passagemath-pari 10.6.32__cp314-cp314-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-pari might be problematic. Click here for more details.
- PARIKernel/__init__.py +2 -0
- PARIKernel/__main__.py +5 -0
- PARIKernel/io.cpython-314-x86_64-linux-musl.so +0 -0
- PARIKernel/io.pxd +7 -0
- PARIKernel/io.pyx +84 -0
- PARIKernel/kernel.cpython-314-x86_64-linux-musl.so +0 -0
- PARIKernel/kernel.pyx +260 -0
- PARIKernel/paridecl.pxd +95 -0
- PARIKernel/svg.cpython-314-x86_64-linux-musl.so +0 -0
- PARIKernel/svg.pyx +52 -0
- cypari2/__init__.py +8 -0
- cypari2/auto_paridecl.pxd +1070 -0
- cypari2/closure.cpython-314-x86_64-linux-musl.so +0 -0
- cypari2/closure.pxd +5 -0
- cypari2/closure.pyx +246 -0
- cypari2/convert.cpython-314-x86_64-linux-musl.so +0 -0
- cypari2/convert.pxd +80 -0
- cypari2/convert.pyx +613 -0
- cypari2/custom_block.cpython-314-x86_64-linux-musl.so +0 -0
- cypari2/custom_block.pyx +30 -0
- cypari2/cypari.h +13 -0
- cypari2/gen.cpython-314-x86_64-linux-musl.so +0 -0
- cypari2/gen.pxd +69 -0
- cypari2/gen.pyx +4819 -0
- cypari2/handle_error.cpython-314-x86_64-linux-musl.so +0 -0
- cypari2/handle_error.pxd +7 -0
- cypari2/handle_error.pyx +232 -0
- cypari2/pari_instance.cpython-314-x86_64-linux-musl.so +0 -0
- cypari2/pari_instance.pxd +27 -0
- cypari2/pari_instance.pyx +1438 -0
- cypari2/paridecl.pxd +5353 -0
- cypari2/paripriv.pxd +34 -0
- cypari2/pycore_long.h +98 -0
- cypari2/pycore_long.pxd +9 -0
- cypari2/stack.cpython-314-x86_64-linux-musl.so +0 -0
- cypari2/stack.pxd +27 -0
- cypari2/stack.pyx +278 -0
- cypari2/string_utils.cpython-314-x86_64-linux-musl.so +0 -0
- cypari2/string_utils.pxd +29 -0
- cypari2/string_utils.pyx +65 -0
- cypari2/types.pxd +147 -0
- passagemath_pari-10.6.32.data/data/etc/jupyter/nbconfig/notebook.d/gp-mode.json +5 -0
- passagemath_pari-10.6.32.data/data/share/jupyter/kernels/pari_jupyter/kernel.js +28 -0
- passagemath_pari-10.6.32.data/data/share/jupyter/kernels/pari_jupyter/kernel.json +6 -0
- passagemath_pari-10.6.32.data/data/share/jupyter/kernels/pari_jupyter/logo-64x64.png +0 -0
- passagemath_pari-10.6.32.data/data/share/jupyter/kernels/xeus-gp/kernel.json +13 -0
- passagemath_pari-10.6.32.data/data/share/jupyter/kernels/xeus-gp/logo-32x32.png +0 -0
- passagemath_pari-10.6.32.data/data/share/jupyter/kernels/xeus-gp/logo-64x64.png +0 -0
- passagemath_pari-10.6.32.data/data/share/jupyter/kernels/xeus-gp/logo-svg.svg +75 -0
- passagemath_pari-10.6.32.data/data/share/jupyter/nbextensions/gp-mode/gp.js +284 -0
- passagemath_pari-10.6.32.data/data/share/jupyter/nbextensions/gp-mode/main.js +15 -0
- passagemath_pari-10.6.32.dist-info/METADATA +209 -0
- passagemath_pari-10.6.32.dist-info/RECORD +331 -0
- passagemath_pari-10.6.32.dist-info/WHEEL +5 -0
- passagemath_pari-10.6.32.dist-info/top_level.txt +4 -0
- passagemath_pari.libs/libcrypto-f04afe95.so.3 +0 -0
- passagemath_pari.libs/libflint-fd6f12fc.so.21.0.0 +0 -0
- passagemath_pari.libs/libgcc_s-0cd532bd.so.1 +0 -0
- passagemath_pari.libs/libgf2x-9e30c3e3.so.3.0.0 +0 -0
- passagemath_pari.libs/libgfortran-2c33b284.so.5.0.0 +0 -0
- passagemath_pari.libs/libgivaro-9a94c711.so.9.2.1 +0 -0
- passagemath_pari.libs/libgmp-0e7fc84e.so.10.5.0 +0 -0
- passagemath_pari.libs/libgmpxx-9e08595c.so.4.7.0 +0 -0
- passagemath_pari.libs/libgsl-42cda06f.so.28.0.0 +0 -0
- passagemath_pari.libs/libmpfr-aaecbfc0.so.6.2.1 +0 -0
- passagemath_pari.libs/libncursesw-9c9e32c3.so.6.5 +0 -0
- passagemath_pari.libs/libntl-26885ca2.so.44.0.1 +0 -0
- passagemath_pari.libs/libopenblasp-r0-905cb27d.3.29.so +0 -0
- passagemath_pari.libs/libpari-gmp-tls-f31f908f.so.2.17.2 +0 -0
- passagemath_pari.libs/libquadmath-bb76a5fc.so.0.0.0 +0 -0
- passagemath_pari.libs/libreadline-06542304.so.8.2 +0 -0
- passagemath_pari.libs/libstdc++-5d72f927.so.6.0.33 +0 -0
- passagemath_pari.libs/libuuid-f3770415.so.1.3.0 +0 -0
- passagemath_pari.libs/libxeus-735780ff.so.13.1.0 +0 -0
- passagemath_pari.libs/libxeus-zmq-c68577b4.so.6.0.1 +0 -0
- passagemath_pari.libs/libzmq-1ba9a3da.so.5.2.5 +0 -0
- sage/all__sagemath_pari.py +26 -0
- sage/databases/all__sagemath_pari.py +7 -0
- sage/databases/conway.py +274 -0
- sage/ext/all__sagemath_pari.py +1 -0
- sage/ext/memory.cpython-314-x86_64-linux-musl.so +0 -0
- sage/ext/memory.pyx +98 -0
- sage/ext_data/pari/buzzard/DimensionSk.g +286 -0
- sage/ext_data/pari/buzzard/Tpprog.g +179 -0
- sage/ext_data/pari/buzzard/genusn.g +129 -0
- sage/ext_data/pari/dokchitser/computel.gp +740 -0
- sage/ext_data/pari/dokchitser/computel.gp.template +740 -0
- sage/ext_data/pari/dokchitser/ex-bsw +43 -0
- sage/ext_data/pari/dokchitser/ex-chgen +48 -0
- sage/ext_data/pari/dokchitser/ex-chqua +37 -0
- sage/ext_data/pari/dokchitser/ex-delta +35 -0
- sage/ext_data/pari/dokchitser/ex-eisen +30 -0
- sage/ext_data/pari/dokchitser/ex-gen2 +38 -0
- sage/ext_data/pari/dokchitser/ex-gen3 +49 -0
- sage/ext_data/pari/dokchitser/ex-gen4 +54 -0
- sage/ext_data/pari/dokchitser/ex-nf +48 -0
- sage/ext_data/pari/dokchitser/ex-shin +50 -0
- sage/ext_data/pari/dokchitser/ex-tau2 +30 -0
- sage/ext_data/pari/dokchitser/ex-zeta +27 -0
- sage/ext_data/pari/dokchitser/ex-zeta2 +47 -0
- sage/ext_data/pari/dokchitser/testall +13 -0
- sage/ext_data/pari/simon/ell.gp +2129 -0
- sage/ext_data/pari/simon/ellQ.gp +2151 -0
- sage/ext_data/pari/simon/ellcommon.gp +126 -0
- sage/ext_data/pari/simon/qfsolve.gp +722 -0
- sage/ext_data/pari/simon/resultant3.gp +306 -0
- sage/groups/all__sagemath_pari.py +3 -0
- sage/groups/pari_group.py +175 -0
- sage/interfaces/all__sagemath_pari.py +1 -0
- sage/interfaces/genus2reduction.py +464 -0
- sage/interfaces/gp.py +1114 -0
- sage/libs/all__sagemath_pari.py +2 -0
- sage/libs/linkages/__init__.py +1 -0
- sage/libs/linkages/padics/API.pxi +617 -0
- sage/libs/linkages/padics/Polynomial_ram.pxi +388 -0
- sage/libs/linkages/padics/Polynomial_shared.pxi +554 -0
- sage/libs/linkages/padics/__init__.py +1 -0
- sage/libs/linkages/padics/fmpz_poly_unram.pxi +869 -0
- sage/libs/linkages/padics/mpz.pxi +691 -0
- sage/libs/linkages/padics/relaxed/API.pxi +518 -0
- sage/libs/linkages/padics/relaxed/__init__.py +1 -0
- sage/libs/linkages/padics/relaxed/flint.pxi +543 -0
- sage/libs/linkages/padics/unram_shared.pxi +247 -0
- sage/libs/pari/__init__.py +210 -0
- sage/libs/pari/all.py +5 -0
- sage/libs/pari/convert_flint.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/pari/convert_flint.pxd +14 -0
- sage/libs/pari/convert_flint.pyx +159 -0
- sage/libs/pari/convert_gmp.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/pari/convert_gmp.pxd +14 -0
- sage/libs/pari/convert_gmp.pyx +210 -0
- sage/libs/pari/convert_sage.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/pari/convert_sage.pxd +16 -0
- sage/libs/pari/convert_sage.pyx +588 -0
- sage/libs/pari/convert_sage_complex_double.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/pari/convert_sage_complex_double.pxd +14 -0
- sage/libs/pari/convert_sage_complex_double.pyx +132 -0
- sage/libs/pari/convert_sage_matrix.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/pari/convert_sage_matrix.pyx +106 -0
- sage/libs/pari/convert_sage_real_double.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/pari/convert_sage_real_double.pxd +5 -0
- sage/libs/pari/convert_sage_real_double.pyx +14 -0
- sage/libs/pari/convert_sage_real_mpfr.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/pari/convert_sage_real_mpfr.pxd +7 -0
- sage/libs/pari/convert_sage_real_mpfr.pyx +108 -0
- sage/libs/pari/misc.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/pari/misc.pxd +4 -0
- sage/libs/pari/misc.pyx +26 -0
- sage/libs/pari/tests.py +1848 -0
- sage/matrix/all__sagemath_pari.py +1 -0
- sage/matrix/matrix_integer_pari.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_integer_pari.pyx +187 -0
- sage/matrix/matrix_rational_pari.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_rational_pari.pyx +160 -0
- sage/quadratic_forms/all__sagemath_pari.py +10 -0
- sage/quadratic_forms/genera/all.py +9 -0
- sage/quadratic_forms/genera/genus.py +3506 -0
- sage/quadratic_forms/genera/normal_form.py +1519 -0
- sage/quadratic_forms/genera/spinor_genus.py +243 -0
- sage/quadratic_forms/qfsolve.py +255 -0
- sage/quadratic_forms/quadratic_form__automorphisms.py +427 -0
- sage/quadratic_forms/quadratic_form__genus.py +141 -0
- sage/quadratic_forms/quadratic_form__local_density_interfaces.py +140 -0
- sage/quadratic_forms/quadratic_form__local_normal_form.py +421 -0
- sage/quadratic_forms/quadratic_form__local_representation_conditions.py +889 -0
- sage/quadratic_forms/quadratic_form__mass.py +69 -0
- sage/quadratic_forms/quadratic_form__mass__Conway_Sloane_masses.py +663 -0
- sage/quadratic_forms/quadratic_form__mass__Siegel_densities.py +373 -0
- sage/quadratic_forms/quadratic_form__siegel_product.py +198 -0
- sage/quadratic_forms/special_values.py +323 -0
- sage/rings/all__sagemath_pari.py +15 -0
- sage/rings/factorint_pari.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/factorint_pari.pyx +80 -0
