-f04afe95.so.3 +0 -0
- passagemath_pari.libs/libflint-fd6f12fc.so.21.0.0 +0 -0
- passagemath_pari.libs/libgcc_s-0cd532bd.so.1 +0 -0
- passagemath_pari.libs/libgf2x-9e30c3e3.so.3.0.0 +0 -0
- passagemath_pari.libs/libgfortran-2c33b284.so.5.0.0 +0 -0
- passagemath_pari.libs/libgivaro-9a94c711.so.9.2.1 +0 -0
- passagemath_pari.libs/libgmp-0e7fc84e.so.10.5.0 +0 -0
- passagemath_pari.libs/libgmpxx-9e08595c.so.4.7.0 +0 -0
- passagemath_pari.libs/libgsl-42cda06f.so.28.0.0 +0 -0
- passagemath_pari.libs/libmpfr-aaecbfc0.so.6.2.1 +0 -0
- passagemath_pari.libs/libncursesw-9c9e32c3.so.6.5 +0 -0
- passagemath_pari.libs/libntl-26885ca2.so.44.0.1 +0 -0
- passagemath_pari.libs/libopenblasp-r0-905cb27d.3.29.so +0 -0
- passagemath_pari.libs/libpari-gmp-tls-f31f908f.so.2.17.2 +0 -0
- passagemath_pari.libs/libquadmath-bb76a5fc.so.0.0.0 +0 -0
- passagemath_pari.libs/libreadline-06542304.so.8.2 +0 -0
- passagemath_pari.libs/libstdc++-5d72f927.so.6.0.33 +0 -0
- passagemath_pari.libs/libuuid-f3770415.so.1.3.0 +0 -0
- passagemath_pari.libs/libxeus-735780ff.so.13.1.0 +0 -0
- passagemath_pari.libs/libxeus-zmq-c68577b4.so.6.0.1 +0 -0
- passagemath_pari.libs/libzmq-1ba9a3da.so.5.2.5 +0 -0
- sage/all__sagemath_pari.py +26 -0
- sage/databases/all__sagemath_pari.py +7 -0
- sage/databases/conway.py +274 -0
- sage/ext/all__sagemath_pari.py +1 -0
- sage/ext/memory.cpython-314-x86_64-linux-musl.so +0 -0
- sage/ext/memory.pyx +98 -0
- sage/ext_data/pari/buzzard/DimensionSk.g +286 -0
- sage/ext_data/pari/buzzard/Tpprog.g +179 -0
- sage/ext_data/pari/buzzard/genusn.g +129 -0
- sage/ext_data/pari/dokchitser/computel.gp +740 -0
- sage/ext_data/pari/dokchitser/computel.gp.template +740 -0
- sage/ext_data/pari/dokchitser/ex-bsw +43 -0
- sage/ext_data/pari/dokchitser/ex-chgen +48 -0
- sage/ext_data/pari/dokchitser/ex-chqua +37 -0
- sage/ext_data/pari/dokchitser/ex-delta +35 -0
- sage/ext_data/pari/dokchitser/ex-eisen +30 -0
- sage/ext_data/pari/dokchitser/ex-gen2 +38 -0
- sage/ext_data/pari/dokchitser/ex-gen3 +49 -0
- sage/ext_data/pari/dokchitser/ex-gen4 +54 -0
- sage/ext_data/pari/dokchitser/ex-nf +48 -0
- sage/ext_data/pari/dokchitser/ex-shin +50 -0
- sage/ext_data/pari/dokchitser/ex-tau2 +30 -0
- sage/ext_data/pari/dokchitser/ex-zeta +27 -0
- sage/ext_data/pari/dokchitser/ex-zeta2 +47 -0
- sage/ext_data/pari/dokchitser/testall +13 -0
- sage/ext_data/pari/simon/ell.gp +2129 -0
- sage/ext_data/pari/simon/ellQ.gp +2151 -0
- sage/ext_data/pari/simon/ellcommon.gp +126 -0
- sage/ext_data/pari/simon/qfsolve.gp +722 -0
- sage/ext_data/pari/simon/resultant3.gp +306 -0
- sage/groups/all__sagemath_pari.py +3 -0
- sage/groups/pari_group.py +175 -0
- sage/interfaces/all__sagemath_pari.py +1 -0
- sage/interfaces/genus2reduction.py +464 -0
- sage/interfaces/gp.py +1114 -0
- sage/libs/all__sagemath_pari.py +2 -0
- sage/libs/linkages/__init__.py +1 -0
- sage/libs/linkages/padics/API.pxi +617 -0
- sage/libs/linkages/padics/Polynomial_ram.pxi +388 -0
- sage/libs/linkages/padics/Polynomial_shared.pxi +554 -0
- sage/libs/linkages/padics/__init__.py +1 -0
- sage/libs/linkages/padics/fmpz_poly_unram.pxi +869 -0
- sage/libs/linkages/padics/mpz.pxi +691 -0
- sage/libs/linkages/padics/relaxed/API.pxi +518 -0
- sage/libs/linkages/padics/relaxed/__init__.py +1 -0
- sage/libs/linkages/padics/relaxed/flint.pxi +543 -0
- sage/libs/linkages/padics/unram_shared.pxi +247 -0
- sage/libs/pari/__init__.py +210 -0
- sage/libs/pari/all.py +5 -0
- sage/libs/pari/convert_flint.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/pari/convert_flint.pxd +14 -0
- sage/libs/pari/convert_flint.pyx +159 -0
- sage/libs/pari/convert_gmp.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/pari/convert_gmp.pxd +14 -0
- sage/libs/pari/convert_gmp.pyx +210 -0
- sage/libs/pari/convert_sage.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/pari/convert_sage.pxd +16 -0
- sage/libs/pari/convert_sage.pyx +588 -0
- sage/libs/pari/convert_sage_complex_double.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/pari/convert_sage_complex_double.pxd +14 -0
- sage/libs/pari/convert_sage_complex_double.pyx +132 -0
- sage/libs/pari/convert_sage_matrix.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/pari/convert_sage_matrix.pyx +106 -0
- sage/libs/pari/convert_sage_real_double.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/pari/convert_sage_real_double.pxd +5 -0
- sage/libs/pari/convert_sage_real_double.pyx +14 -0
