passagemath-ntl 10.6.36__cp314-cp314t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_ntl-10.6.36.dist-info/METADATA +122 -0
- passagemath_ntl-10.6.36.dist-info/RECORD +161 -0
- passagemath_ntl-10.6.36.dist-info/WHEEL +6 -0
- passagemath_ntl-10.6.36.dist-info/top_level.txt +2 -0
- passagemath_ntl.libs/libgf2x-fbd36f80.so.3.0.0 +0 -0
- passagemath_ntl.libs/libgmp-93ebf16a.so.10.5.0 +0 -0
- passagemath_ntl.libs/libmpfi-ad12a86d.so.0.0.0 +0 -0
- passagemath_ntl.libs/libmpfr-9d41ebf1.so.6.2.1 +0 -0
- passagemath_ntl.libs/libntl-0043a3a2.so.44.0.1 +0 -0
- sage/all__sagemath_ntl.py +7 -0
- sage/libs/all__sagemath_ntl.py +3 -0
- sage/libs/mpfi/__init__.pxd +287 -0
- sage/libs/mpfi/types.pxd +10 -0
- sage/libs/ntl/GF2.pxd +18 -0
- sage/libs/ntl/GF2E.pxd +28 -0
- sage/libs/ntl/GF2EX.pxd +12 -0
- sage/libs/ntl/GF2X.pxd +81 -0
- sage/libs/ntl/ZZ.pxd +93 -0
- sage/libs/ntl/ZZX.pxd +85 -0
- sage/libs/ntl/ZZ_p.pxd +28 -0
- sage/libs/ntl/ZZ_pE.pxd +37 -0
- sage/libs/ntl/ZZ_pEX.pxd +106 -0
- sage/libs/ntl/ZZ_pX.pxd +122 -0
- sage/libs/ntl/__init__.py +4 -0
- sage/libs/ntl/all.py +72 -0
- sage/libs/ntl/conversion.pxd +106 -0
- sage/libs/ntl/convert.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/libs/ntl/convert.pxd +7 -0
- sage/libs/ntl/convert.pyx +38 -0
- sage/libs/ntl/decl.pxi +18 -0
- sage/libs/ntl/error.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/libs/ntl/error.pyx +63 -0
- sage/libs/ntl/lzz_p.pxd +20 -0
- sage/libs/ntl/lzz_pX.pxd +59 -0
- sage/libs/ntl/mat_GF2.pxd +30 -0
- sage/libs/ntl/mat_GF2E.pxd +30 -0
- sage/libs/ntl/mat_ZZ.pxd +59 -0
- sage/libs/ntl/misc.pxi +33 -0
- sage/libs/ntl/ntl_GF2.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/libs/ntl/ntl_GF2.pxd +5 -0
- sage/libs/ntl/ntl_GF2.pyx +281 -0
- sage/libs/ntl/ntl_GF2E.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/libs/ntl/ntl_GF2E.pxd +8 -0
- sage/libs/ntl/ntl_GF2E.pyx +488 -0
- sage/libs/ntl/ntl_GF2EContext.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/libs/ntl/ntl_GF2EContext.pxd +9 -0
- sage/libs/ntl/ntl_GF2EContext.pyx +134 -0
- sage/libs/ntl/ntl_GF2EX.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/libs/ntl/ntl_GF2EX.pxd +10 -0
- sage/libs/ntl/ntl_GF2EX.pyx +251 -0
- sage/libs/ntl/ntl_GF2X.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/libs/ntl/ntl_GF2X.pxd +5 -0
- sage/libs/ntl/ntl_GF2X.pyx +771 -0
- sage/libs/ntl/ntl_GF2X_linkage.pxi +404 -0
- sage/libs/ntl/ntl_ZZ.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/libs/ntl/ntl_ZZ.pxd +7 -0
- sage/libs/ntl/ntl_ZZ.pyx +541 -0
- sage/libs/ntl/ntl_ZZX.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/libs/ntl/ntl_ZZX.pxd +7 -0
- sage/libs/ntl/ntl_ZZX.pyx +1206 -0
- sage/libs/ntl/ntl_ZZ_p.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/libs/ntl/ntl_ZZ_p.pxd +10 -0
- sage/libs/ntl/ntl_ZZ_p.pyx +509 -0
- sage/libs/ntl/ntl_ZZ_pContext.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/libs/ntl/ntl_ZZ_pContext.pxd +22 -0
- sage/libs/ntl/ntl_ZZ_pContext.pyx +201 -0
- sage/libs/ntl/ntl_ZZ_pE.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/libs/ntl/ntl_ZZ_pE.pxd +11 -0
- sage/libs/ntl/ntl_ZZ_pE.pyx +349 -0
- sage/libs/ntl/ntl_ZZ_pEContext.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/libs/ntl/ntl_ZZ_pEContext.pxd +23 -0
- sage/libs/ntl/ntl_ZZ_pEContext.pyx +226 -0
- sage/libs/ntl/ntl_ZZ_pEX.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/libs/ntl/ntl_ZZ_pEX.pxd +10 -0
- sage/libs/ntl/ntl_ZZ_pEX.pyx +1255 -0
- sage/libs/ntl/ntl_ZZ_pEX_linkage.pxi +420 -0
- sage/libs/ntl/ntl_ZZ_pX.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/libs/ntl/ntl_ZZ_pX.pxd +17 -0
- sage/libs/ntl/ntl_ZZ_pX.pyx +1532 -0
- sage/libs/ntl/ntl_lzz_p.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/libs/ntl/ntl_lzz_p.pxd +8 -0
- sage/libs/ntl/ntl_lzz_p.pyx +440 -0
- sage/libs/ntl/ntl_lzz_pContext.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/libs/ntl/ntl_lzz_pContext.pxd +7 -0
- sage/libs/ntl/ntl_lzz_pContext.pyx +137 -0
- sage/libs/ntl/ntl_lzz_pX.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/libs/ntl/ntl_lzz_pX.pxd +10 -0
- sage/libs/ntl/ntl_lzz_pX.pyx +902 -0
- sage/libs/ntl/ntl_mat_GF2.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/libs/ntl/ntl_mat_GF2.pxd +8 -0
- sage/libs/ntl/ntl_mat_GF2.pyx +612 -0
- sage/libs/ntl/ntl_mat_GF2E.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/libs/ntl/ntl_mat_GF2E.pxd +10 -0
- sage/libs/ntl/ntl_mat_GF2E.pyx +752 -0
- sage/libs/ntl/ntl_mat_ZZ.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/libs/ntl/ntl_mat_ZZ.pxd +6 -0
- sage/libs/ntl/ntl_mat_ZZ.pyx +1523 -0
- sage/libs/ntl/ntl_tools.pxd +3 -0
- sage/libs/ntl/ntlwrap.h +53 -0
- sage/libs/ntl/ntlwrap_impl.h +743 -0
- sage/libs/ntl/types.pxd +157 -0
- sage/libs/ntl/vec_GF2.pxd +26 -0
- sage/libs/ntl/vec_GF2E.pxd +2 -0
- sage/matrix/all__sagemath_ntl.py +1 -0
- sage/matrix/matrix_modn_dense_double.pxd +10 -0
- sage/matrix/matrix_modn_dense_float.pxd +9 -0
- sage/matrix/matrix_modn_dense_template.pxi +3257 -0
- sage/matrix/matrix_modn_dense_template_header.pxi +15 -0
- sage/matrix/matrix_modn_sparse.pxd +8 -0
- sage/misc/all__sagemath_ntl.py +1 -0
- sage/rings/all__sagemath_ntl.py +7 -0