- sage/rings/finite_rings/all__sagemath_pari.py +1 -0
- sage/rings/finite_rings/element_givaro.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/finite_rings/element_givaro.pxd +91 -0
- sage/rings/finite_rings/element_givaro.pyx +1769 -0
- sage/rings/finite_rings/element_ntl_gf2e.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/finite_rings/element_ntl_gf2e.pxd +22 -0
- sage/rings/finite_rings/element_ntl_gf2e.pyx +1333 -0
- sage/rings/finite_rings/element_pari_ffelt.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/finite_rings/element_pari_ffelt.pxd +13 -0
- sage/rings/finite_rings/element_pari_ffelt.pyx +1441 -0
- sage/rings/finite_rings/finite_field_givaro.py +612 -0
- sage/rings/finite_rings/finite_field_pari_ffelt.py +238 -0
- sage/rings/finite_rings/hom_finite_field_givaro.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/finite_rings/hom_finite_field_givaro.pxd +28 -0
- sage/rings/finite_rings/hom_finite_field_givaro.pyx +280 -0
- sage/rings/finite_rings/residue_field_givaro.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/finite_rings/residue_field_givaro.pyx +133 -0
- sage/rings/finite_rings/residue_field_pari_ffelt.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/finite_rings/residue_field_pari_ffelt.pyx +128 -0
- sage/rings/function_field/all__sagemath_pari.py +1 -0
- sage/rings/function_field/valuation.py +1450 -0
- sage/rings/function_field/valuation_ring.py +212 -0
- sage/rings/number_field/all__sagemath_pari.py +14 -0
- sage/rings/number_field/totallyreal.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/number_field/totallyreal.pyx +509 -0
- sage/rings/number_field/totallyreal_data.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/number_field/totallyreal_data.pxd +26 -0
- sage/rings/number_field/totallyreal_data.pyx +928 -0
- sage/rings/number_field/totallyreal_phc.py +144 -0
- sage/rings/number_field/totallyreal_rel.py +1018 -0
- sage/rings/padics/CA_template.pxi +1847 -0
- sage/rings/padics/CA_template_header.pxi +50 -0
- sage/rings/padics/CR_template.pxi +2563 -0
- sage/rings/padics/CR_template_header.pxi +57 -0
- sage/rings/padics/FM_template.pxi +1575 -0
- sage/rings/padics/FM_template_header.pxi +50 -0
- sage/rings/padics/FP_template.pxi +2176 -0
- sage/rings/padics/FP_template_header.pxi +57 -0
- sage/rings/padics/all.py +3 -0
- sage/rings/padics/all__sagemath_pari.py +11 -0
- sage/rings/padics/common_conversion.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/common_conversion.pxd +15 -0
- sage/rings/padics/common_conversion.pyx +508 -0
- sage/rings/padics/eisenstein_extension_generic.py +232 -0
- sage/rings/padics/factory.py +3623 -0
- sage/rings/padics/generic_nodes.py +1615 -0
- sage/rings/padics/lattice_precision.py +2889 -0
- sage/rings/padics/morphism.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/morphism.pxd +11 -0
- sage/rings/padics/morphism.pyx +366 -0
- sage/rings/padics/padic_base_generic.py +467 -0
- sage/rings/padics/padic_base_leaves.py +1235 -0
- sage/rings/padics/padic_capped_absolute_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/padic_capped_absolute_element.pxd +15 -0
- sage/rings/padics/padic_capped_absolute_element.pyx +520 -0
- sage/rings/padics/padic_capped_relative_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/padic_capped_relative_element.pxd +14 -0
- sage/rings/padics/padic_capped_relative_element.pyx +614 -0
- sage/rings/padics/padic_extension_generic.py +990 -0
- sage/rings/padics/padic_extension_leaves.py +738 -0
- sage/rings/padics/padic_fixed_mod_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/padic_fixed_mod_element.pxd +15 -0
- sage/rings/padics/padic_fixed_mod_element.pyx +584 -0
- sage/rings/padics/padic_floating_point_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/padic_floating_point_element.pxd +14 -0
- sage/rings/padics/padic_floating_point_element.pyx +447 -0
- sage/rings/padics/padic_generic_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/padic_generic_element.pxd +48 -0
- sage/rings/padics/padic_generic_element.pyx +4642 -0
- sage/rings/padics/padic_lattice_element.py +1342 -0
- sage/rings/padics/padic_printing.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/padic_printing.pxd +38 -0
- sage/rings/padics/padic_printing.pyx +1505 -0
- sage/rings/padics/padic_relaxed_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/padic_relaxed_element.pxd +56 -0
- sage/rings/padics/padic_relaxed_element.pyx +18 -0
- sage/rings/padics/padic_relaxed_errors.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/padic_relaxed_errors.pxd +11 -0
- sage/rings/padics/padic_relaxed_errors.pyx +71 -0
- sage/rings/padics/padic_template_element.pxi +1212 -0
- sage/rings/padics/padic_template_element_header.pxi +50 -0
- sage/rings/padics/padic_valuation.py +1423 -0
- sage/rings/padics/pow_computer_flint.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/pow_computer_flint.pxd +38 -0
- sage/rings/padics/pow_computer_flint.pyx +641 -0
- sage/rings/padics/pow_computer_relative.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/pow_computer_relative.pxd +29 -0
- sage/rings/padics/pow_computer_relative.pyx +415 -0
- sage/rings/padics/qadic_flint_CA.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/qadic_flint_CA.pxd +21 -0
- sage/rings/padics/qadic_flint_CA.pyx +130 -0
- sage/rings/padics/qadic_flint_CR.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/qadic_flint_CR.pxd +13 -0
- sage/rings/padics/qadic_flint_CR.pyx +172 -0
- sage/rings/padics/qadic_flint_FM.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/qadic_flint_FM.pxd +14 -0
- sage/rings/padics/qadic_flint_FM.pyx +111 -0
- sage/rings/padics/qadic_flint_FP.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/qadic_flint_FP.pxd +12 -0
- sage/rings/padics/qadic_flint_FP.pyx +165 -0
- sage/rings/padics/relative_extension_leaves.py +429 -0
- sage/rings/padics/relative_ramified_CA.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/relative_ramified_CA.pxd +9 -0
- sage/rings/padics/relative_ramified_CA.pyx +33 -0
- sage/rings/padics/relative_ramified_CR.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/relative_ramified_CR.pxd +8 -0
- sage/rings/padics/relative_ramified_CR.pyx +33 -0
- sage/rings/padics/relative_ramified_FM.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/relative_ramified_FM.pxd +9 -0
- sage/rings/padics/relative_ramified_FM.pyx +33 -0
- sage/rings/padics/relative_ramified_FP.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/padics/relative_ramified_FP.pxd +8 -0
- sage/rings/padics/relative_ramified_FP.pyx +33 -0
- sage/rings/padics/relaxed_template.pxi +4229 -0
- sage/rings/padics/relaxed_template_header.pxi +160 -0
- sage/rings/padics/tests.py +35 -0
- sage/rings/padics/tutorial.py +341 -0
- sage/rings/padics/unramified_extension_generic.py +335 -0
- sage/rings/padics/witt_vector.py +917 -0
- sage/rings/padics/witt_vector_ring.py +934 -0
- sage/rings/pari_ring.py +235 -0
- sage/rings/polynomial/all__sagemath_pari.py +1 -0
- sage/rings/polynomial/padics/all.py +1 -0
- sage/rings/polynomial/padics/polynomial_padic.py +360 -0
- sage/rings/polynomial/padics/polynomial_padic_capped_relative_dense.py +1324 -0
- sage/rings/polynomial/padics/polynomial_padic_flat.py +72 -0
- sage/rings/power_series_pari.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/power_series_pari.pxd +6 -0
- sage/rings/power_series_pari.pyx +934 -0
- sage/rings/tate_algebra.py +1282 -0
- sage/rings/tate_algebra_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/tate_algebra_element.pxd +49 -0
- sage/rings/tate_algebra_element.pyx +3464 -0
- sage/rings/tate_algebra_ideal.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/tate_algebra_ideal.pxd +7 -0
- sage/rings/tate_algebra_ideal.pyx +1307 -0
- sage/rings/valuation/all.py +7 -0
- sage/rings/valuation/augmented_valuation.py +2118 -0
- sage/rings/valuation/developing_valuation.py +362 -0
- sage/rings/valuation/gauss_valuation.py +812 -0
- sage/rings/valuation/inductive_valuation.py +1686 -0
- sage/rings/valuation/limit_valuation.py +946 -0
- sage/rings/valuation/mapped_valuation.py +656 -0
- sage/rings/valuation/scaled_valuation.py +322 -0
- sage/rings/valuation/trivial_valuation.py +382 -0
- sage/rings/valuation/valuation.py +1119 -0
- sage/rings/valuation/valuation_space.py +1615 -0
- sage/rings/valuation/valuations_catalog.py +10 -0
- sage/rings/valuation/value_group.py +697 -0
- sage/schemes/all__sagemath_pari.py +1 -0
- sage/schemes/elliptic_curves/all__sagemath_pari.py +1 -0
- sage/schemes/elliptic_curves/descent_two_isogeny_pari.cpython-314-x86_64-linux-musl.so +0 -0
- sage/schemes/elliptic_curves/descent_two_isogeny_pari.pyx +46 -0
- sage_wheels/bin/gp +0 -0
- sage_wheels/bin/gp2c +0 -0
- sage_wheels/bin/gp2c-run +57 -0
- sage_wheels/bin/xeus-gp +0 -0
- sage_wheels/share/gp2c/func.dsc +18414 -0
|
@@ -0,0 +1,1324 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-pari
|
|
2
|
+
# sage.doctest: needs sage.libs.ntl
|
|
3
|
+
"""