- sage/libs/pari/convert_sage_real_mpfr.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/pari/convert_sage_real_mpfr.pxd +7 -0
- sage/libs/pari/convert_sage_real_mpfr.pyx +108 -0
- sage/libs/pari/misc.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/pari/misc.pxd +4 -0
- sage/libs/pari/misc.pyx +26 -0
- sage/libs/pari/tests.py +1848 -0
- sage/matrix/all__sagemath_pari.py +1 -0
- sage/matrix/matrix_integer_pari.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_integer_pari.pyx +187 -0
- sage/matrix/matrix_rational_pari.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_rational_pari.pyx +160 -0
- sage/quadratic_forms/all__sagemath_pari.py +10 -0
- sage/quadratic_forms/genera/all.py +9 -0
- sage/quadratic_forms/genera/genus.py +3506 -0
- sage/quadratic_forms/genera/normal_form.py +1519 -0
- sage/quadratic_forms/genera/spinor_genus.py +243 -0
- sage/quadratic_forms/qfsolve.py +255 -0
- sage/quadratic_forms/quadratic_form__automorphisms.py +427 -0
- sage/quadratic_forms/quadratic_form__genus.py +141 -0
- sage/quadratic_forms/quadratic_form__local_density_interfaces.py +140 -0
- sage/quadratic_forms/quadratic_form__local_normal_form.py +421 -0
- sage/quadratic_forms/quadratic_form__local_representation_conditions.py +889 -0
- sage/quadratic_forms/quadratic_form__mass.py +69 -0
- sage/quadratic_forms/quadratic_form__mass__Conway_Sloane_masses.py +663 -0
- sage/quadratic_forms/quadratic_form__mass__Siegel_densities.py +373 -0
- sage/quadratic_forms/quadratic_form__siegel_product.py +198 -0
- sage/quadratic_forms/special_values.py +323 -0
- sage/rings/all__sagemath_pari.py +15 -0
- sage/rings/factorint_pari.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/factorint_pari.pyx +80 -0
- sage/rings/finite_rings/all__sagemath_pari.py +1 -0
- sage/rings/finite_rings/element_givaro.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/finite_rings/element_givaro.pxd +91 -0
- sage/rings/finite_rings/element_givaro.pyx +1769 -0
- sage/rings/finite_rings/element_ntl_gf2e.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/finite_rings/element_ntl_gf2e.pxd +22 -0
- sage/rings/finite_rings/element_ntl_gf2e.pyx +1333 -0
- sage/rings/finite_rings/element_pari_ffelt.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/finite_rings/element_pari_ffelt.pxd +13 -0
- sage/rings/finite_rings/element_pari_ffelt.pyx +1441 -0
- sage/rings/finite_rings/finite_field_givaro.py +612 -0
- sage/rings/finite_rings/finite_field_pari_ffelt.py +238 -0
- sage/rings/finite_rings/hom_finite_field_givaro.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/finite_rings/hom_finite_field_givaro.pxd +28 -0
- sage/rings/finite_rings/hom_finite_field_givaro.pyx +280 -0
- sage/rings/finite_rings/residue_field_givaro.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/finite_rings/residue_field_givaro.pyx +133 -0
- sage/rings/finite_rings/residue_field_pari_ffelt.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/finite_rings/residue_field_pari_ffelt.pyx +128 -0
- sage/rings/function_field/all__sagemath_pari.py +1 -0
- sage/rings/function_field/valuation.py +1450 -0
- sage/rings/function_field/valuation_ring.py +212 -0
- sage/rings/number_field/all__sagemath_pari.py +14 -0
- sage/rings/number_field/totallyreal.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/number_field/totallyreal.pyx +509 -0
- sage/rings/number_field/totallyreal_data.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/number_field/totallyreal_data.pxd +26 -0
- sage/rings/number_field/totallyreal_data.pyx +928 -0
- sage/rings/number_field/totallyreal_phc.py +144 -0
- sage/rings/number_field/totallyreal_rel.py +1018 -0
- sage/rings/padics/CA_template.pxi +1847 -0
- sage/rings/padics/CA_template_header.pxi +50 -0
- sage/rings/padics/CR_template.pxi +2563 -0
- sage/rings/padics/CR_template_header.pxi +57 -0
- sage/rings/padics/FM_template.pxi +1575 -0
- sage/rings/padics/FM_template_header.pxi +50 -0
- sage/rings/padics/FP_template.pxi +2176 -0
- sage/rings/padics/FP_template_header.pxi +57 -0
- sage/rings/padics/all.py +3 -0
- sage/rings/padics/all__sagemath_pari.py +11 -0
- sage/rings/padics/common_conversion.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/common_conversion.pxd +15 -0
- sage/rings/padics/common_conversion.pyx +508 -0
- sage/rings/padics/eisenstein_extension_generic.py +232 -0
- sage/rings/padics/factory.py +3623 -0