- sage/rings/bernmm.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/rings/bernmm.pyx +161 -0
- sage/rings/bernoulli_mod_p.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/rings/bernoulli_mod_p.pyx +313 -0
- sage/rings/finite_rings/all__sagemath_ntl.py +1 -0
- sage/rings/finite_rings/finite_field_ntl_gf2e.py +305 -0
- sage/rings/finite_rings/residue_field_ntl_gf2e.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/rings/finite_rings/residue_field_ntl_gf2e.pyx +140 -0
- sage/rings/padics/all__sagemath_ntl.py +5 -0
- sage/rings/padics/padic_ZZ_pX_CA_element.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/rings/padics/padic_ZZ_pX_CA_element.pxd +25 -0
- sage/rings/padics/padic_ZZ_pX_CA_element.pyx +2368 -0
- sage/rings/padics/padic_ZZ_pX_CR_element.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/rings/padics/padic_ZZ_pX_CR_element.pxd +33 -0
- sage/rings/padics/padic_ZZ_pX_CR_element.pyx +3277 -0
- sage/rings/padics/padic_ZZ_pX_FM_element.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/rings/padics/padic_ZZ_pX_FM_element.pxd +12 -0
- sage/rings/padics/padic_ZZ_pX_FM_element.pyx +1739 -0
- sage/rings/padics/padic_ZZ_pX_element.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/rings/padics/padic_ZZ_pX_element.pxd +6 -0
- sage/rings/padics/padic_ZZ_pX_element.pyx +919 -0
- sage/rings/padics/padic_ext_element.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/rings/padics/padic_ext_element.pxd +38 -0
- sage/rings/padics/padic_ext_element.pyx +512 -0
- sage/rings/padics/pow_computer_ext.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/rings/padics/pow_computer_ext.pxd +107 -0
- sage/rings/padics/pow_computer_ext.pyx +2401 -0
- sage/rings/polynomial/all__sagemath_ntl.py +1 -0
- sage/rings/polynomial/evaluation_ntl.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/evaluation_ntl.pxd +7 -0
- sage/rings/polynomial/evaluation_ntl.pyx +70 -0
- sage/rings/polynomial/polynomial_gf2x.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/polynomial_gf2x.pxd +10 -0
- sage/rings/polynomial/polynomial_gf2x.pyx +364 -0
- sage/rings/polynomial/polynomial_integer_dense_ntl.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/polynomial_integer_dense_ntl.pxd +8 -0
- sage/rings/polynomial/polynomial_integer_dense_ntl.pyx +1128 -0
- sage/rings/polynomial/polynomial_modn_dense_ntl.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/polynomial_modn_dense_ntl.pxd +36 -0
- sage/rings/polynomial/polynomial_modn_dense_ntl.pyx +2049 -0
- sage/rings/polynomial/polynomial_template.pxi +842 -0
- sage/rings/polynomial/polynomial_template_header.pxi +11 -0
- sage/rings/polynomial/polynomial_zz_pex.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/polynomial_zz_pex.pxd +12 -0
- sage/rings/polynomial/polynomial_zz_pex.pyx +778 -0
- sage/rings/real_mpfi.pxd +50 -0
- sage/schemes/all__sagemath_ntl.py +1 -0
- sage/schemes/hyperelliptic_curves/all__sagemath_ntl.py +1 -0
- sage/schemes/hyperelliptic_curves/hypellfrob.cpython-314t-aarch64-linux-gnu.so +0 -0
- sage/schemes/hyperelliptic_curves/hypellfrob.pyx +252 -0
|
@@ -0,0 +1,2401 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-ntl
|
|
2
|
+
# distutils: libraries = NTL_LIBRARIES gmp M_LIBRARIES
|
|
3
|
+
# distutils: extra_compile_args = NTL_CFLAGS
|
|
4
|
+
# distutils: include_dirs = NTL_INCDIR
|
|
5
|
+
# distutils: library_dirs = NTL_LIBDIR
|
|
6
|
+
# distutils: extra_link_args = NTL_LIBEXTRA
|
|
7
|
+
# distutils: language = c++
|
|
8
|
+
# sage.doctest: needs sage.rings.padics
|
|
9
|
+
"""
|
|
10
|
+
PowComputer_ext
|
|
11
|
+
|
|
12
|
+
The classes in this file are designed to be attached to `p`-adic parents
|
|
13
|
+
and elements for Cython access to properties of the parent.
|
|
14
|
+
|
|
15
|
+
In addition to storing the defining polynomial (as an NTL polynomial)
|
|
16
|
+
at different precisions, they also cache powers of p and data to speed
|
|
17
|
+
right shifting of elements.
|
|
18
|
+
|
|
19
|
+
The hierarchy of PowComputers splits first at whether it's for a base
|
|
20
|
+
ring (Qp or Zp) or an extension.
|
|
21
|
+
|
|
22
|
+
Among the extension classes (those in this file), they are first split
|
|
23
|
+
by the type of NTL polynomial (ntl_ZZ_pX or ntl_ZZ_pEX), then by the
|
|
24
|
+
amount and style of caching (see below). Finally, there are
|
|
25
|
+
subclasses of the ntl_ZZ_pX PowComputers that cache additional
|
|
26
|
+
information for Eisenstein extensions.
|
|
27
|
+
|
|
28
|
+
There are three styles of caching:
|
|
29
|
+
|
|
30
|
+
* FM: caches powers of p up to the cache_limit, only caches the
|
|
31
|
+
polynomial modulus and the ntl_ZZ_pContext of precision
|
|
32
|
+
prec_cap.
|
|
33
|
+
|
|
34
|
+
* small: Requires cache_limit = prec_cap. Caches p^k for every k
|
|
35
|
+
up to the cache_limit and caches a polynomial modulus and a
|
|
36
|
+
ntl_ZZ_pContext for each such power of p.
|
|
37
|
+
|
|
38
|
+
* big: Caches as the small does up to cache_limit and caches
|
|
39
|
+
prec_cap. Also has a dictionary that caches values above the
|
|
40
|
+
cache_limit when they are computed (rather than at ring creation
|
|
41
|
+
time).
|
|
42
|
+
|
|
43
|
+
AUTHORS:
|
|
44
|
+
|
|
45
|
+
- David Roe (2008-01-01) initial version
|
|
46
|
+
"""