|
|
4
|
+
`p`-adic Capped Relative Dense Polynomials
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
# ****************************************************************************
|
|
8
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
9
|
+
# as published by the Free Software Foundation; either version 2 of
|
|
10
|
+
# the License, or (at your option) any later version.
|
|
11
|
+
# https://www.gnu.org/licenses/
|
|
12
|
+
# ****************************************************************************
|
|
13
|
+
|
|
14
|
+
import sage.rings.polynomial.polynomial_element_generic
|
|
15
|
+
from sage.rings.polynomial.polynomial_element import Polynomial
|
|
16
|
+
from sage.rings.polynomial.padics.polynomial_padic import Polynomial_padic
|
|
17
|
+
import sage.rings.polynomial.polynomial_integer_dense_ntl
|
|
18
|
+
import sage.rings.integer
|
|
19
|
+
import sage.rings.integer_ring
|
|
20
|
+
import sage.rings.padics.misc as misc
|
|
21
|
+
import sage.rings.padics.precision_error as precision_error
|
|
22
|
+
from sage.rings.fraction_field_element import FractionFieldElement
|
|
23
|
+
import copy
|
|
24
|
+
|
|
25
|
+
from sage.libs.pari import pari
|
|
26
|
+
from cypari2.gen import Gen as pari_gen
|
|
27
|
+
from sage.misc.lazy_import import lazy_import
|
|
28
|
+
from sage.rings.infinity import infinity
|
|
29
|
+
|
|
30
|
+
lazy_import('sage.libs.ntl.all', 'ZZX')
|
|
31
|
+
|
|
32
|
+
min = misc.min
|
|
33
|
+
ZZ = sage.rings.integer_ring.ZZ
|
|
34
|
+
PrecisionError = precision_error.PrecisionError
|
|
35
|
+
Integer = sage.rings.integer.Integer
|
|
36
|
+
Polynomial_integer_dense = sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl
|
|
37
|
+
Polynomial_generic_cdv = sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdv
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
class Polynomial_padic_capped_relative_dense(Polynomial_generic_cdv, Polynomial_padic):
|
|
41
|
+
def __init__(self, parent, x=None, check=True, is_gen=False, construct=False, absprec=infinity, relprec=infinity):
|
|
42
|
+
"""
|
|
43
|
+
TESTS::
|
|
44
|
+
|
|
45
|
+
sage: K = Qp(13,7)
|
|
46
|
+
sage: R.<t> = K[]
|
|
47
|
+
sage: R([K(13), K(1)])
|
|
48
|
+
(1 + O(13^7))*t + 13 + O(13^8)
|
|
49
|
+
sage: T.<t> = ZZ[]
|
|
50
|
+
sage: R(t + 2)
|
|
51
|
+
(1 + O(13^7))*t + 2 + O(13^7)
|
|
52
|
+
|
|
53
|
+
Check that :issue:`13620` has been fixed::
|
|
54
|
+
|
|
55
|
+
sage: f = R.zero()
|
|
56
|
+
sage: R(f.monomial_coefficients())
|
|
57
|
+
0
|
|
58
|
+
|
|
59
|
+
Check that :issue:`29829` has been fixed::
|
|
60
|
+
|
|
61
|
+
sage: R.<x> = PolynomialRing(ZZ)
|
|
62
|
+
sage: f = x + 5
|
|
63
|
+
sage: S.<y> = PolynomialRing(Qp(5))
|
|
64
|
+
sage: g2 = S(f)
|
|
65
|
+
sage: 25*g2
|
|
66
|
+
(5^2 + O(5^22))*y + 5^3 + O(5^23)
|
|
67
|
+
"""
|
|
68
|
+
Polynomial.__init__(self, parent, is_gen=is_gen)
|
|
69
|
+
self._polygon = None
|
|
70
|
+
parentbr = parent.base_ring()
|
|
71
|
+
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
|
|
72
|
+
if construct:
|
|
73
|
+
(self._poly, self._valbase, self._relprecs, self._normalized, self._valaddeds, self._list) = x # the last two of these may be None
|
|
74
|
+
return
|
|
75
|
+
elif is_gen:
|
|
76
|
+
self._poly = PolynomialRing(ZZ, parent.variable_name()).gen()
|
|
77
|
+
self._valbase = 0
|
|
78
|
+
self._valaddeds = [infinity, 0]
|
|
79
|
+
self._relprecs = [infinity, parentbr.precision_cap()]
|
|
80
|
+
self._normalized = True
|
|
81
|
+
self._list = None
|
|
82
|
+
return
|
|
83
|
+
|
|
84
|
+
# First we list the types that are turned into Polynomials
|
|
85
|
+
if isinstance(x, ZZX):
|
|
86
|
+
x = Polynomial_integer_dense(PolynomialRing(ZZ, parent.variable_name()), x, construct=True)
|
|
87
|
+
elif isinstance(x, FractionFieldElement) and x.denominator() == 1:
|
|
88
|
+
# Currently we ignore precision information in the denominator. This should be changed eventually
|
|
89
|
+
x = x.numerator()
|
|
90
|
+
|
|
91
|
+
# We now coerce various types into lists of coefficients. There are fast pathways for some types of polynomials
|
|
92
|
+
if isinstance(x, Polynomial):
|
|
93
|
+
if x.parent() is self.parent():
|
|
94
|
+
if absprec is not infinity or relprec is not infinity:
|
|
95
|
+
x._normalize()
|
|
96
|
+
self._poly = x._poly
|
|
97
|
+
self._valbase = x._valbase
|
|
98
|
+
self._valaddeds = x._valaddeds
|
|
99
|
+
self._relprecs = x._relprecs
|
|
100
|
+
self._normalized = x._normalized
|
|
101
|
+
self._list = x._list
|
|
102
|
+
if absprec is not infinity or relprec is not infinity:
|
|
103
|
+
self._adjust_prec_info(absprec, relprec)
|
|
104
|
+
return
|
|
105
|
+
elif x.base_ring() is ZZ:
|
|
106
|
+
self._poly = PolynomialRing(ZZ, parent.variable_name())(x)
|
|
107
|
+
self._valbase = Integer(0)
|
|
108
|
+
p = parentbr.prime()
|
|
109
|
+
self._relprecs = [c.valuation(p) + parentbr.precision_cap() for c in x.list()]
|
|
110
|
+
self._comp_valaddeds()
|
|
111
|
+
self._normalized = not self._valaddeds or min(self._valaddeds) == 0
|
|
112
|
+
self._list = None
|
|
113
|
+
if absprec is not infinity or relprec is not infinity:
|
|
114
|
+
self._adjust_prec_info(absprec, relprec)
|
|
115
|
+
return
|
|
116
|
+
else:
|
|
117
|
+
x = [parentbr(a) for a in x.list()]
|
|
118
|
+
check = False
|
|
119
|
+
elif isinstance(x, dict):
|
|
120
|
+
zero = parentbr.zero()
|
|
121
|
+
n = max(x) if x else 0
|
|
122
|
+
v = [zero] * (n + 1)
|
|
123
|
+
for i, z in x.items():
|
|
124
|
+
v[i] = z
|
|
125
|
+
x = v
|
|
126
|
+
elif isinstance(x, pari_gen):
|
|
127
|
+
x = [parentbr(w) for w in x.list()]
|
|
128
|
+
check = False
|
|
129
|
+
# The default behavior, if we haven't already figured out what
|
|
130
|
+
# the type is, is to assume it coerces into the base_ring as a
|
|
131
|
+
# constant polynomial
|
|
132
|
+
elif not isinstance(x, list):
|
|
133
|
+
x = [x] # constant polynomial
|
|
134
|
+
|
|
135
|
+
# In contrast to other polynomials, the zero element is not distinguished
|
|
136
|
+
# by having its list empty. Instead, it has list [0]
|
|
137
|
+
if not x:
|
|
138
|
+
x = [parentbr.zero()]
|
|
139
|
+
if check:
|
|
140
|
+
x = [parentbr(z) for z in x]
|
|
141
|
+
|
|
142
|
+
# Remove this -- for p-adics this is terrible, since it kills any non exact zero.
|
|
143
|
+
# if len(x) == 1 and not x[0]:
|
|
144
|
+
# x = []
|
|
145
|
+
|
|
146
|
+
self._list = x
|
|
147
|
+
self._valaddeds = [a.valuation() for a in x]
|
|
148
|
+
self._valbase = sage.rings.padics.misc.min(self._valaddeds)
|
|
149
|
+
if self._valbase is infinity:
|
|
150
|
+
self._valaddeds = []
|
|
151
|
+
self._relprecs = []
|
|
152
|
+
self._poly = PolynomialRing(ZZ, parent.variable_name())()
|
|
153
|
+
self._normalized = True
|
|
154
|
+
if absprec is not infinity or relprec is not infinity:
|
|
155
|
+
self._adjust_prec_info(absprec, relprec)
|
|
156
|
+
else:
|
|
157
|
+
self._valaddeds = [c - self._valbase for c in self._valaddeds]
|
|
158
|
+
self._relprecs = [a.precision_absolute() - self._valbase for a in x]
|
|
159
|
+
self._poly = PolynomialRing(ZZ, parent.variable_name())([a >> self._valbase for a in x])
|
|
160
|
+
self._normalized = True
|
|
161
|
+
if absprec is not infinity or relprec is not infinity:
|
|
162
|
+
self._adjust_prec_info(absprec, relprec)
|
|
163
|
+
|
|
164
|
+
def _new_constant_poly(self, a, P):
|
|
165
|
+
"""
|
|
166
|
+
Create a new constant polynomial in parent P with value a.
|
|
167
|
+
|
|
168
|
+
ASSUMPTION:
|
|
169
|
+
|
|
170
|
+
The value a must be an element of the base ring of P. That
|
|
171
|
+
assumption is not verified.
|
|
172
|
+
|
|
173
|
+
EXAMPLES::
|
|
174
|
+
|
|
175
|
+
sage: R.<t> = Zp(5)[]
|
|
176
|
+
sage: t._new_constant_poly(O(5),R)
|
|
177
|
+
O(5)
|
|
178
|
+
"""
|
|
179
|
+
return self.__class__(P, [a], check=False)
|
|
180
|
+
|
|
181
|
+
def _normalize(self):
|
|
182
|
+
# Currently slow: need to optimize
|
|
183
|
+
if not self._normalized:
|
|
184
|
+
if self._valaddeds is None:
|
|
185
|
+
self._comp_valaddeds()
|
|
186
|
+
val = sage.rings.padics.misc.min(self._valaddeds)
|
|
187
|
+
prime_pow = self.base_ring().prime_pow
|
|
188
|
+
selflist = self._poly.list()
|
|
189
|
+
if val is infinity:
|
|
190
|
+
pass
|
|
191
|
+
elif val != 0:
|
|
192
|
+
self._relprecs = [max(prec - val, 0) for prec in self._relprecs]
|
|
193
|
+
v = [Integer(0) if (e is infinity) else ((c // prime_pow(val)) % prime_pow(e)) for c, e in zip(selflist, self._relprecs)]
|
|
194
|
+
self._poly = self._poly.parent()(v, check=False)
|
|
195
|
+
self._valbase += val
|
|
196
|
+
self._valaddeds = [c - val for c in self._valaddeds]
|
|
197
|
+
else:
|
|
198
|
+
self._poly = self._poly.parent()([Integer(0) if (e is infinity) else (c % prime_pow(e)) for c, e in zip(selflist, self._relprecs)], check=False)
|
|
199
|
+
self._normalized = True
|
|
200
|
+
|
|
201
|
+
def _reduce_poly(self):
|
|
202
|
+
selflist = self._poly.list()
|
|
203
|
+
prime_pow = self.base_ring().prime_pow
|
|
204
|
+
self._poly = self._poly.parent()([Integer(0) if (e is infinity) else (c % prime_pow(e)) for (c, e) in zip(selflist, self._relprecs)], check=False)
|
|
205
|
+
|
|
206
|
+
def __reduce__(self):
|
|
207
|
+
"""
|
|
208
|
+
For pickling. This function is here because the relative precisions were getting screwed up for some reason.
|
|
209
|
+
"""
|
|
210
|
+
return make_padic_poly, (self.parent(), (self._poly, self._valbase, self._relprecs, self._normalized, self._valaddeds, self._list), 0)
|
|
211
|
+
|
|
212
|
+
def _comp_list(self):
|
|
213
|
+
"""
|
|
214
|
+
Recomputes the list of coefficients.
|
|
215
|
+
|
|
216
|
+
EXAMPLES::
|
|
217
|
+
|
|
218
|
+
sage: K = Qp(13,7)
|
|
219
|
+
sage: R.<t> = K[]
|
|
220
|
+
sage: a = t[:1]
|
|
221
|
+
sage: a._comp_list()
|
|
222
|
+
sage: a
|
|
223
|
+
0
|
|
224
|
+
"""
|
|
225
|
+
if self.degree() == -1 and self._valbase == infinity:
|
|
226
|
+
self._list = []
|
|
227
|
+
polylist = self._poly.list()
|
|
228
|
+
polylen = len(polylist)
|
|
229
|
+
self._list = [self.base_ring()(polylist[i], absprec=self._relprecs[i]) << self._valbase for i in range(polylen)] \
|
|
230
|
+
+ [self.base_ring()(0, absprec=self._relprecs[i] + self._valbase) for i in range(polylen, len(self._relprecs))]
|
|
231
|
+
while self._list and self._list[-1]._is_exact_zero():
|
|
232
|
+
self._list.pop()
|
|
233
|
+
|
|
234
|
+
def _comp_valaddeds(self):
|
|
235
|
+
self._valaddeds = []
|
|
236
|
+
prime = self.parent().base_ring().prime()
|
|
237
|
+
for i, pli in enumerate(self._poly.list()):
|
|
238
|
+
tmp = pli.valuation(prime)
|
|
239
|
+
if tmp is infinity or tmp > self._relprecs[i]:
|
|
240
|
+
self._valaddeds.append(self._relprecs[i])
|
|
241
|
+
else:
|
|
242
|
+
self._valaddeds.append(tmp)
|
|
243
|
+
for i in range(self._poly.degree() + 1, len(self._relprecs)):
|
|
244
|
+
self._valaddeds.append(self._relprecs[i])
|
|
245
|
+
|
|
246
|
+
def _adjust_prec_info(self, absprec=infinity, relprec=infinity):
|
|
247
|
+
r"""
|
|
248
|
+
Assumes that self._poly, self._val and self._relprec are set initially and adjusts self._val and self._relprec to the termwise minimum of absprec and relprec.