- sage/rings/padics/generic_nodes.py +1615 -0
- sage/rings/padics/lattice_precision.py +2889 -0
- sage/rings/padics/morphism.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/morphism.pxd +11 -0
- sage/rings/padics/morphism.pyx +366 -0
- sage/rings/padics/padic_base_generic.py +467 -0
- sage/rings/padics/padic_base_leaves.py +1235 -0
- sage/rings/padics/padic_capped_absolute_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/padic_capped_absolute_element.pxd +15 -0
- sage/rings/padics/padic_capped_absolute_element.pyx +520 -0
- sage/rings/padics/padic_capped_relative_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/padic_capped_relative_element.pxd +14 -0
- sage/rings/padics/padic_capped_relative_element.pyx +614 -0
- sage/rings/padics/padic_extension_generic.py +990 -0
- sage/rings/padics/padic_extension_leaves.py +738 -0
- sage/rings/padics/padic_fixed_mod_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/padic_fixed_mod_element.pxd +15 -0
- sage/rings/padics/padic_fixed_mod_element.pyx +584 -0
- sage/rings/padics/padic_floating_point_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/padic_floating_point_element.pxd +14 -0
- sage/rings/padics/padic_floating_point_element.pyx +447 -0
- sage/rings/padics/padic_generic_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/padic_generic_element.pxd +48 -0
- sage/rings/padics/padic_generic_element.pyx +4642 -0
- sage/rings/padics/padic_lattice_element.py +1342 -0
- sage/rings/padics/padic_printing.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/padic_printing.pxd +38 -0
- sage/rings/padics/padic_printing.pyx +1505 -0
- sage/rings/padics/padic_relaxed_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/padic_relaxed_element.pxd +56 -0
- sage/rings/padics/padic_relaxed_element.pyx +18 -0
- sage/rings/padics/padic_relaxed_errors.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/padic_relaxed_errors.pxd +11 -0
- sage/rings/padics/padic_relaxed_errors.pyx +71 -0
- sage/rings/padics/padic_template_element.pxi +1212 -0
- sage/rings/padics/padic_template_element_header.pxi +50 -0
- sage/rings/padics/padic_valuation.py +1423 -0
- sage/rings/padics/pow_computer_flint.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/pow_computer_flint.pxd +38 -0
- sage/rings/padics/pow_computer_flint.pyx +641 -0
- sage/rings/padics/pow_computer_relative.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/pow_computer_relative.pxd +29 -0
- sage/rings/padics/pow_computer_relative.pyx +415 -0
- sage/rings/padics/qadic_flint_CA.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/qadic_flint_CA.pxd +21 -0
- sage/rings/padics/qadic_flint_CA.pyx +130 -0
- sage/rings/padics/qadic_flint_CR.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/qadic_flint_CR.pxd +13 -0
- sage/rings/padics/qadic_flint_CR.pyx +172 -0
- sage/rings/padics/qadic_flint_FM.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/qadic_flint_FM.pxd +14 -0
- sage/rings/padics/qadic_flint_FM.pyx +111 -0
- sage/rings/padics/qadic_flint_FP.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/qadic_flint_FP.pxd +12 -0
- sage/rings/padics/qadic_flint_FP.pyx +165 -0
- sage/rings/padics/relative_extension_leaves.py +429 -0
- sage/rings/padics/relative_ramified_CA.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/relative_ramified_CA.pxd +9 -0
- sage/rings/padics/relative_ramified_CA.pyx +33 -0
- sage/rings/padics/relative_ramified_CR.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/relative_ramified_CR.pxd +8 -0
- sage/rings/padics/relative_ramified_CR.pyx +33 -0
- sage/rings/padics/relative_ramified_FM.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/relative_ramified_FM.pxd +9 -0
- sage/rings/padics/relative_ramified_FM.pyx +33 -0
- sage/rings/padics/relative_ramified_FP.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/relative_ramified_FP.pxd +8 -0
- sage/rings/padics/relative_ramified_FP.pyx +33 -0
- sage/rings/padics/relaxed_template.pxi +4229 -0
- sage/rings/padics/relaxed_template_header.pxi +160 -0
- sage/rings/padics/tests.py +35 -0
- sage/rings/padics/tutorial.py +341 -0
- sage/rings/padics/unramified_extension_generic.py +335 -0
- sage/rings/padics/witt_vector.py +917 -0
- sage/rings/padics/witt_vector_ring.py +934 -0
- sage/rings/pari_ring.py +235 -0
- sage/rings/polynomial/all__sagemath_pari.py +1 -0
- sage/rings/polynomial/padics/all.py +1 -0