|
|
47
|
+
# ****************************************************************************
|
|
48
|
+
# Copyright (C) 2008 David Roe <roed.math@gmail.com>
|
|
49
|
+
# William Stein <wstein@gmail.com>
|
|
50
|
+
#
|
|
51
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
52
|
+
# as published by the Free Software Foundation; either version 2 of
|
|
53
|
+
# the License, or (at your option) any later version.
|
|
54
|
+
#
|
|
55
|
+
# https://www.gnu.org/licenses/
|
|
56
|
+
# ****************************************************************************
|
|
57
|
+
|
|
58
|
+
from cpython.list cimport *
|
|
59
|
+
from cpython.dict cimport *
|
|
60
|
+
|
|
61
|
+
from cysignals.signals cimport sig_on, sig_off
|
|
62
|
+
|
|
63
|
+
include "../../libs/ntl/decl.pxi"
|
|
64
|
+
|
|
65
|
+
from sage.misc.timing import cputime
|
|
66
|
+
from sage.libs.gmp.mpz cimport *
|
|
67
|
+
from sage.libs.ntl.ntl_ZZ_pContext cimport ntl_ZZ_pContext_factory
|
|
68
|
+
from sage.libs.ntl.ntl_ZZ_pContext import ZZ_pContext_factory
|
|
69
|
+
from sage.libs.ntl.ntl_ZZ cimport ntl_ZZ
|
|
70
|
+
from sage.libs.ntl.ntl_ZZ_pX cimport ntl_ZZ_pX, ntl_ZZ_pX_Modulus
|
|
71
|
+
from sage.rings.integer cimport Integer
|
|
72
|
+
|
|
73
|
+
cdef extern from "../../ext/ccobject.h":
|
|
74
|
+
ZZ_c* Allocate_ZZ_array "Allocate_array<ZZ>"(size_t n)
|
|
75
|
+
void Delete_ZZ_array "Delete_array<ZZ>"(ZZ_c* v)
|
|
76
|
+
ZZ_pX_c* Allocate_ZZ_pX_array "Allocate_array<ZZ_pX>"(size_t n)
|
|
77
|
+
void Delete_ZZ_pX_array "Delete_array<ZZ_pX>"(ZZ_pX_c* v)
|
|
78
|
+
ZZ_pX_Multiplier_c* Allocate_ZZ_pX_Multiplier_array "Allocate_array<ZZ_pXMultiplier>"(size_t n)
|
|
79
|
+
void Delete_ZZ_pX_Multiplier_array "Delete_array<ZZ_pXMultiplier>"(ZZ_pX_Multiplier_c* v)
|
|
80
|
+
ZZ_pX_Modulus_c* Allocate_ZZ_pX_Modulus_array "Allocate_array<ZZ_pXModulus>"(size_t n)
|
|
81
|
+
void Delete_ZZ_pX_Modulus_array "Delete_array<ZZ_pXModulus>"(ZZ_pX_Modulus_c* v)
|
|
82
|
+
|
|
83
|
+
cdef int ZZ_pX_Eis_init(PowComputer_ZZ_pX prime_pow, ntl_ZZ_pX shift_seed) except -1:
|
|
84
|
+
"""
|
|
85
|
+
Precomputes quantities for shifting right in Eisenstein extensions.
|
|
86
|
+
|
|
87
|
+
INPUT:
|
|
88
|
+
|
|
89
|
+
- ``prime_pow`` -- the PowComputer to be initialized
|
|
90
|
+
- ``shift_seed`` -- x^e/p as a polynomial of degree at most e-1 in x
|
|
91
|
+
|
|
92
|
+
EXAMPLES::
|
|
93
|
+
|
|
94
|
+
sage: A = PowComputer_ext_maker(5, 10, 10, 40, False, ntl.ZZ_pX([-5,65,125,0,1],5^10), 'small','e',ntl.ZZ_pX([1,-13,-25],5^10)) # indirect doctest
|
|
95
|
+
"""
|
|
96
|
+
if prime_pow.deg <= 1:
|
|
97
|
+
raise ValueError("Eisenstein extension must have degree at least 2")