|
|
249
|
+
"""
|
|
250
|
+
return
|
|
251
|
+
|
|
252
|
+
# min = sage.rings.padics.misc.min
|
|
253
|
+
# slen = len(self._relprec)
|
|
254
|
+
# if isinstance(absprec, list):
|
|
255
|
+
# alen = len(absprec)
|
|
256
|
+
# elif absprec is infinity:
|
|
257
|
+
# alen = 0
|
|
258
|
+
# absprec = []
|
|
259
|
+
# else:
|
|
260
|
+
# alen = 1
|
|
261
|
+
# if isinstance(relprec, list):
|
|
262
|
+
# rlen = len(relprec)
|
|
263
|
+
# elif relprec is infinity:
|
|
264
|
+
# rlen = 0
|
|
265
|
+
# relprec = []
|
|
266
|
+
# else:
|
|
267
|
+
# rlen = 1
|
|
268
|
+
# preclen = max(slen, rlen, alen)
|
|
269
|
+
# if not isinstance(absprec, list):
|
|
270
|
+
# absprec = [absprec] * preclen
|
|
271
|
+
# if not isinstance(relprec, list):
|
|
272
|
+
# relprec = [relprec] * preclen
|
|
273
|
+
# vallist = [c.valuation(self.base_ring().prime()) + self._val for c in self._poly.list()] #######
|
|
274
|
+
# vmin = min(vallist)
|
|
275
|
+
# amin = min(absprec)
|
|
276
|
+
# if amin < vmin:
|
|
277
|
+
# vmin = amin
|
|
278
|
+
# if vmin < self._val:
|
|
279
|
+
# vadjust =
|
|
280
|
+
|
|
281
|
+
# if not isinstance(absprec, list):
|
|
282
|
+
# self._val = min(vallist + [absprec])
|
|
283
|
+
# absprec = [absprec] * preclen
|
|
284
|
+
# else:
|
|
285
|
+
# self._val = padics.misc.min(vallist + absprec)
|
|
286
|
+
# absprec = absprec + [infinity] * (preclen - len(absprec))
|
|
287
|
+
# if self._val is infinity:
|
|
288
|
+
# self._relprec = []
|
|
289
|
+
# return
|
|
290
|
+
# if not isinstance(relprec, list):
|
|
291
|
+
# relprec = [relprec] * preclen
|
|
292
|
+
# else:
|
|
293
|
+
# relprec = relprec + [parent.base_ring().precision_cap()] * (preclen - len(relprec))
|
|
294
|
+
# self._relprec = [min(a, v + r) - self._val for (a, r, v) in zip(absprec, relprec, vallist)]
|
|
295
|
+
# Remember to normalize at the end if self._normalized is true because you need to reduce mod p^n
|
|
296
|
+
|
|
297
|
+
def _getprecpoly(self, n):
|
|
298
|
+
one = Integer(1)
|
|
299
|
+
return self._poly.parent()([(0 if (c is infinity) else (one << (n * c))) for c in self._relprecs])
|
|
300
|
+
|
|
301
|
+
def _getvalpoly(self, n):
|
|
302
|
+
one = Integer(1)
|
|
303
|
+
if self._valaddeds is None:
|
|
304
|
+
self._comp_valaddeds()
|
|
305
|
+
return self._poly.parent()([(0 if (c is infinity) else (one << (n * c))) for c in self._valaddeds] +
|
|
306
|
+
[(0 if (c is infinity) else (one << (n * c))) for c in self._relprecs[len(self._valaddeds):]])
|
|
307
|
+
|
|
308
|
+
def list(self, copy=True):
|
|
309
|
+
"""
|
|
310
|
+
Return a list of coefficients of ``self``.
|
|
311
|
+
|
|
312
|
+
.. NOTE::
|
|
313
|
+
|
|
314
|
+
The length of the list returned may be greater
|
|
315
|
+
than expected since it includes any leading zeros
|
|
316
|
+
that have finite absolute precision.
|
|
317
|
+
|
|
318
|
+
EXAMPLES::
|
|
319
|
+
|
|
320
|
+
sage: K = Qp(13,7)
|
|
321
|
+
sage: R.<t> = K[]
|
|
322
|
+
sage: a = 2*t^3 + 169*t - 1
|
|
323
|
+
sage: a
|
|
324
|
+
(2 + O(13^7))*t^3 + (13^2 + O(13^9))*t + 12 + 12*13 + 12*13^2 + 12*13^3 + 12*13^4 + 12*13^5 + 12*13^6 + O(13^7)
|
|
325
|
+
sage: a.list()
|
|
326
|
+
[12 + 12*13 + 12*13^2 + 12*13^3 + 12*13^4 + 12*13^5 + 12*13^6 + O(13^7),
|
|
327
|
+
13^2 + O(13^9),
|
|
328
|
+
0,
|
|
329
|
+
2 + O(13^7)]
|
|
330
|
+
"""
|
|
331
|
+
if self._list is None:
|
|
332
|
+
self._comp_list()
|
|
333
|
+
if copy:
|
|
334
|
+
return list(self._list)
|
|
335
|
+
else:
|
|
336
|
+
return self._list
|
|
337
|
+
|
|
338
|
+
def lift(self):
|
|
339
|
+
"""
|
|
340
|
+
Return an integer polynomial congruent to this one modulo the
|
|
341
|
+
precision of each coefficient.
|
|
342
|
+
|
|
343
|
+
.. NOTE::
|
|
344
|
+
|
|
345
|
+
The lift that is returned will not necessarily be the same
|
|
346
|
+
for polynomials with the same coefficients (i.e. same values
|
|
347
|
+
and precisions): it will depend on how the polynomials are
|
|
348
|
+
created.
|
|
349
|
+
|
|
350
|
+
EXAMPLES::
|
|
351
|
+
|
|
352
|
+
sage: K = Qp(13,7)
|
|
353
|
+
sage: R.<t> = K[]
|
|
354
|
+
sage: a = 13^7*t^3 + K(169,4)*t - 13^4
|
|
355
|
+
sage: a.lift()
|
|
356
|
+
62748517*t^3 + 169*t - 28561
|
|
357
|
+
"""
|
|
358
|
+
return self.base_ring().prime_pow(self._valbase) * self._poly
|
|
359
|
+
|
|
360
|
+
def __getitem__(self, n):
|
|
361
|
+
"""
|
|
362
|
+
Return the `n`-th coefficient of ``self``.
|
|
363
|
+
|
|
364
|
+
This returns the coefficient of `x^n` if `n` is an integer,
|
|
365
|
+
and returns the monomials of ``self`` of degree
|
|
366
|
+
in slice `n` if `n` is a slice ``[:k]``.
|
|
367
|
+
|
|
368
|
+
EXAMPLES::
|
|
369
|
+
|
|
370
|
+
sage: K = Qp(13,7)
|
|
371
|
+
sage: R.<t> = K[]
|
|
372
|
+
sage: a = 13^7*t^3 + K(169,4)*t - 13^4
|
|
373
|
+
sage: a[1]
|
|
374
|
+
13^2 + O(13^4)
|
|
375
|
+
|
|
376
|
+
Slices can be used to truncate polynomials::
|
|
377
|
+
|
|
378
|
+
sage: a[:2]
|
|
379
|
+
(13^2 + O(13^4))*t + 12*13^4 + 12*13^5 + 12*13^6 + 12*13^7 + 12*13^8 + 12*13^9 + 12*13^10 + O(13^11)
|
|
380
|
+
|
|
381
|
+
Any other kind of slicing is an error, see :issue:`18940`::
|
|
382
|
+
|
|
383
|
+
sage: a[1:3]
|
|
384
|
+
Traceback (most recent call last):
|
|
385
|
+
...
|
|
386
|
+
IndexError: polynomial slicing with a start is not defined
|
|
387
|
+
|
|
388
|
+
sage: a[1:3:2]
|
|
389
|
+
Traceback (most recent call last):
|
|
390
|
+
...
|
|
391
|
+
IndexError: polynomial slicing with a step is not defined
|
|
392
|
+
"""
|
|
393
|
+
d = len(self._relprecs) # = degree + 1
|
|
394
|
+
if isinstance(n, slice):
|
|
395
|
+
start, stop, step = n.start, n.stop, n.step
|
|
396
|
+
if step is not None:
|
|
397
|
+
raise IndexError("polynomial slicing with a step is not defined")
|
|
398
|
+
if start is not None:
|
|
399
|
+
raise IndexError("polynomial slicing with a start is not defined")
|
|
400
|
+
if stop is None or stop > d:
|
|
401
|
+
stop = d
|
|
402
|
+
values = [self[i] for i in range(stop)]
|
|
403
|
+
return self.parent()(values)
|
|
404
|
+
|
|
405
|
+
try:
|
|
406
|
+
n = n.__index__()
|
|
407
|
+
except AttributeError:
|
|
408
|
+
raise TypeError("list indices must be integers, not {0}".format(type(n).__name__))
|
|
409
|
+
|
|
410
|
+
if n < 0 or n >= d:
|
|
411
|
+
return self.base_ring().zero()
|
|
412
|
+
if self._list is not None:
|
|
413
|
+
return self._list[n]
|
|
414
|
+
return self.base_ring()(self.base_ring().prime_pow(self._valbase)
|
|
415
|
+
* self._poly[n], absprec=self._valbase + self._relprecs[n])
|
|
416
|
+
|
|
417
|
+
def _add_(self, right):
|
|
418
|
+
"""
|
|
419
|
+
Return the sum of ``self`` and ``right``.
|
|
420
|
+
|
|
421
|
+
EXAMPLES::
|
|
422
|
+
|
|
423
|
+
sage: K = Qp(13,7)
|
|
424
|
+
sage: R.<t> = K[]
|
|
425
|
+
sage: a = t^4 + 17*t^2 + 1
|
|
426
|
+
sage: b = -t^4 + 9*t^2 + 13*t - 1
|
|
427
|
+
sage: c = a + b; c
|
|
428
|
+
O(13^7)*t^4 + (2*13 + O(13^7))*t^2 + (13 + O(13^8))*t + O(13^7)
|
|
429
|
+
sage: c.list()
|
|
430
|
+
[O(13^7), 13 + O(13^8), 2*13 + O(13^7), 0, O(13^7)]
|
|
431
|
+
"""
|
|
432
|
+
selfpoly = self._poly
|
|
433
|
+
rightpoly = right._poly
|
|
434
|
+
if self._valbase > right._valbase:
|
|
435
|
+
selfpoly = selfpoly * self.base_ring().prime_pow(self._valbase - right._valbase)
|
|
436
|
+
baseval = right._valbase
|
|
437
|
+
elif self._valbase < right._valbase:
|
|
438
|
+
rightpoly = rightpoly * self.base_ring().prime_pow(right._valbase - self._valbase)
|
|
439
|
+
baseval = self._valbase
|
|
440
|
+
else:
|
|
441
|
+
baseval = self._valbase
|
|
442
|
+
# Currently we don't reduce the coefficients of the answer modulo the appropriate power of p or normalize
|
|
443
|
+
return Polynomial_padic_capped_relative_dense(self.parent(),
|
|
444
|
+
(selfpoly + rightpoly,
|
|
445
|
+
baseval,
|
|
446
|
+
[min(a + self._valbase - baseval, b + right._valbase - baseval)
|
|
447
|
+
for (a, b) in zip(_extend_by_infinity(self._relprecs, max(len(self._relprecs), len(right._relprecs))),
|
|
448
|
+
_extend_by_infinity(right._relprecs, max(len(self._relprecs), len(right._relprecs))))],
|
|
449
|
+
False, None, None), construct=True)
|
|
450
|
+
|
|
451
|
+
def _sub_(self, right):
|
|
452
|
+
"""
|
|
453
|
+
Return the difference of ``self`` and ``right``.
|
|
454
|
+
|
|
455
|
+
EXAMPLES::
|
|
456
|
+
|
|
457
|
+
sage: K = Qp(13,7)
|
|
458
|
+
sage: R.<t> = K[]
|
|
459
|
+
sage: a = t^4 + 17*t^2 + 1
|
|
460
|
+
sage: b = t^4 - 9*t^2 - 13*t + 1
|
|
461
|
+
sage: c = a - b; c
|
|
462
|
+
O(13^7)*t^4 + (2*13 + O(13^7))*t^2 + (13 + O(13^8))*t + O(13^7)
|
|
463
|
+
sage: c.list()
|
|
464
|
+
[O(13^7), 13 + O(13^8), 2*13 + O(13^7), 0, O(13^7)]
|
|
465
|
+
"""
|
|
466
|
+
selfpoly = self._poly
|
|
467
|
+
rightpoly = right._poly
|
|
468
|
+
if self._valbase > right._valbase:
|
|
469
|
+
selfpoly = selfpoly * self.base_ring().prime_pow(self._valbase - right._valbase)
|
|
470
|
+
baseval = right._valbase
|
|
471
|
+
elif self._valbase < right._valbase:
|
|
472
|
+
rightpoly = rightpoly * self.base_ring().prime_pow(right._valbase - self._valbase)
|
|
473
|
+
baseval = self._valbase
|
|
474
|
+
else:
|
|
475
|
+
baseval = self._valbase
|
|
476
|
+
# Currently we don't reduce the coefficients of the answer modulo the appropriate power of p or normalize
|
|
477
|
+
return Polynomial_padic_capped_relative_dense(self.parent(),
|
|
478
|
+
(selfpoly - rightpoly,
|
|
479
|
+
baseval,
|
|
480
|
+
[min(a + self._valbase - baseval, b + right._valbase - baseval)
|
|
481
|
+
for (a, b) in zip(_extend_by_infinity(self._relprecs, max(len(self._relprecs), len(right._relprecs))),
|
|
482
|
+
_extend_by_infinity(right._relprecs, max(len(self._relprecs), len(right._relprecs))))],
|
|
483
|
+
False, None, None), construct=True)
|
|
484
|
+
|
|
485
|
+
def _mul_(self, right):
|
|
486
|
+
r"""
|
|
487
|
+
Multiply ``self`` and ``right``.