- sage/rings/polynomial/padics/polynomial_padic.py +360 -0
- sage/rings/polynomial/padics/polynomial_padic_capped_relative_dense.py +1324 -0
- sage/rings/polynomial/padics/polynomial_padic_flat.py +72 -0
- sage/rings/power_series_pari.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/power_series_pari.pxd +6 -0
- sage/rings/power_series_pari.pyx +934 -0
- sage/rings/tate_algebra.py +1282 -0
- sage/rings/tate_algebra_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/tate_algebra_element.pxd +49 -0
- sage/rings/tate_algebra_element.pyx +3464 -0
- sage/rings/tate_algebra_ideal.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/tate_algebra_ideal.pxd +7 -0
- sage/rings/tate_algebra_ideal.pyx +1307 -0
- sage/rings/valuation/all.py +7 -0
- sage/rings/valuation/augmented_valuation.py +2118 -0
- sage/rings/valuation/developing_valuation.py +362 -0
- sage/rings/valuation/gauss_valuation.py +812 -0
- sage/rings/valuation/inductive_valuation.py +1686 -0
- sage/rings/valuation/limit_valuation.py +946 -0
- sage/rings/valuation/mapped_valuation.py +656 -0
- sage/rings/valuation/scaled_valuation.py +322 -0
- sage/rings/valuation/trivial_valuation.py +382 -0
- sage/rings/valuation/valuation.py +1119 -0
- sage/rings/valuation/valuation_space.py +1615 -0
- sage/rings/valuation/valuations_catalog.py +10 -0
- sage/rings/valuation/value_group.py +697 -0
- sage/schemes/all__sagemath_pari.py +1 -0
- sage/schemes/elliptic_curves/all__sagemath_pari.py +1 -0
- sage/schemes/elliptic_curves/descent_two_isogeny_pari.cpython-314-x86_64-linux-musl.so +0 -0
- sage/schemes/elliptic_curves/descent_two_isogeny_pari.pyx +46 -0
- sage_wheels/bin/gp +0 -0
- sage_wheels/bin/gp2c +0 -0
- sage_wheels/bin/gp2c-run +57 -0
- sage_wheels/bin/xeus-gp +0 -0
- sage_wheels/share/gp2c/func.dsc +18414 -0
|
@@ -0,0 +1,421 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-pari
|
|
2
|
+
# sage.doctest: needs sage.libs.pari sage.modules
|
|
3
|
+
"""
|
|
4
|
+
Local Normal Form
|
|
5
|
+
"""
|
|
6
|
+
# ****************************************************************************
|
|
7
|
+
# Copyright (C) 2007 William Stein and Jonathan Hanke
|
|
8
|
+
#
|
|
9
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
10
|
+
#
|
|
11
|
+
# This code is distributed in the hope that it will be useful,
|
|
12
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
13
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
14
|
+
# General Public License for more details.
|
|
15
|
+
#
|
|
16
|
+
# The full text of the GPL is available at:
|
|
17
|
+
#
|
|
18
|
+
# https://www.gnu.org/licenses/
|
|
19
|
+
# ****************************************************************************
|
|
20
|
+
|
|
21
|
+
import copy
|
|
22
|
+
|
|
23
|
+
from sage.rings.infinity import Infinity
|
|
24
|
+
from sage.rings.integer_ring import ZZ
|
|
25
|
+
from sage.rings.rational_field import QQ
|
|
26
|
+
from sage.arith.misc import GCD, valuation, is_prime
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def find_entry_with_minimal_scale_at_prime(self, p):
|
|
30
|
+
r"""
|
|
31
|
+
Find the entry of the quadratic form with minimal scale at the
|
|
32
|
+
prime `p`, preferring diagonal entries in case of a tie.
|
|
33
|
+
|
|
34
|
+
(I.e. If
|
|
35
|
+
we write the quadratic form as a symmetric matrix `M`, then this
|
|
36
|
+
entry ``M[i,j]`` has the minimal valuation at the prime `p`.)
|
|
37
|
+
|
|
38
|
+
.. NOTE::
|
|
39
|
+
|
|
40
|
+
This answer is independent of the kind of matrix (Gram or
|
|
41
|
+
Hessian) associated to the form.
|
|
42
|
+
|
|
43
|
+
INPUT:
|
|
44
|
+
|
|
45
|
+
- ``p`` -- a prime number > 0
|
|
46
|
+
|
|
47
|
+
OUTPUT: a pair of integers `\geq 0`
|
|
48
|
+
|
|
49
|
+
EXAMPLES::
|
|
50
|
+
|
|
51
|
+
sage: Q = QuadraticForm(ZZ, 2, [6, 2, 20]); Q
|
|
52
|
+
Quadratic form in 2 variables over Integer Ring with coefficients:
|
|
53
|
+
[ 6 2 ]
|
|
54
|
+
[ * 20 ]
|
|
55
|
+
sage: Q.find_entry_with_minimal_scale_at_prime(2)
|
|
56
|
+
(0, 1)
|
|
57
|
+
sage: Q.find_entry_with_minimal_scale_at_prime(3)
|
|
58
|
+
(1, 1)
|
|
59
|
+
sage: Q.find_entry_with_minimal_scale_at_prime(5)
|
|
60
|
+
(0, 0)
|
|
61
|
+
"""
|
|
62
|
+
n = self.dim()
|
|
63
|
+
min_val = Infinity
|
|
64
|
+
ij_index = None
|
|
65
|
+
val_2 = valuation(2, p)
|
|
66
|
+
for d in range(n): # d = difference j-i
|
|
67
|
+
for e in range(n - d): # e is the length of the diagonal with value d.