|
|
98
|
+
cdef unsigned long D = prime_pow.deg - 1
|
|
99
|
+
cdef int low_length = 0
|
|
100
|
+
cdef int high_length = 0
|
|
101
|
+
if sizeof(long) > 4 and D > 4294967295: # 2^32 - 1
|
|
102
|
+
low_length += 32
|
|
103
|
+
D = D >> 32
|
|
104
|
+
if D >= 65536: # 2^16
|
|
105
|
+
low_length += 16
|
|
106
|
+
D = D >> 16
|
|
107
|
+
if D >= 256: # 2^8
|
|
108
|
+
low_length += 8
|
|
109
|
+
D = D >> 8
|
|
110
|
+
if D >= 16: # 2^4
|
|
111
|
+
low_length += 4
|
|
112
|
+
D = D >> 4
|
|
113
|
+
if D >= 4: # 2^2
|
|
114
|
+
low_length += 2
|
|
115
|
+
D = D >> 2
|
|
116
|
+
if D >= 2: # 2^1
|
|
117
|
+
low_length += 1
|
|
118
|
+
D = D >> 1
|
|
119
|
+
low_length += 1
|
|
120
|
+
# low_length is the number of elements in the list we need to store.
|
|
121
|
+
# if deg = 2, low_length = 1 (store p/x)
|
|
122
|
+
# if deg = 3,4, low_length = 2 (store p/x, p/x^2)
|
|
123
|
+
# if deg = 5,6,7,8, low_length = 3 (store p/x, p/x^2, p/x^4)
|
|
124
|
+
# if deg = 9,...,16, low_length = 4 (store p/x, p/x^2, p/x^4, p/x^8)
|
|
125
|
+
|
|
126
|
+
# Now we do the same process for powers of p, ie storing p^(2^k)/x^(e*2^k)
|
|
127
|
+
D = prime_pow.prec_cap - 1
|
|
128
|
+
high_length = 0
|
|
129
|
+
if sizeof(long) > 4 and D > 4294967295: # 2^32 - 1
|
|
130
|
+
high_length += 32
|
|
131
|
+
D = D >> 32
|
|
132
|
+
if D >= 65536: # 2^16
|
|
133
|
+
high_length += 16
|
|
134
|
+
D = D >> 16
|
|
135
|
+
if D >= 256: # 2^8
|
|
136
|
+
high_length += 8
|
|
137
|
+
D = D >> 8
|
|
138
|
+
if D >= 16: # 2^4
|
|
139
|
+
high_length += 4
|
|
140
|
+
D = D >> 4
|
|
141
|
+
if D >= 4: # 2^2
|
|
142
|
+
high_length += 2
|
|
143
|
+
D = D >> 2
|
|
144
|
+
if D >= 2: # 2^1
|
|
145
|
+
high_length += 1
|
|
146
|
+
D = D >> 1
|
|
147
|
+
high_length += 1
|
|
148
|
+
# high_length is the number of elements in the list we need to store.
|
|
149
|
+
# if prec_cap = 2, high_length = 1 (store p/x^e)
|
|
150
|
+
# if prec_cap = 3,4, high_length = 2 (store p/x^e, p^2/x^(2e))
|
|
151
|
+
# if prec_cap = 5,6,7,8, high_length = 3 (store p/x^e, p^2/x^(2e), p^4/x^(4e))
|
|
152
|
+
# if prec_cap = 9,...,16, high_length = 4 (store p/x, p^2/x^(2e), p^4/x^(4e), p^8/x^(8e))
|
|
153
|
+
|
|
154
|
+
cdef ZZ_pX_Multiplier_c* low_shifter_m
|
|
155
|
+
cdef ZZ_pX_Multiplier_c* high_shifter_m
|
|
156
|
+
cdef ZZ_pX_c* low_shifter_p
|
|
157
|
+
cdef ZZ_pX_c* high_shifter_p
|
|
158
|
+
cdef bint multiplier
|
|
159
|
+
if isinstance(prime_pow, PowComputer_ZZ_pX_FM_Eis):
|
|
160
|
+
multiplier = 1
|
|
161
|
+
(<PowComputer_ZZ_pX_FM_Eis>prime_pow).low_length = low_length
|
|
162
|
+
(<PowComputer_ZZ_pX_FM_Eis>prime_pow).high_length = high_length
|
|
163
|
+
|
|
164
|
+
sig_on()
|
|
165
|
+
(<PowComputer_ZZ_pX_FM_Eis>prime_pow).low_shifter = Allocate_ZZ_pX_Multiplier_array(low_length)
|
|
166
|
+
(<PowComputer_ZZ_pX_FM_Eis>prime_pow).high_shifter = Allocate_ZZ_pX_Multiplier_array(high_length)
|
|
167
|
+
sig_off()
|
|
168
|
+
low_shifter_m = (<PowComputer_ZZ_pX_FM_Eis>prime_pow).low_shifter
|
|
169
|
+
high_shifter_m = (<PowComputer_ZZ_pX_FM_Eis>prime_pow).high_shifter
|
|
170
|
+
elif isinstance(prime_pow, PowComputer_ZZ_pX_small_Eis):
|
|
171
|
+
multiplier = 0
|
|
172
|
+
(<PowComputer_ZZ_pX_small_Eis>prime_pow).low_length = low_length
|
|
173
|
+
(<PowComputer_ZZ_pX_small_Eis>prime_pow).high_length = high_length
|
|
174
|
+
|
|
175
|
+
sig_on()
|
|
176
|
+
(<PowComputer_ZZ_pX_small_Eis>prime_pow).low_shifter = Allocate_ZZ_pX_array(low_length)
|
|
177
|
+
(<PowComputer_ZZ_pX_small_Eis>prime_pow).high_shifter = Allocate_ZZ_pX_array(high_length)
|
|
178
|
+
sig_off()
|
|
179
|
+
low_shifter_p = (<PowComputer_ZZ_pX_small_Eis>prime_pow).low_shifter
|
|
180
|
+
high_shifter_p = (<PowComputer_ZZ_pX_small_Eis>prime_pow).high_shifter
|
|
181
|
+
elif isinstance(prime_pow, PowComputer_ZZ_pX_big_Eis):
|
|
182
|
+
multiplier = 0
|
|
183
|
+
(<PowComputer_ZZ_pX_big_Eis>prime_pow).low_length = low_length
|
|
184
|
+
(<PowComputer_ZZ_pX_big_Eis>prime_pow).high_length = high_length
|
|
185
|
+
|
|
186
|
+
sig_on()
|
|
187
|
+
(<PowComputer_ZZ_pX_big_Eis>prime_pow).low_shifter = Allocate_ZZ_pX_array(low_length)
|
|
188
|
+
(<PowComputer_ZZ_pX_big_Eis>prime_pow).high_shifter = Allocate_ZZ_pX_array(high_length)
|
|
189
|
+
sig_off()
|
|
190
|
+
low_shifter_p = (<PowComputer_ZZ_pX_big_Eis>prime_pow).low_shifter
|
|
191
|
+
high_shifter_p = (<PowComputer_ZZ_pX_big_Eis>prime_pow).high_shifter
|
|
192
|
+
else:
|
|
193
|
+
raise TypeError("unrecognized Eisenstein type")
|
|
194
|
+
|
|
195
|
+
cdef long i
|
|
196
|
+
cdef ZZ_pX_c into_multiplier, shift_seed_inv
|
|
197
|
+
# We obtain successive p/x^(2^i) by squaring and then dividing by p. So we need one extra digit of precision.
|
|
198
|
+
prime_pow.restore_top_context()
|
|
199
|
+
#cdef ntl_ZZ_pContext_class cup = prime_pow.get_context(prime_pow.prec_cap + low_length)
|
|
200
|
+
#cup.restore_c()
|
|
201
|
+
#ZZ_pX_conv_modulus(modup, prime_pow.get_top_modulus()[0].val(), cup.x)
|
|
202
|
+
#ZZ_div(a, ZZ_p_rep(ZZ_pX_ConstTerm(modup)), prime_pow.small_powers[1])
|
|
203
|
+
#ZZ_InvMod(a, a, prime_pow.pow_ZZ_tmp(prime_pow.prec_cap + low_length)[0])
|
|
204
|
+
#ZZ_negate(a, a)
|
|
205
|
+
##cdef ntl_ZZ_pX printer = ntl_ZZ_pX([], prime_pow.get_context(prime_pow.prec_cap))
|
|
206
|
+
##printer.x = modup
|
|
207
|
+
# Note that we're losing one digit of precision here.
|
|
208
|
+
# This is correct because right shifting does not preserve precision.
|
|
209
|
+
# a is now the negative of the inverse of the unit part of the constant of the defining polynomial (there's a mouthful)
|
|
210
|
+
#ZZ_pX_RightShift(tmp, modup, 1)
|
|
211
|
+
##printer.x = modup
|
|
212
|
+
#ZZ_pX_mul_ZZ_p(tmp, tmp, ZZ_to_ZZ_p(a))
|
|
213
|
+
# tmp is now p/x
|
|
214
|
+
#ZZ_pX_conv_modulus(into_multiplier, tmp, prime_pow.get_top_context().x)
|
|
215
|
+
##printer.x = into_multiplier
|
|
216
|
+
#if multiplier:
|
|
217
|
+
# ZZ_pX_Multiplier_construct(low_shifter_m)
|
|
218
|
+
# ZZ_pX_Multiplier_build(low_shifter_m[0], into_multiplier, prime_pow.get_top_modulus()[0])
|
|
219
|
+
#else:
|
|
220
|
+
# ZZ_pX_construct(low_shifter_p)
|
|
221
|
+
# low_shifter_p[0] = into_multiplier
|
|
222
|
+
##printer.x = (low_shifter[0]).val()
|
|
223
|
+
ZZ_pX_InvMod_newton_ram(shift_seed_inv, shift_seed.x, prime_pow.get_top_modulus()[0], prime_pow.get_top_context().x)
|
|
224
|
+
for i in range(low_length):
|
|
225
|
+
# Currently tmp = p / x^(2^(i-1)). Squaring yields p^2 / x^(2^i)
|
|
226
|
+
#ZZ_pX_SqrMod(tmp, tmp, modup)
|
|
227
|
+
# Now we divide by p.
|
|
228
|
+
#ZZ_pX_right_pshift(tmp, tmp, prime_pow.small_powers[1], cup.x)
|
|
229
|
+
#ZZ_pX_conv_modulus(into_multiplier, tmp, prime_pow.get_top_context().x)
|
|
230
|
+
ZZ_pX_PowerXMod_long_pre(into_multiplier, prime_pow.e - (1L << i), prime_pow.get_top_modulus()[0])
|
|
231
|
+
ZZ_pX_MulMod_pre(into_multiplier, into_multiplier, shift_seed_inv, prime_pow.get_top_modulus()[0])
|
|
232
|
+
##printer.x = into_multiplier
|
|
233
|
+
if multiplier:
|
|
234
|
+
ZZ_pX_Multiplier_build(low_shifter_m[i], into_multiplier, prime_pow.get_top_modulus()[0])
|
|
235
|
+
else:
|
|
236
|
+
low_shifter_p[i] = into_multiplier
|
|
237
|
+
|
|
238
|
+
# Now we handle high_shifter.
|
|
239
|
+
# We can obtain p/x^e by computing the inverse of x^e/p.
|
|
240
|
+
# Note that modup is still defined from before
|
|
241
|
+
###cup.restore_c()
|
|
242
|
+
|
|
243
|
+
###ZZ_pX_conv_modulus(modup, prime_pow.get_top_modulus()[0].val(), cup.x)
|
|
244
|
+
###ZZ_pX_SetCoeff_long(modup, prime_pow.deg, 0)
|
|
245
|
+
###ZZ_pX_negate(modup, modup)
|
|
246
|
+
###ZZ_pX_right_pshift(into_multiplier, modup, prime_pow.small_powers[1], prime_pow.get_top_context().x)
|
|
247
|
+
|
|
248
|
+
###printer.x = into_multiplier
|
|
249
|
+
|
|
250
|
+
# into_multiplier now holds x^e/p
|
|
251
|
+
# prime_pow.c.x should have been restored, but we make sure
|
|
252
|
+
prime_pow.restore_top_context()
|
|
253
|
+
##printer.x = prime_pow.get_top_modulus()[0].val()
|
|
254
|
+
into_multiplier = shift_seed_inv
|
|
255
|
+
#ZZ_pX_InvMod_newton_ram(into_multiplier, shift_seed.x, prime_pow.get_top_modulus()[0], prime_pow.get_top_context().x)
|
|
256
|
+
##printer.x = into_multiplier
|
|
257
|
+
##ZZ_pX_MulMod_pre(printer.x, into_multiplier, shift_seed.x, prime_pow.get_top_modulus()[0])
|
|
258
|
+
if multiplier:
|
|
259
|
+
ZZ_pX_Multiplier_build(high_shifter_m[0], into_multiplier, prime_pow.get_top_modulus()[0])
|
|
260
|
+
else:
|
|
261
|
+
high_shifter_p[0] = into_multiplier
|
|
262
|
+
# Now we cache powers of p/x^e. This is a unit, so we don't have to worry about precision issues (yay!)
|
|
263
|
+
for i in range(1, high_length):
|
|
264
|
+
ZZ_pX_SqrMod_pre(into_multiplier, into_multiplier, prime_pow.get_top_modulus()[0])
|
|
265
|
+
if multiplier:
|
|
266
|
+
ZZ_pX_Multiplier_build(high_shifter_m[i], into_multiplier, prime_pow.get_top_modulus()[0])
|
|
267
|
+
else:
|
|
268
|
+
high_shifter_p[i] = into_multiplier
|
|
269
|
+
|
|
270
|
+
|
|
271
|
+
def ZZ_pX_eis_shift_test(_shifter, _a, _n, _finalprec):
|
|
272
|
+
"""
|
|
273
|
+
Shift ``_a`` right ``_n`` x-adic digits, where x is considered modulo the
|
|
274
|
+
polynomial in ``_shifter``.
|
|
275
|
+
|
|
276
|
+
EXAMPLES::
|
|
277
|
+
|
|
278
|
+
sage: from sage.rings.padics.pow_computer_ext import ZZ_pX_eis_shift_test
|
|
279
|
+
sage: A = PowComputer_ext_maker(5, 3, 10, 40, False, ntl.ZZ_pX([-5,75,15,0,1],5^10), 'big', 'e',ntl.ZZ_pX([1,-15,-3],5^10))
|
|
280
|
+
sage: ZZ_pX_eis_shift_test(A, [0, 1], 1, 5)
|
|
281
|
+
[1]
|
|
282
|
+
sage: ZZ_pX_eis_shift_test(A, [0, 0, 1], 1, 5)
|
|
283
|
+
[0 1]
|
|
284
|
+
sage: ZZ_pX_eis_shift_test(A, [5], 1, 5)
|
|
285
|
+
[75 15 0 1]
|
|
286
|
+
sage: ZZ_pX_eis_shift_test(A, [1], 1, 5)
|
|
287
|
+
[]
|
|
288
|
+
sage: ZZ_pX_eis_shift_test(A, [17, 91, 8, -2], 1, 5)
|
|
289
|
+
[316 53 3123 3]
|
|
290
|
+
sage: ZZ_pX_eis_shift_test(A, [316, 53, 3123, 3], -1, 5)
|
|
291
|
+
[15 91 8 3123]
|
|
292
|
+
sage: ZZ_pX_eis_shift_test(A, [15, 91, 8, 3123], 1, 5)
|
|
293
|
+
[316 53 3123 3]
|
|
294
|
+
"""
|
|
295
|
+
cdef PowComputer_ZZ_pX shifter = <PowComputer_ZZ_pX?>_shifter
|
|
296
|
+
cdef ntl_ZZ_pX x = <ntl_ZZ_pX>ntl_ZZ_pX(modulus=shifter._prime()**_finalprec)
|
|
297
|
+
cdef ntl_ZZ_pX a = <ntl_ZZ_pX>ntl_ZZ_pX(_a, modulus=shifter._prime()**_finalprec)
|
|
298
|
+
cdef long n = _n
|
|
299
|
+
cdef long finalprec = _finalprec
|
|
300
|
+
ZZ_pX_eis_shift_p(shifter, &x.x, &a.x, n, finalprec)
|
|
301
|
+
return x
|
|
302
|
+
|
|
303
|
+
|
|
304
|
+
cdef int ZZ_pX_eis_shift_p(PowComputer_ZZ_pX self, ZZ_pX_c* x, ZZ_pX_c* a, long n, long finalprec) except -1:
|
|
305
|
+
"""
|
|
306
|
+
Eis-shifts a over by n and puts the result into x.
|
|
307
|
+
|
|
308
|
+
Negative n corresponds to multiplying by x^-n.