|
|
488
|
+
|
|
489
|
+
ALGORITHM: We use an algorithm thought up by Joe Wetherell to
|
|
490
|
+
find the precisions of the product. It works as follows:
|
|
491
|
+
Suppose `f = \sum_i a_i x^i` and `g = \sum_j b_j x^j`. Let `N
|
|
492
|
+
= \max(\deg f, \deg g) + 1` (in the actual implementation we
|
|
493
|
+
use `N = 2^{\lfloor \log_2\max(\deg f, \deg g)\rfloor + 1}`).
|
|
494
|
+
The valuations and absolute precisions of each coefficient
|
|
495
|
+
contribute to the absolute precision of the `k`-th coefficient of
|
|
496
|
+
the product in the following way: for each `i + j = k`, you
|
|
497
|
+
take the valuation of `a_i` plus the absolute precision of
|
|
498
|
+
`b_j`, and then take the valuation of `b_j` plus the absolute
|
|
499
|
+
precision of `a_i`, take the minimum of those two, and then
|
|
500
|
+
take the minimum over all `i`, `j` summing to `k`.
|
|
501
|
+
|
|
502
|
+
You can simulate this as follows. Construct new polynomials of
|
|
503
|
+
degree `N`:
|
|
504
|
+
|
|
505
|
+
\begin{align*}
|
|
506
|
+
A &= \sum_i N^{\mbox{valuation of $a_i$}} x^i \\
|
|
507
|
+
B &= \sum_j N^{\mbox{absolute precision of $b_j$}} x^j \\
|
|
508
|
+
C &= \sum_i N^{\mbox{absolute precision of $a_i$}} x^i \\
|
|
509
|
+
D &= \sum_j N^{\mbox{valuation of $b_j$}} x^j \\
|
|
510
|
+
\end{align*}
|
|
511
|
+
|
|
512
|
+
Now you compute AB and CD. Because you're representing things
|
|
513
|
+
'N-adically', you don't get any 'overflow', and you can just
|
|
514
|
+
read off what the precisions of the product are. In fact it
|
|
515
|
+
tells you more, it tells you exactly how many terms of each
|
|
516
|
+
combination of valuation modulus contribute to each term of
|
|
517
|
+
the product (though this feature is not currently exposed in
|
|
518
|
+
our implementation.
|
|
519
|
+
|
|
520
|
+
Since we're working 'N-adically' we can just consider
|
|
521
|
+
`N^{\infty} = 0`.
|
|
522
|
+
|
|
523
|
+
NOTE: The timing of normalization in arithmetic operations
|
|
524
|
+
may very well change as we do more tests on the relative time
|
|
525
|
+
requirements of these operations.
|
|
526
|
+
|
|
527
|
+
EXAMPLES::
|
|
528
|
+
|
|
529
|
+
sage: K = Qp(13,7)
|
|
530
|
+
sage: R.<t> = K[]
|
|
531
|
+
sage: a = t^4 + 17*t^2 + 1
|
|
532
|
+
sage: b = -t^4 + 9*t^2 + 13*t - 1
|
|
533
|
+
sage: c = a + b; c
|
|
534
|
+
O(13^7)*t^4 + (2*13 + O(13^7))*t^2 + (13 + O(13^8))*t + O(13^7)
|
|
535
|
+
sage: d = R([K(1,4), K(2, 6), K(1, 5)]); d
|
|
536
|
+
(1 + O(13^5))*t^2 + (2 + O(13^6))*t + 1 + O(13^4)
|
|
537
|
+
sage: e = c * d; e
|
|
538
|
+
O(13^7)*t^6 + O(13^7)*t^5 + (2*13 + O(13^6))*t^4 + (5*13 + O(13^6))*t^3 + (4*13 + O(13^5))*t^2 + (13 + O(13^5))*t + O(13^7)
|
|
539
|
+
sage: e.list()
|
|
540
|
+
[O(13^7),
|
|
541
|
+
13 + O(13^5),
|
|
542
|
+
4*13 + O(13^5),
|
|
543
|
+
5*13 + O(13^6),
|
|
544
|
+
2*13 + O(13^6),
|
|
545
|
+
O(13^7),
|
|
546
|
+
O(13^7)]
|
|
547
|
+
"""
|
|
548
|
+
self._normalize()
|
|
549
|
+
right._normalize()
|
|
550
|
+
zzpoly = self._poly * right._poly
|
|
551
|
+
if not self._relprecs or len(right._relprecs) == 0:
|
|
552
|
+
return self.parent()(0)
|
|
553
|
+
n = Integer(len(self._relprecs) + len(right._relprecs) - 1).exact_log(2) + 1
|
|
554
|
+
precpoly1 = self._getprecpoly(n) * right._getvalpoly(n)
|
|
555
|
+
precpoly2 = self._getvalpoly(n) * right._getprecpoly(n)
|
|
556
|
+
# These two will be the same length
|
|
557
|
+
tn = Integer(1) << n
|
|
558
|
+
preclist = [min(a.valuation(tn), b.valuation(tn)) for (a, b) in zip(precpoly1.list(), precpoly2.list())]
|
|
559
|
+
answer = Polynomial_padic_capped_relative_dense(self.parent(), (zzpoly, self._valbase + right._valbase, preclist, False, None, None), construct=True)
|
|
560
|
+
answer._reduce_poly()
|
|
561
|
+
return answer
|
|
562
|
+
|
|
563
|
+
def _lmul_(self, right):
|
|
564
|
+
return self._rmul_(right)
|
|
565
|
+
|
|
566
|
+
def _rmul_(self, left):
|
|
567
|
+
"""
|
|
568
|
+
Return ``self`` multiplied by a constant.
|
|
569
|
+
|
|
570
|
+
EXAMPLES::
|
|
571
|
+
|
|
572
|
+
sage: K = Qp(13,7)
|
|
573
|
+
sage: R.<t> = K[]
|
|
574
|
+
sage: a = t^4 + K(13,5)*t^2 + 13
|
|
575
|
+
sage: K(13,7) * a
|
|
576
|
+
(13 + O(13^7))*t^4 + (13^2 + O(13^6))*t^2 + 13^2 + O(13^8)
|
|
577
|
+
"""
|
|
578
|
+
return None
|
|
579
|
+
# The code below has never been tested and is somehow subtly broken.
|
|
580
|
+
|
|
581
|
+
if self._valaddeds is None:
|
|
582
|
+
self._comp_valaddeds()
|
|
583
|
+
if left != 0:
|
|
584
|
+
val, unit = left.val_unit()
|
|
585
|
+
left_rprec = left.precision_relative()
|
|
586
|
+
relprecs = [min(left_rprec + self._valaddeds[i], self._relprecs[i]) for i in range(len(self._relprecs))]
|
|
587
|
+
elif left._is_exact_zero():
|
|
588
|
+
return Polynomial_padic_capped_relative_dense(self.parent(), [])
|
|
589
|
+
else:
|
|
590
|
+
return Polynomial_padic_capped_relative_dense(self.parent(), (self._poly.parent()(0), self._valbase + left.valuation(), self._valaddeds, False, self._valaddeds, None), construct=True)
|
|
591
|
+
return Polynomial_padic_capped_relative_dense(self.parent(), (self._poly._rmul_(unit), self._valbase + val, relprecs, False, self._valaddeds, None), construct=True)
|
|
592
|
+
|
|
593
|
+
def _neg_(self):
|
|
594
|
+
"""
|
|
595
|
+
Return the negation of ``self``.
|
|
596
|
+
|
|
597
|
+
EXAMPLES::
|
|
598
|
+
|
|
599
|
+
sage: K = Qp(13,2)
|
|
600
|
+
sage: R.<t> = K[]
|
|
601
|
+
sage: a = t^4 + 13*t^2 + 4
|
|
602
|
+
sage: -a
|
|
603
|
+
(12 + 12*13 + O(13^2))*t^4 + (12*13 + 12*13^2 + O(13^3))*t^2 + 9 + 12*13 + O(13^2)
|
|
604
|
+
"""
|
|
605
|
+
return Polynomial_padic_capped_relative_dense(self.parent(), (-self._poly, self._valbase, self._relprecs, False, self._valaddeds, None), construct=True)
|
|
606
|
+
|
|
607
|
+
def lshift_coeffs(self, shift, no_list=False):
|
|
608
|
+
"""
|
|
609
|
+
Return a new polynomials whose coefficients are multiplied by p^shift.
|
|
610
|
+
|
|
611
|
+
EXAMPLES::
|
|
612
|
+
|
|
613
|
+
sage: K = Qp(13, 4)
|
|
614
|
+
sage: R.<t> = K[]
|
|
615
|
+
sage: a = t + 52
|
|
616
|
+
sage: a.lshift_coeffs(3)
|
|
617
|
+
(13^3 + O(13^7))*t + 4*13^4 + O(13^8)
|
|
618
|
+
"""
|
|
619
|
+
if shift < 0:
|
|
620
|
+
return self.rshift_coeffs(-shift, no_list)
|
|
621
|
+
if no_list or self._list is None:
|
|
622
|
+
return Polynomial_padic_capped_relative_dense(self.parent(), (self._poly, self._valbase + shift, self._relprecs, False, self._valaddeds, None), construct=True)
|
|
623
|
+
else:
|
|
624
|
+
return Polynomial_padic_capped_relative_dense(self.parent(), (self._poly, self._valbase + shift, self._relprecs, False, self._valaddeds, [c.__lshift__(shift) for c in self._list]), construct=True)
|
|
625
|
+
|
|
626
|
+
def rshift_coeffs(self, shift, no_list=False):
|
|
627
|
+
"""
|
|
628
|
+
Return a new polynomial whose coefficients are `p`-adically
|
|
629
|
+
shifted to the right by ``shift``.
|
|
630
|
+
|
|
631
|
+
.. NOTE::
|
|
632
|
+
|
|
633
|
+
Type ``Qp(5)(0).__rshift__?`` for more information.
|
|
634
|
+
|
|
635
|
+
EXAMPLES::
|
|
636
|
+
|
|
637
|
+
sage: K = Zp(13, 4)
|
|
638
|
+
sage: R.<t> = K[]
|
|
639
|
+
sage: a = t^2 + K(13,3)*t + 169; a
|
|
640
|
+
(1 + O(13^4))*t^2 + (13 + O(13^3))*t + 13^2 + O(13^6)
|
|
641
|
+
sage: b = a.rshift_coeffs(1); b
|
|
642
|
+
O(13^3)*t^2 + (1 + O(13^2))*t + 13 + O(13^5)
|
|
643
|
+
sage: b.list()
|
|
644
|
+
[13 + O(13^5), 1 + O(13^2), O(13^3)]
|
|
645
|
+
sage: b = a.rshift_coeffs(2); b
|
|
646
|
+
O(13^2)*t^2 + O(13)*t + 1 + O(13^4)
|
|
647
|
+
sage: b.list()
|
|
648
|
+
[1 + O(13^4), O(13), O(13^2)]
|
|
649
|
+
"""
|
|
650
|
+
if shift < 0:
|
|
651
|
+
return self.lshift_coeffs(-shift, no_list) # We can't just absorb this into the next if statement because we allow rshift to preserve _normalized
|
|
652
|
+
if self.base_ring().is_field() or shift <= self._valbase:
|
|
653
|
+
if no_list or self._list is None:
|
|
654
|
+
return Polynomial_padic_capped_relative_dense(self.parent(), (self._poly, self._valbase - shift, self._relprecs, self._normalized, self._valaddeds, None), construct=True)
|
|
655
|
+
else:
|
|
656
|
+
return Polynomial_padic_capped_relative_dense(self.parent(), (self._poly, self._valbase - shift, self._relprecs, self._normalized, self._valaddeds, [c.__rshift__(shift) for c in self._list]), construct=True)
|
|
657
|
+
else:
|
|
658
|
+
shift = shift - self._valbase
|
|
659
|
+
fdiv = self.base_ring().prime_pow(shift)
|
|
660
|
+
return Polynomial_padic_capped_relative_dense(self.parent(), (self._poly // fdiv, 0, [0 if a <= shift else a - shift for a in self._relprecs], False, None, None), construct=True)
|
|
661
|
+
|
|
662
|
+
# def __floordiv__(self, right):
|
|
663
|
+
# if isinstance(right, Polynomial) and right.is_constant() and right[0] in self.base_ring():
|
|
664
|
+
# d = self.base_ring()(right[0])
|
|
665
|
+
# elif (right in self.base_ring()):
|
|
666
|
+
# d = self.base_ring()(right)
|
|
667
|
+
# else:
|
|
668
|
+
# raise NotImplementedError
|
|
669
|
+
# return self._rmul_(self.base_ring()(~d.unit_part())).rshift_coeffs(d.valuation())
|
|
670
|
+
|
|
671
|
+
def _unsafe_mutate(self, n, value):
|
|
672
|
+
"""
|
|
673
|
+
It's a really bad idea to use this function for `p`-adic
|
|
674
|
+
polynomials. There are speed issues, and it may not be
|
|
675
|
+
bug-free currently.