|
|
68
|
+
|
|
69
|
+
# Compute the valuation of the entry
|
|
70
|
+
if d == 0:
|
|
71
|
+
tmp_val = valuation(self[e, e + d], p)
|
|
72
|
+
else:
|
|
73
|
+
tmp_val = valuation(self[e, e + d], p) - val_2
|
|
74
|
+
|
|
75
|
+
# Check if it's any smaller than what we have
|
|
76
|
+
if tmp_val < min_val:
|
|
77
|
+
ij_index = (e, e + d)
|
|
78
|
+
min_val = tmp_val
|
|
79
|
+
|
|
80
|
+
# Return the result
|
|
81
|
+
return ij_index
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
def local_normal_form(self, p):
|
|
85
|
+
r"""
|
|
86
|
+
Return a locally integrally equivalent quadratic form over
|
|
87
|
+
the `p`-adic integers `\ZZ_p` which gives the Jordan decomposition.
|
|
88
|
+
|
|
89
|
+
The Jordan components are written as sums of blocks of size `\leq 2`
|
|
90
|
+
and are arranged by increasing scale, and then by increasing norm.
|
|
91
|
+
This is equivalent to saying that we put the `1 \times 1` blocks before
|
|
92
|
+
the `2 \times 2` blocks in each Jordan component.
|
|
93
|
+
|
|
94
|
+
INPUT:
|
|
95
|
+
|
|
96
|
+
- ``p`` -- a positive prime number
|
|
97
|
+
|
|
98
|
+
OUTPUT: a quadratic form over `\ZZ`
|
|
99
|
+
|
|
100
|
+
.. WARNING::
|
|
101
|
+
|
|
102
|
+
Currently this only works for quadratic forms defined over `\ZZ`.
|
|
103
|
+
|
|
104
|
+
EXAMPLES::
|
|
105
|
+
|
|
106
|
+
sage: Q = QuadraticForm(ZZ, 2, [10,4,1])
|
|
107
|
+
sage: Q.local_normal_form(5)
|
|
108
|
+
Quadratic form in 2 variables over Integer Ring with coefficients:
|
|
109
|
+
[ 1 0 ]
|
|
110
|
+
[ * 6 ]
|
|
111
|
+
|
|
112
|
+
::
|
|
113
|
+
|
|
114
|
+
sage: Q.local_normal_form(3)
|
|
115
|
+
Quadratic form in 2 variables over Integer Ring with coefficients:
|
|
116
|
+
[ 10 0 ]
|
|
117
|
+
[ * 15 ]
|
|
118
|
+
|
|
119
|
+
sage: Q.local_normal_form(2)
|
|
120
|
+
Quadratic form in 2 variables over Integer Ring with coefficients:
|
|
121
|
+
[ 1 0 ]
|
|
122
|
+
[ * 6 ]
|
|
123
|
+
"""
|
|
124
|
+
# Sanity Checks
|
|
125
|
+
if self.base_ring() != ZZ:
|
|
126
|
+
raise NotImplementedError("this currently only works for quadratic forms defined over ZZ")
|
|
127
|
+
if not (p >= 2 and is_prime(p)):
|
|
128
|
+
raise TypeError("p is not a positive prime number")
|
|
129
|
+
|
|
130
|
+
# Some useful local variables
|
|
131
|
+
Q = self.parent()(self.base_ring(), self.dim(), self.coefficients())
|
|
132
|
+
|
|
133
|
+
# Prepare the final form to return
|
|
134
|
+
Q_Jordan = copy.deepcopy(self)
|
|
135
|
+
Q_Jordan.__init__(self.base_ring(), 0)
|
|
136
|
+
|
|
137
|
+
while Q.dim() > 0:
|
|
138
|
+
n = Q.dim()
|
|
139
|
+
|
|
140
|
+
# Step 1: Find the minimally p-divisible matrix entry, preferring diagonals
|
|
141
|
+
# -------------------------------------------------------------------------
|
|
142
|
+
(min_i, min_j) = Q.find_entry_with_minimal_scale_at_prime(p)
|
|
143
|
+
if min_i == min_j:
|
|
144
|
+
min_val = valuation(2 * Q[min_i, min_j], p)
|
|
145
|
+
else:
|
|
146
|
+
min_val = valuation(Q[min_i, min_j], p)
|
|
147
|
+
|
|
148
|
+
# Error if we still haven't seen nonzero coefficients!
|
|
149
|
+
if min_val == Infinity:
|
|
150
|
+
raise RuntimeError("the original matrix is degenerate")
|
|
151
|
+
|
|
152
|
+
# Step 2: Arrange for the upper leftmost entry to have minimal valuation
|
|
153
|
+
# ----------------------------------------------------------------------
|
|
154
|
+
if min_i == min_j:
|
|
155
|
+
block_size = 1
|
|
156
|
+
Q.swap_variables(0, min_i, in_place=True)
|
|
157
|
+
else:
|
|
158
|
+
# Work in the upper-left 2x2 block, and replace it by its 2-adic equivalent form
|
|
159
|
+
Q.swap_variables(0, min_i, in_place=True)
|
|
160
|
+
Q.swap_variables(1, min_j, in_place=True)
|
|
161
|
+
|
|
162
|
+
# 1x1 => make upper left the smallest
|
|
163
|
+
if p != 2:
|
|
164
|
+
block_size = 1
|
|
165
|
+
Q.add_symmetric(1, 0, 1, in_place=True)
|
|
166
|
+
# 2x2 => replace it with the appropriate 2x2 matrix
|
|
167
|
+
else:
|
|
168
|
+
block_size = 2
|
|
169
|
+
|
|
170
|
+
# Step 3: Clear out the remaining entries
|
|
171
|
+
# ---------------------------------------
|
|
172
|
+
min_scale = p ** min_val # This is the minimal valuation of the Hessian matrix entries.