|
|
309
|
+
|
|
310
|
+
TESTS::
|
|
311
|
+
|
|
312
|
+
sage: R.<x> = QQ[]
|
|
313
|
+
sage: K = Qp(11,10)
|
|
314
|
+
sage: J.<a> = K.extension(x^30 - 11)
|
|
315
|
+
sage: M.<t> = PowerSeriesRing(J)
|
|
316
|
+
sage: S.<x,y> = QQ[]
|
|
317
|
+
sage: xr = O(a^152)*t + (8*a^2 + 10*a^32 + 7*a^62 + 10*a^92 + 7*a^122 + O(a^152))*t^2 + O(a^154)*t^3 + (2*a^4 + 10*a^64 + 2*a^124 + O(a^154))*t^4 + O(a^156)*t^5 + (5*a^6 + 2*a^96 + a^126 + O(a^156))*t^6 + O(a^158)*t^7 + (7*a^8 + 6*a^38 + 8*a^68 + 2*a^98 + 5*a^128 + O(a^158))*t^8 + O(a^160)*t^9 + (8*a^10 + 10*a^40 + a^70 + 5*a^130 + O(a^160))*t^10 + O(a^162)*t^11 + (9*a^12 + 7*a^42 + 8*a^72 + 6*a^102 + 9*a^132 + O(a^162))*t^12 + O(a^164)*t^13 + (2*a^14 + 5*a^44 + 3*a^74 + a^104 + 4*a^134 + O(a^164))*t^14 + O(a^166)*t^15 + (2*a^16 + 5*a^46 + 8*a^76 + 5*a^106 + 7*a^136 + O(a^166))*t^16 + O(a^168)*t^17 + (7*a^18 + 3*a^48 + 6*a^78 + 9*a^138 + O(a^168))*t^18 + O(a^172)*t^19 + (7*a^50 + 3*a^80 + 5*a^110 + 5*a^140 + 7*a^170 + O(a^172))*t^20 + O(a^172)*t^21 + (a^22 + a^52 + 3*a^82 + 3*a^112 + 2*a^142 + O(a^172))*t^22 + O(a^174)*t^23 + (4*a^24 + 7*a^54 + 9*a^84 + 4*a^114 + 7*a^144 + O(a^174))*t^24 + O(a^176)*t^25 + (3*a^26 + 8*a^56 + 8*a^116 + 5*a^146 + O(a^176))*t^26 + O(a^178)*t^27 + (2*a^28 + 2*a^58 + 6*a^88 + a^118 + 10*a^148 + O(a^178))*t^28 + O(a^180)*t^29 + (8*a^30 + 5*a^60 + 8*a^90 + 5*a^120 + 6*a^150 + O(a^180))*t^30 + O(a^184)*t^31 + (7*a^62 + 9*a^92 + 2*a^182 + O(a^184))*t^32
|
|
318
|
+
sage: yr = xr^2
|
|
319
|
+
sage: dtr = xr.derivative()
|
|
320
|
+
sage: f_dtr = yr*dtr; f_dtr
|
|
321
|
+
O(a^456)*t^2 + O(a^306)*t^3 + O(a^156)*t^4 + (a^6 + 6*a^36 + 2*a^66 + 7*a^96 + 4*a^126 + O(a^156))*t^5 + O(a^158)*t^6 + (a^8 + 2*a^38 + 8*a^68 + 3*a^98 + O(a^158))*t^7 + O(a^160)*t^8 + (8*a^40 + 10*a^100 + 5*a^130 + O(a^160))*t^9 + O(a^162)*t^10 + (2*a^12 + 5*a^42 + 3*a^72 + 7*a^102 + O(a^162))*t^11 + O(a^164)*t^12 + (8*a^14 + a^44 + 6*a^74 + 4*a^104 + 7*a^134 + O(a^164))*t^13 + O(a^166)*t^14 + (2*a^16 + 8*a^46 + 5*a^106 + 4*a^136 + O(a^166))*t^15 + O(a^168)*t^16 + (a^18 + 6*a^48 + 5*a^78 + 2*a^108 + 9*a^138 + O(a^168))*t^17 + O(a^170)*t^18 + (8*a^50 + 2*a^110 + O(a^170))*t^19 + O(a^172)*t^20 + (4*a^52 + 2*a^82 + 7*a^112 + 5*a^142 + O(a^172))*t^21 + O(a^174)*t^22 + (2*a^54 + 3*a^84 + 8*a^114 + 6*a^144 + O(a^174))*t^23 + O(a^176)*t^24 + (a^26 + 6*a^56 + 4*a^86 + 9*a^116 + 3*a^146 + O(a^176))*t^25 + O(a^178)*t^26 + (10*a^28 + 5*a^58 + 4*a^88 + 10*a^118 + 6*a^148 + O(a^178))*t^27 + O(a^180)*t^28 + (5*a^30 + 5*a^60 + 4*a^90 + 9*a^120 + 3*a^150 + O(a^180))*t^29 + O(a^182)*t^30 + (4*a^32 + 10*a^62 + 5*a^92 + 7*a^122 + 3*a^152 + O(a^182))*t^31 + O(a^184)*t^32 + (5*a^34 + 9*a^94 + 3*a^124 + 6*a^154 + O(a^184))*t^33 + O(a^186)*t^34 + (4*a^36 + 3*a^66 + 10*a^96 + 2*a^126 + 6*a^156 + O(a^186))*t^35 + O(a^188)*t^36 + (6*a^38 + 9*a^68 + 7*a^128 + 10*a^158 + O(a^188))*t^37 + O(a^190)*t^38 + (7*a^40 + 3*a^70 + 4*a^100 + 4*a^130 + 8*a^160 + O(a^190))*t^39 + O(a^192)*t^40 + (a^42 + 10*a^72 + 10*a^102 + a^132 + 7*a^162 + O(a^192))*t^41 + O(a^194)*t^42 + (8*a^74 + 8*a^104 + 9*a^134 + 7*a^164 + O(a^194))*t^43 + O(a^196)*t^44 + (10*a^136 + 2*a^166 + O(a^196))*t^45 + O(a^198)*t^46 + (7*a^48 + 10*a^78 + 5*a^108 + 8*a^138 + 3*a^168 + O(a^198))*t^47 + O(a^200)*t^48 + (6*a^50 + 5*a^80 + a^110 + 6*a^170 + O(a^200))*t^49 + O(a^202)*t^50 + (a^52 + 8*a^82 + 2*a^112 + 10*a^172 + O(a^202))*t^51 + O(a^204)*t^52 + (9*a^54 + 2*a^84 + 6*a^114 + 4*a^144 + O(a^204))*t^53 + O(a^206)*t^54 + (2*a^56 + 5*a^86 + 2*a^116 + 4*a^146 + a^176 + O(a^206))*t^55 + O(a^208)*t^56 + (3*a^58 + 3*a^88 + a^118 + 5*a^148 + 2*a^178 + O(a^208))*t^57 + O(a^210)*t^58 + (5*a^60 + 10*a^90 + 9*a^120 + a^150 + 6*a^180 + O(a^210))*t^59 + O(a^212)*t^60 + (4*a^62 + 9*a^92 + 7*a^122 + 7*a^152 + 9*a^182 + O(a^212))*t^61 + O(a^214)*t^62 + (10*a^64 + 8*a^94 + 6*a^124 + 8*a^154 + 4*a^184 + O(a^214))*t^63 + O(a^216)*t^64 + (4*a^126 + 10*a^156 + 9*a^186 + O(a^216))*t^65 + O(a^218)*t^66 + (7*a^98 + 4*a^128 + 6*a^158 + 6*a^188 + O(a^218))*t^67 + O(a^220)*t^68 + (3*a^70 + 6*a^100 + 8*a^130 + 9*a^160 + 10*a^190 + O(a^220))*t^69 + O(a^222)*t^70 + (9*a^72 + 5*a^102 + 9*a^132 + 3*a^162 + 10*a^192 + O(a^222))*t^71 + O(a^224)*t^72 + (3*a^74 + 8*a^104 + 7*a^134 + 2*a^164 + O(a^224))*t^73 + O(a^226)*t^74 + (10*a^76 + a^106 + 2*a^136 + 4*a^166 + 9*a^196 + O(a^226))*t^75 + O(a^228)*t^76 + (3*a^78 + 6*a^108 + 9*a^138 + 4*a^168 + 5*a^198 + O(a^228))*t^77 + O(a^230)*t^78 + (4*a^80 + 10*a^110 + 7*a^170 + 8*a^200 + O(a^230))*t^79 + O(a^232)*t^80 + (5*a^82 + 4*a^112 + 9*a^142 + 8*a^172 + 8*a^202 + O(a^232))*t^81 + O(a^234)*t^82 + (4*a^84 + 9*a^114 + 8*a^144 + 2*a^174 + 6*a^204 + O(a^234))*t^83 + O(a^236)*t^84 + (3*a^86 + 5*a^116 + 4*a^146 + 8*a^206 + O(a^236))*t^85 + O(a^238)*t^86 + (a^118 + 7*a^148 + 6*a^208 + O(a^238))*t^87 + O(a^240)*t^88 + (4*a^90 + 9*a^120 + 9*a^150 + 6*a^180 + 6*a^210 + O(a^240))*t^89 + O(a^244)*t^90 + (10*a^122 + 3*a^152 + 8*a^182 + 4*a^212 + 2*a^242 + O(a^244))*t^91 + O(a^276)*t^92 + (9*a^154 + 10*a^184 + 10*a^214 + 7*a^244 + 9*a^274 + O(a^276))*t^93 + O(a^308)*t^94 + (9*a^186 + 4*a^216 + 5*a^246 + a^276 + 10*a^306 + O(a^308))*t^95
|
|
322
|
+
"""
|
|
323
|
+
cdef ZZ_pX_c low_part
|
|
324
|
+
cdef ZZ_pX_c shifted_high_part
|
|
325
|
+
cdef ZZ_pX_c powerx
|
|
326
|
+
cdef ZZ_pX_c lowshift
|
|
327
|
+
cdef ZZ_pX_c highshift
|
|
328
|
+
cdef ZZ_pX_c working, working2
|
|
329
|
+
cdef ntl_ZZ_pContext_class c
|
|
330
|
+
cdef ZZ_pX_Modulus_c* m
|
|
331
|
+
cdef long pshift = n / self.e
|
|
332
|
+
cdef long eis_part = n % self.e
|
|
333
|
+
cdef long two_shift = 1
|
|
334
|
+
cdef int i
|
|
335
|
+
cdef ZZ_pX_c* high_shifter
|
|
336
|
+
cdef ZZ_pX_c* low_shifter
|
|
337
|
+
cdef ZZ_pX_Multiplier_c* high_shifter_fm
|
|
338
|
+
cdef ZZ_pX_Multiplier_c* low_shifter_fm
|
|
339
|
+
cdef bint fm
|
|
340
|
+
cdef long high_length
|
|
341
|
+
if isinstance(self, PowComputer_ZZ_pX_small_Eis):
|
|
342
|
+
high_shifter = (<PowComputer_ZZ_pX_small_Eis>self).high_shifter
|
|
343
|
+
low_shifter = (<PowComputer_ZZ_pX_small_Eis>self).low_shifter
|
|
344
|
+
high_length = (<PowComputer_ZZ_pX_small_Eis>self).high_length
|
|
345
|
+
fm = False
|
|
346
|
+
elif isinstance(self, PowComputer_ZZ_pX_big_Eis):
|
|
347
|
+
high_shifter = (<PowComputer_ZZ_pX_big_Eis>self).high_shifter
|
|
348
|
+
low_shifter = (<PowComputer_ZZ_pX_big_Eis>self).low_shifter
|
|
349
|
+
high_length = (<PowComputer_ZZ_pX_big_Eis>self).high_length
|
|
350
|
+
fm = False
|
|
351
|
+
elif isinstance(self, PowComputer_ZZ_pX_FM_Eis):
|
|
352
|
+
high_shifter_fm = (<PowComputer_ZZ_pX_FM_Eis>self).high_shifter
|
|
353
|
+
low_shifter_fm = (<PowComputer_ZZ_pX_FM_Eis>self).low_shifter
|
|
354
|
+
high_length = (<PowComputer_ZZ_pX_FM_Eis>self).high_length
|
|
355
|
+
fm = True
|
|
356
|
+
else:
|
|
357
|
+
raise TypeError("inconsistent type")
|
|
358
|
+
|
|
359
|
+
if n < 0:
|
|
360
|
+
if fm:
|
|
361
|
+
c = self.get_top_context()
|
|
362
|
+
m = self.get_top_modulus()
|
|
363
|
+
else:
|
|
364
|
+
c = self.get_context(finalprec)
|
|
365
|
+
m = self.get_modulus(finalprec)
|
|
366
|
+
c.restore_c()
|
|
367
|
+
##printer = ntl_ZZ_pX([],c)
|
|
368
|
+
ZZ_pX_PowerXMod_long_pre(powerx, -n, m[0])
|
|
369
|
+
##printer.x = powerx
|
|
370
|
+
ZZ_pX_conv_modulus(x[0], a[0], c.x)
|
|
371
|
+
ZZ_pX_MulMod_pre(x[0], powerx, a[0], m[0])
|
|
372
|
+
##printer.x = x[0]
|
|
373
|
+
return 0
|
|
374
|
+
elif n == 0:
|
|
375
|
+
if x != a:
|
|
376
|
+
if fm:
|
|
377
|
+
c = self.get_top_context()
|
|
378
|
+
else:
|
|
379
|
+
c = self.get_context(finalprec)
|
|
380
|
+
ZZ_pX_conv_modulus(x[0], a[0], c.x)
|
|
381
|
+
return 0
|
|
382
|
+
|
|
383
|
+
# The following doesn't work, sadly. It should be possible to precompute and do better than what I replace this code with.