|
|
676
|
+
"""
|
|
677
|
+
n = int(n)
|
|
678
|
+
value = self.base_ring()(value)
|
|
679
|
+
if self.is_gen():
|
|
680
|
+
raise ValueError("cannot modify generator")
|
|
681
|
+
if n < 0:
|
|
682
|
+
raise IndexError("n must be >= 0")
|
|
683
|
+
if self._valbase is infinity:
|
|
684
|
+
if value._is_exact_zero():
|
|
685
|
+
return
|
|
686
|
+
self._valbase = value.valuation()
|
|
687
|
+
if value != 0:
|
|
688
|
+
self._poly._unsafe_mutate(self, n, value.unit_part().lift())
|
|
689
|
+
self._relprecs = [infinity] * n + [value.precision_relative()]
|
|
690
|
+
else:
|
|
691
|
+
self._relprecs = [infinity] * n + [0]
|
|
692
|
+
self._valaddeds = [infinity] * n + [0]
|
|
693
|
+
zero = self.base_ring()(0)
|
|
694
|
+
self._list = [zero] * n + [value]
|
|
695
|
+
self._normalized = True
|
|
696
|
+
elif value.valuation() >= self._valbase:
|
|
697
|
+
# _valbase and _normalized stay the same
|
|
698
|
+
if value != 0:
|
|
699
|
+
self._poly._unsafe_mutate(self, n, (value.__rshift__(self._valbase)).lift())
|
|
700
|
+
else:
|
|
701
|
+
self._poly._unsafe_mutate(self, n, 0)
|
|
702
|
+
if n < len(self._relprecs):
|
|
703
|
+
self._relprecs[n] = value.precision_absolute() - self._valbase
|
|
704
|
+
if self._valaddeds is not None:
|
|
705
|
+
self._valaddeds[n] = value.valuation() - self._valbase
|
|
706
|
+
if self._list is not None:
|
|
707
|
+
self._list[n] = value
|
|
708
|
+
else:
|
|
709
|
+
self._relprecs.extend([infinity] * (n - len(self._relprecs)) + [value.precision_absolute() - self._valbase])
|
|
710
|
+
if self._valaddeds is not None:
|
|
711
|
+
self._valaddeds.extend([infinity] * (n - len(self._relprecs)) + [value.valuation() - self._valbase])
|
|
712
|
+
if self._list is not None:
|
|
713
|
+
zero = self.base_ring()(0)
|
|
714
|
+
self._list.extend([zero] * (n - len(self._relprecs)) + [value])
|
|
715
|
+
else:
|
|
716
|
+
basediff = self._valbase - value.valuation()
|
|
717
|
+
self._valbase = value.valuation()
|
|
718
|
+
if self._valaddeds is not None:
|
|
719
|
+
self._valaddeds = [c + basediff for c in self._valaddeds]
|
|
720
|
+
self._poly = self._poly * self.base_ring().prime_pow(basediff)
|
|
721
|
+
if value != 0:
|
|
722
|
+
self._poly._unsafe_mutate(self, n, value.unit_part().lift())
|
|
723
|
+
else:
|
|
724
|
+
self._poly._unsafe_mutate(self, n, 0)
|
|
725
|
+
if n < len(self._relprecs):
|
|
726
|
+
self._relprecs[n] = value.precision_relative()
|
|
727
|
+
else:
|
|
728
|
+
self._relprecs.extend([infinity] * (n - len(self._relprecs)) + [value.precision_relative()])
|
|
729
|
+
self._normalized = False
|
|
730
|
+
if self._list is not None:
|
|
731
|
+
if n < len(self._list):
|
|
732
|
+
self._list[n] = value
|
|
733
|
+
else:
|
|
734
|
+
zero = self._base_ring()(0)
|
|
735
|
+
self._list.extend([zero] * (n - len(self._list)) + [value])
|
|
736
|
+
|
|
737
|
+
def __pari__(self, variable=None):
|
|
738
|
+
"""
|
|
739
|
+
Return ``self`` as a PARI object.
|
|
740
|
+
"""
|
|
741
|
+
if variable is None:
|
|
742
|
+
variable = self.parent().variable_name()
|
|
743
|
+
return pari(self.list()).Polrev(variable)
|
|
744
|
+
|
|
745
|
+
def __copy__(self):
|
|
746
|
+
"""
|
|
747
|
+
Return a copy of ``self``.
|
|
748
|
+
"""
|
|
749
|
+
return Polynomial_padic_capped_relative_dense(self.parent(), (copy.copy(self._poly), self._valbase, copy.copy(self._relprecs), self._normalized, copy.copy(self._valaddeds), copy.copy(self._list)), construct=True)
|
|
750
|
+
|
|
751
|
+
def degree(self, secure=False):
|
|
752
|
+
"""
|
|
753
|
+
Return the degree of ``self``.
|
|
754
|
+
|
|
755
|
+
INPUT:
|
|
756
|
+
|
|
757
|
+
- ``secure`` -- boolean (default: ``False``)
|
|
758
|
+
|
|
759
|
+
If ``secure`` is ``True`` and the degree of this polynomial
|
|
760
|
+
is not determined (because the leading coefficient is
|
|
761
|
+
indistinguishable from 0), an error is raised.
|
|
762
|
+
|
|
763
|
+
If ``secure`` is ``False``, the returned value is the largest
|
|
764
|
+
`n` so that the coefficient of `x^n` does not compare equal
|
|
765
|
+
to `0`.
|
|
766
|
+
|
|
767
|
+
EXAMPLES::
|
|
768
|
+
|
|
769
|
+
sage: K = Qp(3,10)
|
|
770
|
+
sage: R.<T> = K[]
|
|
771
|
+
sage: f = T + 2; f
|
|
772
|
+
(1 + O(3^10))*T + 2 + O(3^10)
|
|
773
|
+
sage: f.degree()
|
|
774
|
+
1
|
|
775
|
+
sage: (f-T).degree()
|
|
776
|
+
0
|
|
777
|
+
sage: (f-T).degree(secure=True)
|
|
778
|
+
Traceback (most recent call last):
|
|
779
|
+
...
|
|
780
|
+
PrecisionError: the leading coefficient is indistinguishable from 0
|
|
781
|
+
|
|
782
|
+
sage: x = O(3^5)
|
|
783
|
+
sage: li = [3^i * x for i in range(0,5)]; li
|
|
784
|
+
[O(3^5), O(3^6), O(3^7), O(3^8), O(3^9)]
|
|
785
|
+
sage: f = R(li); f
|
|
786
|
+
O(3^9)*T^4 + O(3^8)*T^3 + O(3^7)*T^2 + O(3^6)*T + O(3^5)
|
|
787
|
+
sage: f.degree()
|
|
788
|
+
-1
|
|
789
|
+
sage: f.degree(secure=True)
|
|
790
|
+
Traceback (most recent call last):
|
|
791
|
+
...
|
|
792
|
+
PrecisionError: the leading coefficient is indistinguishable from 0
|
|
793
|
+
"""
|
|
794
|
+
self._normalize()
|
|
795
|
+
deg = Integer(self._poly.degree())
|
|
796
|
+
if secure and deg < self.prec_degree():
|
|
797
|
+
raise PrecisionError("the leading coefficient is "
|
|
798
|
+
"indistinguishable from 0")
|
|
799
|
+
return deg
|
|
800
|
+
|
|
801
|
+
def prec_degree(self):
|
|
802
|
+
"""
|
|
803
|
+
Return the largest `n` so that precision information is
|
|
804
|
+
stored about the coefficient of `x^n`.
|
|
805
|
+
|
|
806
|
+
Always greater than or equal to degree.
|
|
807
|
+
|
|
808
|
+
EXAMPLES::
|
|
809
|
+
|
|
810
|
+
sage: K = Qp(3,10)
|
|
811
|
+
sage: R.<T> = K[]
|
|
812
|
+
sage: f = T + 2; f
|
|
813
|
+
(1 + O(3^10))*T + 2 + O(3^10)
|
|
814
|
+
sage: f.prec_degree()
|
|
815
|
+
1
|
|
816
|
+
"""
|
|
817
|
+
return len(self._relprecs) - 1
|
|
818
|
+
|
|
819
|
+
def precision_absolute(self, n=None):
|
|
820
|
+
"""
|
|
821
|
+
Return absolute precision information about ``self``.
|
|
822
|
+
|
|
823
|
+
INPUT:
|
|
824
|
+
|
|
825
|
+
- ``self`` -- a `p`-adic polynomial
|
|
826
|
+
|
|
827
|
+
- ``n`` -- ``None`` or integer (default: ``None``)
|
|
828
|
+
|
|
829
|
+
OUTPUT:
|
|
830
|
+
|
|
831
|
+
If ``n`` is ``None``, returns a list of absolute precisions of
|
|
832
|
+
coefficients. Otherwise, returns the absolute precision of
|
|
833
|
+
the coefficient of `x^n`.
|
|
834
|
+
|
|
835
|
+
EXAMPLES::
|
|
836
|
+
|
|
837
|
+
sage: K = Qp(3,10)
|
|
838
|
+
sage: R.<T> = K[]
|
|
839
|
+
sage: f = T + 2; f
|
|
840
|
+
(1 + O(3^10))*T + 2 + O(3^10)
|
|
841
|
+
sage: f.precision_absolute()
|
|
842
|
+
[10, 10]
|
|
843
|
+
"""
|
|
844
|
+
if n is None:
|
|
845
|
+
return [c + self._valbase for c in self._relprecs]
|
|
846
|
+
return self._relprecs[n] + self._valbase
|
|
847
|
+
|
|
848
|
+
def precision_relative(self, n=None):
|
|
849
|
+
"""
|
|
850
|
+
Return relative precision information about ``self``.
|
|
851
|
+
|
|
852
|
+
INPUT:
|
|
853
|
+
|
|
854
|
+
- ``self`` -- a `p`-adic polynomial
|
|
855
|
+
|
|
856
|
+
- ``n`` -- ``None`` or integer (default: ``None``)
|
|
857
|
+
|
|
858
|
+
OUTPUT:
|
|
859
|
+
|
|
860
|
+
If ``n`` is ``None``, returns a list of relative precisions of
|
|
861
|
+
coefficients. Otherwise, returns the relative precision of
|
|
862
|
+
the coefficient of `x^n`.
|
|
863
|
+
|
|
864
|
+
EXAMPLES::
|
|
865
|
+
|
|
866
|
+
sage: K = Qp(3,10)
|
|
867
|
+
sage: R.<T> = K[]
|
|
868
|
+
sage: f = T + 2; f
|
|
869
|
+
(1 + O(3^10))*T + 2 + O(3^10)
|
|
870
|
+
sage: f.precision_relative()
|
|
871
|
+
[10, 10]
|
|
872
|
+
"""
|
|
873
|
+
if n is None:
|
|
874
|
+
self._normalize()
|
|
875
|
+
return copy.copy(self._relprecs)
|
|
876
|
+
n = int(n)
|
|
877
|
+
if n < 0 or n >= len(self._relprecs) or self._relprecs[n] is infinity:
|
|
878
|
+
return Integer(0)
|
|
879
|
+
if self._valaddeds is None:
|
|
880
|
+
return self._relprecs[n] - self._poly[n].valuation(self.base_ring().prime())
|
|
881
|
+
else:
|
|
882
|
+
return self._relprecs[n] - self._valaddeds[n]
|
|
883
|
+
|
|
884
|
+
def valuation_of_coefficient(self, n=None):
|
|
885
|
+
"""
|
|
886
|
+
Return valuation information about ``self``'s coefficients.
|
|
887
|
+
|
|
888
|
+
INPUT:
|
|
889
|
+
|
|
890
|
+
- ``self`` -- a `p`-adic polynomial
|
|
891
|
+
|
|
892
|
+
- ``n`` -- ``None`` or integer (default: ``None``)
|
|
893
|
+
|
|
894
|
+
OUTPUT:
|
|
895
|
+
|
|
896
|
+
If ``n`` is ``None``, returns a list of valuations of coefficients. Otherwise,
|
|
897
|
+
returns the valuation of the coefficient of `x^n`.