|
|
173
|
+
|
|
174
|
+
# Perform cancellation over Z by ensuring divisibility
|
|
175
|
+
if block_size == 1:
|
|
176
|
+
a = 2 * Q[0, 0]
|
|
177
|
+
for j in range(block_size, n):
|
|
178
|
+
b = Q[0, j]
|
|
179
|
+
g = GCD(a, b)
|
|
180
|
+
|
|
181
|
+
# Sanity Check: a/g is a p-unit
|
|
182
|
+
if valuation(g, p) != valuation(a, p):
|
|
183
|
+
raise RuntimeError("we have a problem with our rescaling not preserving p-integrality")
|
|
184
|
+
|
|
185
|
+
Q.multiply_variable(ZZ(a / g), j, in_place=True) # Ensures that the new b entry is divisible by a
|
|
186
|
+
Q.add_symmetric(ZZ(-b / g), j, 0, in_place=True) # Performs the cancellation
|
|
187
|
+
|
|
188
|
+
elif block_size == 2:
|
|
189
|
+
a1 = 2 * Q[0, 0]
|
|
190
|
+
a2 = Q[0, 1]
|
|
191
|
+
b1 = Q[1, 0] # This is the same as a2
|
|
192
|
+
b2 = 2 * Q[1, 1]
|
|
193
|
+
|
|
194
|
+
big_det = a1 * b2 - a2 * b1
|
|
195
|
+
small_det = big_det / (min_scale * min_scale)
|
|
196
|
+
|
|
197
|
+
# Cancels out the rows/columns of the 2x2 block
|
|
198
|
+
for j in range(block_size, n):
|
|
199
|
+
a = Q[0, j]
|
|
200
|
+
b = Q[1, j]
|
|
201
|
+
|
|
202
|
+
# Ensures an integral result (scale jth row/column by big_det)
|
|
203
|
+
Q.multiply_variable(big_det, j, in_place=True)
|
|
204
|
+
|
|
205
|
+
# Performs the cancellation (by producing -big_det * jth row/column)
|
|
206
|
+
Q.add_symmetric(ZZ(-(a * b2 - b * a2)), j, 0, in_place=True)
|
|
207
|
+
Q.add_symmetric(ZZ(-(-a * b1 + b * a1)), j, 1, in_place=True)
|
|
208
|
+
|
|
209
|
+
# Now remove the extra factor (non p-unit factor) in big_det we introduced above
|
|
210
|
+
Q.divide_variable(ZZ(min_scale * min_scale), j, in_place=True)
|
|
211
|
+
|
|
212
|
+
# Uses Cassels's proof to replace the remaining 2 x 2 block
|
|
213
|
+
if (1 + small_det) % 8 == 0:
|
|
214
|
+
Q[0, 0] = 0
|
|
215
|
+
Q[1, 1] = 0
|
|
216
|
+
Q[0, 1] = min_scale
|
|
217
|
+
elif (5 + small_det) % 8 == 0:
|
|
218
|
+
Q[0, 0] = min_scale
|
|
219
|
+
Q[1, 1] = min_scale
|
|
220
|
+
Q[0, 1] = min_scale
|
|
221
|
+
else:
|
|
222
|
+
raise RuntimeError("Error in LocalNormal: Impossible behavior for a 2x2 block! \n")
|
|
223
|
+
|
|
224
|
+
# Check that the cancellation worked, extract the upper-left block, and trim Q to handle the next block.
|
|
225
|
+
for i in range(block_size):
|
|
226
|
+
for j in range(block_size, n):
|
|
227
|
+
if Q[i, j] != 0:
|
|
228
|
+
raise RuntimeError(f"the cancellation did not work properly at entry ({i},{j})")
|
|
229
|
+
Q_Jordan = Q_Jordan + Q.extract_variables(range(block_size))
|
|
230
|
+
Q = Q.extract_variables(range(block_size, n))
|
|
231
|
+
|
|
232
|
+
return Q_Jordan
|
|
233
|
+
|
|
234
|
+
|
|
235
|
+
def jordan_blocks_by_scale_and_unimodular(self, p, safe_flag=True):
|
|
236
|
+
r"""
|
|
237
|
+
Return a list of pairs `(s_i, L_i)` where `L_i` is a maximal
|
|
238
|
+
`p^{s_i}`-unimodular Jordan component which is further decomposed into
|
|
239
|
+
block diagonals of block size `\le 2`.
|
|
240
|
+
|
|
241
|
+
For each `L_i` the `2 \times 2` blocks are listed after the `1 \times 1` blocks
|
|
242
|
+
(which follows from the convention of the
|
|
243
|
+
:meth:`local_normal_form` method).