|
|
898
|
+
|
|
899
|
+
EXAMPLES::
|
|
900
|
+
|
|
901
|
+
sage: K = Qp(3,10)
|
|
902
|
+
sage: R.<T> = K[]
|
|
903
|
+
sage: f = T + 2; f
|
|
904
|
+
(1 + O(3^10))*T + 2 + O(3^10)
|
|
905
|
+
sage: f.valuation_of_coefficient(1)
|
|
906
|
+
0
|
|
907
|
+
"""
|
|
908
|
+
if self._valaddeds is None:
|
|
909
|
+
self._comp_valaddeds()
|
|
910
|
+
if n is None:
|
|
911
|
+
self._normalize()
|
|
912
|
+
return [c + self._valbase for c in self._valaddeds]
|
|
913
|
+
n = int(n)
|
|
914
|
+
if n < 0 or n >= len(self._relprecs):
|
|
915
|
+
return infinity
|
|
916
|
+
return self._valbase + self._valaddeds[n]
|
|
917
|
+
|
|
918
|
+
def valuation(self, val_of_var=None):
|
|
919
|
+
"""
|
|
920
|
+
Return the valuation of ``self``.
|
|
921
|
+
|
|
922
|
+
INPUT:
|
|
923
|
+
|
|
924
|
+
- ``self`` -- a `p`-adic polynomial
|
|
925
|
+
|
|
926
|
+
- ``val_of_var`` -- ``None`` or a rational (default: ``None``)
|
|
927
|
+
|
|
928
|
+
OUTPUT:
|
|
929
|
+
|
|
930
|
+
If ``val_of_var`` is ``None``, returns the largest power of the
|
|
931
|
+
variable dividing ``self``. Otherwise, returns the valuation of
|
|
932
|
+
``self`` where the variable is assigned valuation ``val_of_var``
|
|
933
|
+
|
|
934
|
+
EXAMPLES::
|
|
935
|
+
|
|
936
|
+
sage: K = Qp(3,10)
|
|
937
|
+
sage: R.<T> = K[]
|
|
938
|
+
sage: f = T + 2; f
|
|
939
|
+
(1 + O(3^10))*T + 2 + O(3^10)
|
|
940
|
+
sage: f.valuation()
|
|
941
|
+
0
|
|
942
|
+
"""
|
|
943
|
+
if val_of_var is None:
|
|
944
|
+
return self._poly.valuation()
|
|
945
|
+
if self._valaddeds is None:
|
|
946
|
+
self._comp_valaddeds()
|
|
947
|
+
return self._valbase + min([self._valaddeds[i] + val_of_var * i for i in range(len(self._valaddeds))])
|
|
948
|
+
|
|
949
|
+
def reverse(self, degree=None):
|
|
950
|
+
"""
|
|
951
|
+
Return the reverse of the input polynomial, thought as a polynomial of
|
|
952
|
+
degree ``degree``.
|
|
953
|
+
|
|
954
|
+
If `f` is a degree-`d` polynomial, its reverse is `x^d f(1/x)`.
|
|
955
|
+
|
|
956
|
+
INPUT:
|
|
957
|
+
|
|
958
|
+
- ``degree`` -- ``None`` or integer; if specified, truncate or zero
|
|
959
|
+
pad the list of coefficients to this degree before reversing it
|
|
960
|
+
|
|
961
|
+
EXAMPLES::
|
|
962
|
+
|
|
963
|
+
sage: K = Qp(13,7)
|
|
964
|
+
sage: R.<t> = K[]
|
|
965
|
+
sage: f = t^3 + 4*t; f
|
|
966
|
+
(1 + O(13^7))*t^3 + (4 + O(13^7))*t
|
|
967
|
+
sage: f.reverse()
|
|
968
|
+
0*t^3 + (4 + O(13^7))*t^2 + 1 + O(13^7)
|
|
969
|
+
sage: f.reverse(3)
|
|
970
|
+
0*t^3 + (4 + O(13^7))*t^2 + 1 + O(13^7)
|
|
971
|
+
sage: f.reverse(2)
|
|
972
|
+
0*t^2 + (4 + O(13^7))*t
|
|
973
|
+
sage: f.reverse(4)
|
|
974
|
+
0*t^4 + (4 + O(13^7))*t^3 + (1 + O(13^7))*t
|
|
975
|
+
sage: f.reverse(6)
|
|
976
|
+
0*t^6 + (4 + O(13^7))*t^5 + (1 + O(13^7))*t^3
|
|
977
|
+
|
|
978
|
+
TESTS:
|
|
979
|
+
|
|
980
|
+
Check that this implementation is compatible with the generic one::
|
|
981
|
+
|
|
982
|
+
sage: all(f.reverse(d) == Polynomial.reverse(f, d)
|
|
983
|
+
....: for d in [None,0,1,2,3,4,5])
|
|
984
|
+
True
|
|
985
|
+
"""
|
|
986
|
+
n = self._poly.degree() if degree is None else degree
|
|
987
|
+
zzlist = self._poly.list()[:(n + 1)] + [0] * (n - self._poly.degree())
|
|
988
|
+
zzlist.reverse()
|
|
989
|
+
relprec = self._relprecs[:(n + 1)] + [infinity] * (n - self.prec_degree())
|
|
990
|
+
relprec.reverse()
|
|
991
|
+
if self._valaddeds is None:
|
|
992
|
+
valadded = None
|
|
993
|
+
else:
|
|
994
|
+
valadded = self._valaddeds[:(n + 1)] + [infinity] * (n - self.prec_degree())
|
|
995
|
+
valadded.reverse()
|
|
996
|
+
if self._list is None:
|
|
997
|
+
L = None
|
|
998
|
+
else:
|
|
999
|
+
L = self._list[:(n + 1)] + [self.base_ring()(0)] * (n - self.prec_degree())
|
|
1000
|
+
L.reverse()
|
|
1001
|
+
return Polynomial_padic_capped_relative_dense(self.parent(), (self._poly.parent()(zzlist), self._valbase, relprec, self._normalized, valadded, L), construct=True)
|
|
1002
|
+
|
|
1003
|
+
def rescale(self, a):
|
|
1004
|
+
r"""
|
|
1005
|
+
Return `f(a\cdot x)`.
|
|
1006
|
+
|
|
1007
|
+
.. TODO::
|
|
1008
|
+
|
|
1009
|
+
Need to write this function for integer polynomials before
|
|
1010
|
+
this works.
|
|
1011
|
+
|
|
1012
|
+
EXAMPLES::
|
|
1013
|
+
|
|
1014
|
+
sage: K = Zp(13, 5)
|
|
1015
|
+
sage: R.<t> = K[]
|
|
1016
|
+
sage: f = t^3 + K(13, 3) * t
|
|
1017
|
+
sage: f.rescale(2) # not implemented
|
|
1018
|
+
"""
|
|
1019
|
+
negval = False
|
|
1020
|
+
try:
|
|
1021
|
+
a = self.base_ring()(a)
|
|
1022
|
+
except ValueError as msg:
|
|
1023
|
+
if msg == "element has negative valuation.":
|
|
1024
|
+
negval = True
|
|
1025
|
+
else:
|
|
1026
|
+
raise ValueError(msg)
|
|
1027
|
+
if negval:
|
|
1028
|
+
return self.parent().base_extend(self.base_ring().fraction_field())(self).rescale(a)
|
|
1029
|
+
if self.base_ring().is_field() and a.valuation() < 0:
|
|
1030
|
+
D = self.prec_degree()
|
|
1031
|
+
return a**D * self.reverse(D).rescale(~a).reverse(D)
|
|
1032
|
+
aval = a.valuation()
|
|
1033
|
+
arprec = a.precision_relative()
|
|
1034
|
+
if self._valaddeds is None:
|
|
1035
|
+
self._comp_valaddeds()
|
|
1036
|
+
valadded = [self._valaddeds[i] + aval * i for i in range(len(self._valaddeds))]
|
|
1037
|
+
relprec = [infinity if (self._relprecs[i] is infinity) else (min(self._relprecs[i] - self._valaddeds[i], arprec) + aval * i + self._valaddeds[i]) for i in range(len(self._relprecs))]
|
|
1038
|
+
relprec[0] = self._relprecs[0]
|
|
1039
|
+
if a == 0:
|
|
1040
|
+
zzpoly = self._poly.parent()(0)
|
|
1041
|
+
else:
|
|
1042
|
+
zzpoly = self._poly.rescale(Integer(a))
|
|
1043
|
+
return Polynomial_padic_capped_relative_dense(self.parent(), (zzpoly, self._valbase, relprec, False, valadded, None), construct=True)
|
|
1044
|
+
|
|
1045
|
+
def quo_rem(self, right, secure=False):
|
|
1046
|
+
"""
|
|
1047
|
+
Return the quotient and remainder in division of ``self`` by ``right``.
|
|
1048
|
+
|
|
1049
|
+
EXAMPLES::
|
|
1050
|
+
|
|
1051
|
+
sage: K = Qp(3,10)
|
|
1052
|
+
sage: R.<T> = K[]
|
|
1053
|
+
sage: f = T + 2
|
|
1054
|
+
sage: g = T**4 + 3*T+22
|
|
1055
|
+
sage: g.quo_rem(f)
|
|
1056
|
+
((1 + O(3^10))*T^3 + (1 + 2*3 + 2*3^2 + 2*3^3 + 2*3^4 + 2*3^5 + 2*3^6 + 2*3^7 + 2*3^8 + 2*3^9 + O(3^10))*T^2 + (1 + 3 + O(3^10))*T + 1 + 3 + 2*3^2 + 2*3^3 + 2*3^4 + 2*3^5 + 2*3^6 + 2*3^7 + 2*3^8 + 2*3^9 + O(3^10),
|
|
1057
|
+
2 + 3 + 3^3 + O(3^10))
|
|
1058
|
+
|
|
1059
|
+
TESTS:
|
|
1060
|
+
|
|
1061
|
+
Verify that :issue:`15188` has been resolved::
|
|
1062
|
+
|
|
1063
|
+
sage: R.<x> = Qp(3)[]
|
|
1064
|
+
sage: x.quo_rem(x)
|
|
1065
|
+
(1 + O(3^20), 0)
|
|
1066
|
+
"""
|
|
1067
|
+
return self._quo_rem_list(right, secure=secure)
|
|
1068
|
+
|
|
1069
|
+
def _quo_rem_naive(self, right):
|
|
1070
|
+
"""
|
|
1071
|
+
An implementation of quo_rem that does not have good run-time
|
|
1072
|
+
or precision characteristics.
|
|
1073
|
+
|
|
1074
|
+
A better one is :meth:`_quo_rem_list`.
|
|
1075
|
+
"""
|
|
1076
|
+
K = self.base_ring().fraction_field()
|
|
1077
|
+
f = self.base_extend(K)
|
|
1078
|
+
g = right.base_extend(K)
|
|
1079
|
+
if g == 0:
|
|
1080
|
+
raise ZeroDivisionError("cannot divide by a polynomial "
|
|
1081
|
+
"indistinguishable from 0")
|
|
1082
|
+
x = f.parent().gen()
|
|
1083
|
+
quo = f.parent()(0)
|
|
1084
|
+
while f.degree() >= g.degree():
|
|
1085
|
+
a = f.leading_coefficient() / g.leading_coefficient()
|
|
1086
|
+
quo = quo + a * (x ** (f.degree() - g.degree()))
|
|
1087
|
+
f = f - a * (x ** (f.degree() - g.degree())) * g
|
|
1088
|
+
return (quo, f)
|
|
1089
|
+
|
|
1090
|
+
def _quo_rem_list(self, right, secure):
|
|
1091
|
+
"""
|
|
1092
|
+
An implementation of :meth:`quo_rem` using lists of coefficients.
|
|
1093
|
+
|
|
1094
|
+
Faster than :meth:`_quo_rem_naive`.
|
|
1095
|
+
|
|
1096
|
+
AUTHOR:
|
|
1097
|
+
|
|
1098
|
+
- Xavier Caruso (2013-03)
|
|
1099
|
+
"""
|
|
1100
|
+
if right.is_zero():
|
|
1101
|
+
raise ZeroDivisionError("cannot divide by a polynomial "
|
|
1102
|
+
"indistinguishable from 0")
|
|
1103
|
+
a = self.list()
|
|
1104
|
+
da = len(a) - 1
|
|
1105
|
+
b = right.list()
|
|
1106
|
+
db = right.degree(secure=secure)
|
|
1107
|
+
inv = ~b[db]
|
|
1108
|
+
q = []
|
|
1109
|
+
for i in range(da, db - 1, -1):
|
|
1110
|
+
c = inv * a[i]
|
|
1111
|
+
q.append(c)
|
|
1112
|
+
for j in range(db):
|
|
1113
|
+
a[j + i - db] -= c * b[j]
|
|
1114
|
+
q.reverse()
|
|
1115
|
+
K = self.base_ring().fraction_field()
|
|
1116
|
+
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
|
|
1117
|
+
parent = PolynomialRing(K, name=self.parent().variable_name())
|
|
1118
|
+
return parent(q), parent(a[:db])
|
|
1119
|
+
|
|
1120
|
+
# def gcd(self, right):
|
|
1121
|
+
# raise NotImplementedError
|
|
1122
|
+
|
|
1123
|
+
# def lcm(self, right):
|
|
1124
|
+
# raise NotImplementedError
|
|
1125
|
+
|
|
1126
|
+
# def discriminant(self):
|
|
1127
|
+
# raise NotImplementedError
|
|
1128
|
+
|
|
1129
|
+
def disc(self):
|
|
1130
|
+
return self.discriminant()
|
|
1131
|
+
|
|
1132
|
+
# def resultant(self):
|
|
1133
|
+
# raise NotImplementedError
|
|
1134
|
+
|
|
1135
|
+
def newton_polygon(self):
|
|
1136
|
+
r"""
|
|
1137
|
+
Return the Newton polygon of this polynomial.
|
|
1138
|
+
|
|
1139
|
+
.. NOTE::
|
|
1140
|
+
|
|
1141
|
+
If some coefficients have not enough precision an error is raised.
|
|
1142
|
+
|
|
1143
|
+
OUTPUT: a :class:`NewtonPolygon`
|
|
1144
|
+
|
|
1145
|
+
EXAMPLES::
|
|
1146
|
+
|
|
1147
|
+
sage: K = Qp(2, prec=5)
|
|
1148
|
+
sage: P.<x> = K[]
|
|
1149
|
+
sage: f = x^4 + 2^3*x^3 + 2^13*x^2 + 2^21*x + 2^37
|
|
1150
|
+
sage: f.newton_polygon() # needs sage.geometry.polyhedron
|
|
1151
|
+
Finite Newton polygon with 4 vertices: (0, 37), (1, 21), (3, 3), (4, 0)
|
|
1152
|
+
|
|
1153
|
+
sage: K = Qp(5)
|
|
1154
|
+
sage: R.<t> = K[]
|
|
1155
|
+
sage: f = 5 + 3*t + t^4 + 25*t^10
|
|
1156
|
+
sage: f.newton_polygon() # needs sage.geometry.polyhedron
|
|
1157
|
+
Finite Newton polygon with 4 vertices: (0, 1), (1, 0), (4, 0), (10, 2)
|
|
1158
|
+
|
|
1159
|
+
Here is an example where the computation fails because precision is
|
|
1160
|
+
not sufficient::
|
|
1161
|
+
|
|
1162
|
+
sage: g = f + K(0,0)*t^4; g
|
|
1163
|
+
(5^2 + O(5^22))*t^10 + O(5^0)*t^4 + (3 + O(5^20))*t + 5 + O(5^21)
|
|
1164
|
+
sage: g.newton_polygon() # needs sage.geometry.polyhedron
|
|
1165
|
+
Traceback (most recent call last):
|
|
1166
|
+
...
|
|
1167
|
+
PrecisionError: The coefficient of t^4 has not enough precision
|
|
1168
|
+
|
|
1169
|
+
TESTS::
|
|
1170
|
+
|
|
1171
|
+
sage: (5*f).newton_polygon() # needs sage.geometry.polyhedron
|
|
1172
|
+
Finite Newton polygon with 4 vertices: (0, 2), (1, 1), (4, 1), (10, 3)
|
|
1173
|
+
|
|
1174
|
+
AUTHOR:
|
|
1175
|
+
|
|
1176
|
+
- Xavier Caruso (2013-03-20)
|
|
1177
|
+
"""
|
|
1178
|
+
if self._valaddeds is None:
|
|
1179
|
+
self._comp_valaddeds()
|
|
1180
|
+
from sage.geometry.newton_polygon import NewtonPolygon
|
|
1181
|
+
valbase = self._valbase
|
|
1182
|
+
polygon = NewtonPolygon([(x, val + valbase)
|
|
1183
|
+
for x, val in enumerate(self._valaddeds)])
|
|
1184
|
+
polygon_prec = NewtonPolygon([(x, val + valbase)
|
|
1185
|
+
for x, val in enumerate(self._relprecs)])
|
|
1186
|
+
vertices = polygon.vertices(copy=False)
|
|
1187
|
+
vertices_prec = polygon_prec.vertices(copy=False)
|
|
1188
|
+
|
|
1189
|
+
# The two following tests should always fail (i.e. the corresponding errors
|
|
1190
|
+
# should never be raised). However, it's probably safer to keep them.
|
|
1191
|
+
if vertices[0][0] > vertices_prec[0][0]:
|
|
1192
|
+
raise PrecisionError("The constant coefficient has not enough precision")
|
|
1193
|
+
if vertices[-1][0] < vertices_prec[-1][0]:
|
|
1194
|
+
raise PrecisionError("The leading coefficient has not enough precision")
|
|
1195
|
+
|
|
1196
|
+
for (x, y) in vertices:
|
|
1197
|
+
if polygon_prec(x) <= y:
|
|
1198
|
+
raise PrecisionError("The coefficient of %s^%s has not enough precision" % (self.parent().variable_name(), x))
|
|
1199
|
+
return polygon
|
|
1200
|
+
|
|
1201
|
+
def is_eisenstein(self, secure=False):
|
|
1202
|
+
"""
|
|
1203
|
+
Return ``True`` if this polynomial is an Eisenstein polynomial.
|
|
1204
|
+
|
|
1205
|
+
EXAMPLES::
|
|
1206
|
+
|
|
1207
|
+
sage: K = Qp(5)
|
|
1208
|
+
sage: R.<t> = K[]
|
|
1209
|
+
sage: f = 5 + 5*t + t^4
|
|
1210
|
+
sage: f.is_eisenstein()
|
|
1211
|
+
True
|
|
1212
|
+
|
|
1213
|
+
TESTS::
|
|
1214
|
+
|
|
1215
|
+
sage: f = R([K(5,1),0,0,1]); f
|
|
1216
|
+
(1 + O(5^20))*t^3 + O(5)
|
|
1217
|
+
sage: f.is_eisenstein()
|
|
1218
|
+
Traceback (most recent call last):
|
|
1219
|
+
...
|
|
1220
|
+
PrecisionError: Not enough precision on the constant coefficient
|
|
1221
|
+
|
|
1222
|
+
sage: g = R([5,K(0,0),0,1]); g
|
|
1223
|
+
(1 + O(5^20))*t^3 + O(5^0)*t + 5 + O(5^21)
|
|
1224
|
+
sage: g.is_eisenstein()
|
|
1225
|
+
True
|
|
1226
|
+
sage: g.is_eisenstein(secure=True)
|
|
1227
|
+
Traceback (most recent call last):
|
|
1228
|
+
...
|
|
1229
|
+
PrecisionError: Not enough precision on the coefficient of t
|
|
1230
|
+
|
|
1231
|
+
AUTHOR:
|
|
1232
|
+
|
|
1233
|
+
- Xavier Caruso (2013-03)
|
|
1234
|
+
"""
|
|
1235
|
+
deg = self.degree()
|
|
1236
|
+
if secure and self.prec_degree() > deg:
|
|
1237
|
+
raise PrecisionError("The degree of the polynomial is not determined")
|
|
1238
|
+
if self._valaddeds is None:
|
|
1239
|
+
self._comp_valaddeds()
|
|
1240
|
+
compval = 1 - self._valbase
|
|
1241
|
+
valaddeds = self._valaddeds
|
|
1242
|
+
relprecs = self._relprecs
|
|
1243
|
+
if relprecs[0] <= compval: # not enough precision
|
|
1244
|
+
if valaddeds[0] < relprecs[0]:
|
|
1245
|
+
return False
|
|
1246
|
+
raise PrecisionError("Not enough precision on the constant coefficient")
|
|
1247
|
+
else:
|
|
1248
|
+
if valaddeds[0] != compval:
|
|
1249
|
+
return False
|
|
1250
|
+
for i in range(1, deg):
|
|
1251
|
+
if relprecs[i] < compval: # not enough precision
|
|
1252
|
+
if valaddeds[i] < relprecs[i]:
|
|
1253
|
+
return False
|
|
1254
|
+
if secure:
|
|
1255
|
+
if i == 1:
|
|
1256
|
+
raise PrecisionError("Not enough precision on the coefficient of %s" % self.variable_name())
|
|
1257
|
+
else:
|
|
1258
|
+
raise PrecisionError("Not enough precision on the coefficient of %s^%s" % (self.variable_name(), i))
|
|
1259
|
+
else:
|
|
1260
|
+
if valaddeds[i] < compval:
|
|
1261
|
+
return False
|
|
1262
|
+
if valaddeds[deg] != -self._valbase:
|
|
1263
|
+
return False
|
|
1264
|
+
return True
|
|
1265
|
+
|
|
1266
|
+
def newton_slopes(self, repetition=True):
|
|
1267
|
+
"""
|
|
1268
|
+
Return a list of the Newton slopes of this polynomial.
|
|
1269
|
+
|
|
1270
|
+
These are the valuations of the roots of this polynomial.
|
|
1271
|
+
|
|
1272
|
+
If ``repetition`` is ``True``, each slope is repeated a number of
|
|
1273
|
+
times equal to its multiplicity. Otherwise it appears only one time.
|
|
1274
|
+
|
|
1275
|
+
INPUT:
|
|
1276
|
+
|
|
1277
|
+
- ``repetition`` -- boolean (default: ``True``)
|
|
1278
|
+
|
|
1279
|
+
OUTPUT: list of rationals
|
|
1280
|
+
|
|
1281
|
+
EXAMPLES::
|
|
1282
|
+
|
|
1283
|
+
sage: K = Qp(5)
|
|
1284
|
+
sage: R.<t> = K[]
|
|
1285
|
+
sage: f = 5 + 3*t + t^4 + 25*t^10
|
|
1286
|
+
sage: f.newton_polygon() # needs sage.geometry.polyhedron
|
|
1287
|
+
Finite Newton polygon with 4 vertices: (0, 1), (1, 0), (4, 0),
|
|
1288
|
+
(10, 2)
|
|
1289
|
+
sage: f.newton_slopes() # needs sage.geometry.polyhedron
|
|
1290
|
+
[1, 0, 0, 0, -1/3, -1/3, -1/3, -1/3, -1/3, -1/3]
|
|
1291
|
+
|
|
1292
|
+
sage: f.newton_slopes(repetition=False) # needs sage.geometry.polyhedron
|
|
1293
|
+
[1, 0, -1/3]
|
|
1294
|
+
|
|
1295
|
+
AUTHOR:
|
|
1296
|
+
|
|
1297
|
+
- Xavier Caruso (2013-03-20)
|
|
1298
|
+
"""
|
|
1299
|
+
polygon = self.newton_polygon()
|
|
1300
|
+
return [-s for s in polygon.slopes(repetition=repetition)]
|
|
1301
|
+
|
|
1302
|
+
def factor_mod(self):
|
|
1303
|
+
r"""
|
|
1304
|
+
Return the factorization of ``self`` modulo `p`.
|
|
1305
|
+
"""
|
|
1306
|
+
self._normalize()
|
|
1307
|
+
if self._valbase < 0:
|
|
1308
|
+
raise ValueError("Polynomial does not have integral coefficients")
|
|
1309
|
+
elif self._valbase > 0:
|
|
1310
|
+
raise ValueError("Factorization of the zero polynomial not defined")
|
|
1311
|
+
elif min(self._relprecs) <= 0:
|
|
1312
|
+
raise PrecisionError("Polynomial is not known to high enough precision")
|
|
1313
|
+
return self._poly.factor_mod(self.base_ring().prime())
|
|
1314
|
+
|
|
1315
|
+
|
|
1316
|
+
def _extend_by_infinity(L, n):
|
|
1317
|
+
return L + [infinity] * (n - len(L))
|
|
1318
|
+
|
|
1319
|
+
|
|
1320
|
+
def make_padic_poly(parent, x, version):
|
|
1321
|
+
if version == 0:
|
|
1322
|
+
return parent(x, construct=True)
|
|
1323
|
+
else:
|
|
1324
|
+
raise ValueError("unknown pickling version")
|