|
|
244
|
+
|
|
245
|
+
.. NOTE::
|
|
246
|
+
|
|
247
|
+
The decomposition of each `L_i` into smaller blocks is not unique!
|
|
248
|
+
|
|
249
|
+
The ``safe_flag`` argument allows us to select whether we want a copy of
|
|
250
|
+
the output, or the original output. By default ``safe_flag = True``, so we
|
|
251
|
+
return a copy of the cached information. If this is set to ``False``, then
|
|
252
|
+
the routine is much faster but the return values are vulnerable to being
|
|
253
|
+
corrupted by the user.
|
|
254
|
+
|
|
255
|
+
INPUT:
|
|
256
|
+
|
|
257
|
+
- ``p`` -- a prime number > 0
|
|
258
|
+
|
|
259
|
+
OUTPUT:
|
|
260
|
+
|
|
261
|
+
A list of pairs `(s_i, L_i)` where:
|
|
262
|
+
|
|
263
|
+
- `s_i` is an integer,
|
|
264
|
+
- `L_i` is a block-diagonal unimodular quadratic form over `\ZZ_p`.
|
|
265
|
+
|
|
266
|
+
.. NOTE::
|
|
267
|
+
|
|
268
|
+
These forms `L_i` are defined over the `p`-adic integers, but by a
|
|
269
|
+
matrix over `\ZZ` (or `\QQ`?).
|
|
270
|
+
|
|
271
|
+
EXAMPLES::
|
|
272
|
+
|
|
273
|
+
sage: Q = DiagonalQuadraticForm(ZZ, [1,9,5,7])
|
|
274
|
+
sage: Q.jordan_blocks_by_scale_and_unimodular(3)
|
|
275
|
+
[(0, Quadratic form in 3 variables over Integer Ring with coefficients:
|
|
276
|
+
[ 1 0 0 ]
|
|
277
|
+
[ * 5 0 ]
|
|
278
|
+
[ * * 7 ]),
|
|
279
|
+
(2, Quadratic form in 1 variables over Integer Ring with coefficients:
|
|
280
|
+
[ 1 ])]
|
|
281
|
+
|
|
282
|
+
::
|
|
283
|
+
|
|
284
|
+
sage: Q2 = QuadraticForm(ZZ, 2, [1,1,1])
|
|
285
|
+
sage: Q2.jordan_blocks_by_scale_and_unimodular(2)
|
|
286
|
+
[(-1, Quadratic form in 2 variables over Integer Ring with coefficients:
|
|
287
|
+
[ 2 2 ]
|
|
288
|
+
[ * 2 ])]
|
|
289
|
+
sage: Q = Q2 + Q2.scale_by_factor(2)
|
|
290
|
+
sage: Q.jordan_blocks_by_scale_and_unimodular(2)
|
|
291
|
+
[(-1, Quadratic form in 2 variables over Integer Ring with coefficients:
|
|
292
|
+
[ 2 2 ]
|
|
293
|
+
[ * 2 ]),
|
|
294
|
+
(0, Quadratic form in 2 variables over Integer Ring with coefficients:
|
|
295
|
+
[ 2 2 ]
|
|
296
|
+
[ * 2 ])]
|
|
297
|
+
"""
|
|
298
|
+
# Try to use the cached result
|
|
299
|
+
try:
|
|
300
|
+
if safe_flag:
|
|
301
|
+
return copy.deepcopy(self.__jordan_blocks_by_scale_and_unimodular_dict[p])
|
|
302
|
+
else:
|
|
303
|
+
return self.__jordan_blocks_by_scale_and_unimodular_dict[p]
|
|
304
|
+
except (KeyError, AttributeError):
|
|
305
|
+
# Initialize the global dictionary if it doesn't exist
|
|
306
|
+
if not hasattr(self, '__jordan_blocks_by_scale_and_unimodular_dict'):
|
|
307
|
+
self.__jordan_blocks_by_scale_and_unimodular_dict = {}
|
|
308
|
+
|
|
309
|
+
# Deal with zero dim'l forms
|
|
310
|
+
if self.dim() == 0:
|
|
311
|
+
return []
|
|
312
|
+
|
|
313
|
+
# Find the Local Normal form of Q at p
|
|
314
|
+
Q1 = self.local_normal_form(p)
|
|
315
|
+
|
|
316
|
+
# Parse this into Jordan Blocks
|
|
317
|
+
n = Q1.dim()
|
|
318
|
+
tmp_Jordan_list = []
|
|
319
|
+
i = 0
|
|
320
|
+
start_ind = 0
|
|
321
|
+
if n >= 2 and Q1[0, 1] != 0:
|
|
322
|
+
start_scale = valuation(Q1[0, 1], p) - 1
|
|
323
|
+
else:
|
|
324
|
+
start_scale = valuation(Q1[0, 0], p)
|
|
325
|
+
|
|
326
|
+
while i < n:
|
|
327
|
+
|
|
328
|
+
# Determine the size of the current block
|
|
329
|
+
if i == n - 1 or Q1[i, i + 1] == 0:
|
|
330
|
+
block_size = 1
|
|
331
|
+
else:
|
|
332
|
+
block_size = 2
|
|
333
|
+
|
|
334
|
+
# Determine the valuation of the current block
|
|
335
|
+
if block_size == 1:
|
|
336
|
+
block_scale = valuation(Q1[i, i], p)
|
|
337
|
+
else:
|
|
338
|
+
block_scale = valuation(Q1[i, i + 1], p) - 1
|
|
339
|
+
|
|
340
|
+
# Process the previous block if the valuation increased
|
|
341
|
+
if block_scale > start_scale:
|
|
342
|
+
tmp_Jordan_list += [(start_scale, Q1.extract_variables(range(start_ind, i)).scale_by_factor(ZZ.one() / QQ(p)**start_scale))]
|
|
343
|
+
start_ind = i
|
|
344
|
+
start_scale = block_scale
|
|
345
|
+
|
|
346
|
+
# Increment the index
|
|
347
|
+
i += block_size
|
|
348
|
+
|
|
349
|
+
# Add the last block
|
|
350
|
+
tmp_Jordan_list += [(start_scale, Q1.extract_variables(range(start_ind, n)).scale_by_factor(ZZ.one() / QQ(p)**start_scale))]
|
|
351
|
+
|
|
352
|
+
# Cache the result
|
|
353
|
+
self.__jordan_blocks_by_scale_and_unimodular_dict[p] = tmp_Jordan_list
|
|
354
|
+
|
|
355
|
+
# Return the result
|
|
356
|
+
return tmp_Jordan_list
|
|
357
|
+
|
|
358
|
+
|
|
359
|
+
def jordan_blocks_in_unimodular_list_by_scale_power(self, p):
|
|
360
|
+
r"""
|
|
361
|
+
Return a list of Jordan components, whose component at index `i`
|
|
362
|
+
should be scaled by the factor `p^i`.
|
|
363
|
+
|
|
364
|
+
This is only defined for integer-valued quadratic forms
|
|
365
|
+
(i.e., forms with base ring `\ZZ`), and the indexing only works
|
|
366
|
+
correctly for `p=2` when the form has an integer Gram matrix.
|
|
367
|
+
|
|
368
|
+
INPUT:
|
|
369
|
+
|
|
370
|
+
- ``self`` -- a quadratic form over `\ZZ`, which has integer Gram matrix if `p = 2`
|
|
371
|
+
- ``p`` -- a prime number > 0
|
|
372
|
+
|
|
373
|
+
OUTPUT: list of `p`-unimodular quadratic forms
|
|
374
|
+
|
|
375
|
+
EXAMPLES::
|
|
376
|
+
|
|
377
|
+
sage: Q = QuadraticForm(ZZ, 3, [2, -2, 0, 3, -5, 4])
|
|
378
|
+
sage: Q.jordan_blocks_in_unimodular_list_by_scale_power(2)
|
|
379
|
+
Traceback (most recent call last):
|
|
380
|
+
...
|
|
381
|
+
TypeError: the given quadratic form has a Jordan component with a negative scale exponent
|
|
382
|
+
|
|
383
|
+
sage: Q.scale_by_factor(2).jordan_blocks_in_unimodular_list_by_scale_power(2)
|
|
384
|
+
[Quadratic form in 2 variables over Integer Ring with coefficients:
|
|
385
|
+
[ 0 2 ]
|
|
386
|
+
[ * 0 ],
|
|
387
|
+
Quadratic form in 0 variables over Integer Ring with coefficients:
|
|
388
|
+
,
|
|
389
|
+
Quadratic form in 1 variables over Integer Ring with coefficients:
|
|
390
|
+
[ 345 ]]
|
|
391
|
+
|
|
392
|
+
sage: Q.jordan_blocks_in_unimodular_list_by_scale_power(3)
|
|
393
|
+
[Quadratic form in 2 variables over Integer Ring with coefficients:
|
|
394
|
+
[ 2 0 ]
|
|
395
|
+
[ * 10 ],
|
|
396
|
+
Quadratic form in 1 variables over Integer Ring with coefficients:
|
|
397
|
+
[ 2 ]]
|
|
398
|
+
"""
|
|
399
|
+
# Sanity Check
|
|
400
|
+
if self.base_ring() != ZZ:
|
|
401
|
+
raise TypeError("this method only makes sense for integer-valued quadratic forms (i.e. defined over ZZ)")
|
|
402
|
+
|
|
403
|
+
# Deal with zero dim'l forms
|
|
404
|
+
if self.dim() == 0:
|
|
405
|
+
return []
|
|
406
|
+
|
|
407
|
+
# Find the Jordan Decomposition
|
|
408
|
+
list_of_jordan_pairs = self.jordan_blocks_by_scale_and_unimodular(p)
|
|
409
|
+
scale_list = [P[0] for P in list_of_jordan_pairs]
|
|
410
|
+
s_max = max(scale_list)
|
|
411
|
+
if min(scale_list) < 0:
|
|
412
|
+
raise TypeError("the given quadratic form has a Jordan component with a negative scale exponent")
|
|
413
|
+
|
|
414
|
+
# Make the new list of unimodular Jordan components
|
|
415
|
+
zero_form = self.parent()(ZZ, 0)
|
|
416
|
+
list_by_scale = [zero_form for _ in range(s_max + 1)]
|
|
417
|
+
for P in list_of_jordan_pairs:
|
|
418
|
+
list_by_scale[P[0]] = P[1]
|
|
419
|
+
|
|
420
|
+
# Return the new list
|
|
421
|
+
return list_by_scale
|