|
|
384
|
+
# c = self.get_context(finalprec)
|
|
385
|
+
# m = self.get_modulus(finalprec)[0]
|
|
386
|
+
# printer = ntl_ZZ_pX([],c)
|
|
387
|
+
# if pshift:
|
|
388
|
+
# ZZ_pX_right_pshift(x[0], a[0], self.pow_ZZ_tmp(pshift)[0], c.x)
|
|
389
|
+
# else:
|
|
390
|
+
# ZZ_pX_conv_modulus(x[0], a[0], c.x)
|
|
391
|
+
# ##printer.x = a[0]
|
|
392
|
+
# c.restore_c()
|
|
393
|
+
# if pshift:
|
|
394
|
+
# i = 0
|
|
395
|
+
# # This line restores the top context
|
|
396
|
+
# #ZZ_pX_right_pshift(x[0], x[0], self.pow_ZZ_tmp(pshift)[0], c.x)
|
|
397
|
+
# ##printer.x = x[0]
|
|
398
|
+
# if pshift >= self.prec_cap:
|
|
399
|
+
# # shifter = p^(2^(high_length - 1))/x^(e*2^(high_length - 1))
|
|
400
|
+
# ZZ_pX_conv_modulus(shifter, high_shifter[high_length-1], c.x)
|
|
401
|
+
# ##printer.x = shifter
|
|
402
|
+
# # if val = r + s * 2^(high_length - 1)
|
|
403
|
+
# # then shifter = p^(s*2^(high_length - 1))/x^(e*s*2^(high_length - 1))
|
|
404
|
+
# ZZ_pX_PowerMod_long_pre(shifter, shifter, (pshift / (1L << (high_length - 1))), m)
|
|
405
|
+
# ##printer.x = shifter
|
|
406
|
+
# ZZ_pX_MulMod_pre(x[0], x[0], shifter, m)
|
|
407
|
+
# ##printer.x = shifter
|
|
408
|
+
# # Now we only need to multiply self.unit by p^r/x^(e*r) where r < 2^(high_length - 1), which is tractible.
|
|
409
|
+
# pshift = pshift % (1L << (high_length - 1))
|
|
410
|
+
# while pshift > 0:
|
|
411
|
+
# if pshift & 1:
|
|
412
|
+
# ##printer.x = x[0]
|
|
413
|
+
# ZZ_pX_conv_modulus(highshift, high_shifter[i], c.x)
|
|
414
|
+
# ZZ_pX_MulMod_pre(x[0], x[0], highshift, m)
|
|
415
|
+
# i += 1
|
|
416
|
+
# pshift = pshift >> 1
|
|
417
|
+
if fm:
|
|
418
|
+
c = self.get_top_context()
|
|
419
|
+
m = self.get_top_modulus()
|
|
420
|
+
else:
|
|
421
|
+
c = self.get_context(finalprec + pshift + 1)
|
|
422
|
+
c.restore_c()
|
|
423
|
+
ZZ_pX_conv_modulus(working, a[0], c.x)
|
|
424
|
+
if pshift:
|
|
425
|
+
while pshift > 0:
|
|
426
|
+
pshift -= 1
|
|
427
|
+
if fm:
|
|
428
|
+
ZZ_pX_right_pshift(working, working, self.pow_ZZ_tmp(1)[0],c.x)
|
|
429
|
+
ZZ_pX_MulMod_premul(working, working, high_shifter_fm[0], m[0])
|
|
430
|
+
else:
|
|
431
|
+
c = self.get_context(finalprec + pshift + 1)
|
|
432
|
+
m = self.get_modulus(finalprec + pshift + 1)
|
|
433
|
+
ZZ_pX_right_pshift(working, working, self.pow_ZZ_tmp(1)[0],c.x)
|
|
434
|
+
ZZ_pX_conv_modulus(highshift, high_shifter[0], c.x)
|
|
435
|
+
ZZ_pX_MulMod_pre(working, working, highshift, m[0])
|
|
436
|
+
elif not fm:
|
|
437
|
+
m = self.get_modulus(finalprec + 1)
|
|
438
|
+
ZZ_pX_conv_modulus(working2, working, c.x)
|
|
439
|
+
i = 0
|
|
440
|
+
two_shift = 1
|
|
441
|
+
while eis_part > 0:
|
|
442
|
+
if eis_part & 1:
|
|
443
|
+
##printer.x = working2
|
|
444
|
+
ZZ_pX_RightShift(shifted_high_part, working2, two_shift)
|
|
445
|
+
##printer.x = shifted_high_part
|
|
446
|
+
ZZ_pX_LeftShift(low_part, shifted_high_part, two_shift)
|
|
447
|
+
ZZ_pX_sub(low_part, working2, low_part)
|
|
448
|
+
##printer.x = low_part
|
|
449
|
+
ZZ_pX_right_pshift(low_part, low_part, self.pow_ZZ_tmp(1)[0], c.x)
|
|
450
|
+
##printer.x = low_part
|
|
451
|
+
if fm:
|
|
452
|
+
ZZ_pX_MulMod_premul(low_part, low_part, low_shifter_fm[i], m[0])
|
|
453
|
+
else:
|
|
454
|
+
ZZ_pX_conv_modulus(lowshift, low_shifter[i], c.x)
|
|
455
|
+
ZZ_pX_MulMod_pre(low_part, low_part, lowshift, m[0])
|
|
456
|
+
##printer.x = low_part
|
|
457
|
+
ZZ_pX_add(working2, low_part, shifted_high_part)
|
|
458
|
+
##printer.x = working2
|
|
459
|
+
i += 1
|
|
460
|
+
two_shift = two_shift << 1
|
|
461
|
+
eis_part = eis_part >> 1
|
|
462
|
+
c = self.get_context(finalprec)
|
|
463
|
+
ZZ_pX_conv_modulus(x[0], working2, c.x)
|
|
464
|
+
|
|
465
|
+
cdef class PowComputer_ext(PowComputer_class):
|
|
466
|
+
def __cinit__(self, Integer prime, long cache_limit, long prec_cap, long ram_prec_cap, bint in_field, poly, shift_seed=None):
|
|
467
|
+
"""
|
|
468
|
+
Construct the storage for powers of prime as ZZ_c's.
|
|
469
|
+
|
|
470
|
+
EXAMPLES::
|
|
471
|
+
|
|
472
|
+
sage: PC = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5, 0, 1], 5^10), 'small', 'e',ntl.ZZ_pX([1],5^10)) # indirect doctest
|
|
473
|
+
"""
|
|
474
|
+
PowComputer_class.__init__(self, prime, cache_limit, prec_cap, ram_prec_cap, in_field, poly, shift_seed)
|
|
475
|
+
|
|
476
|
+
self._initialized = 0
|
|
477
|
+
self.small_powers = Allocate_ZZ_array(cache_limit + 1)
|
|
478
|
+
if self.small_powers == NULL:
|
|
479
|
+
raise MemoryError("out of memory allocating power storing")
|
|
480
|
+
|
|
481
|
+
cdef Py_ssize_t i
|
|
482
|
+
|
|
483
|
+
ZZ_conv_from_int(self.small_powers[0], 1)
|
|
484
|
+
|
|
485
|
+
if cache_limit > 0:
|
|
486
|
+
mpz_to_ZZ(&(self.small_powers[1]), prime.value)
|
|
487
|
+
|
|
488
|
+
sig_on()
|
|
489
|
+
for i in range(2, cache_limit + 1):
|
|
490
|
+
ZZ_mul(self.small_powers[i], self.small_powers[i-1], self.small_powers[1])
|
|
491
|
+
mpz_to_ZZ(&self.top_power, prime.value)
|
|
492
|
+
ZZ_power(self.top_power, self.top_power, prec_cap)
|
|
493
|
+
sig_off()
|
|
494
|
+
mpz_init(self.temp_m)
|
|
495
|
+
mpz_init(self.temp_m2)
|
|
496
|
+
|
|
497
|
+
self._poly = poly
|
|
498
|
+
self._shift_seed = shift_seed
|
|
499
|
+
|
|
500
|
+
def __dealloc__(self):
|
|
501
|
+
"""
|
|
502
|
+
Frees allocated memory.
|
|
503
|
+
|
|
504
|
+
EXAMPLES::
|
|
505
|
+
|
|
506
|
+
sage: PC = PowComputer_ext_maker(5, 5, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
507
|
+
sage: del PC # indirect doctest
|
|
508
|
+
"""
|
|
509
|
+
if (<PowComputer_ext>self)._initialized:
|
|
510
|
+
self.cleanup_ext()
|
|
511
|
+
|
|
512
|
+
def __repr__(self):
|
|
513
|
+
"""
|
|
514
|
+
Return a string representation of ``self``.
|
|
515
|
+
|
|
516
|
+
EXAMPLES::
|
|
517
|
+
|
|
518
|
+
sage: PC = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5, 0, 1], 5^10), 'small', 'e',ntl.ZZ_pX([1],5^10))
|
|
519
|
+
sage: PC # indirect doctest
|
|
520
|
+
PowComputer_ext for 5, with polynomial [9765620 0 1]
|
|
521
|
+
"""
|
|
522
|
+
return "PowComputer_ext for %s, with polynomial %s" % (self.prime, self.polynomial())
|
|
523
|
+
|
|
524
|
+
def __reduce__(self):
|
|
525
|
+
"""
|
|
526
|
+
For pickling.
|
|
527
|
+
|
|
528
|
+
EXAMPLES::
|
|
529
|
+
|
|
530
|
+
sage: PC = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5, 0, 1], 5^10), 'small', 'e',ntl.ZZ_pX([1],5^10)); PC
|
|
531
|
+
PowComputer_ext for 5, with polynomial [9765620 0 1]
|
|
532
|
+
sage: loads(dumps(PC))
|
|
533
|
+
PowComputer_ext for 5, with polynomial [9765620 0 1]
|
|
534
|
+
"""
|
|
535
|
+
cdef Integer cache_limit, prec_cap, ram_prec_cap
|
|
536
|
+
cache_limit = Integer.__new__(Integer)
|
|
537
|
+
mpz_set_si(cache_limit.value, self.cache_limit)
|
|
538
|
+
prec_cap = Integer.__new__(Integer)
|
|
539
|
+
mpz_set_si(prec_cap.value, self.prec_cap)
|
|
540
|
+
ram_prec_cap = Integer.__new__(Integer)
|
|
541
|
+
mpz_set_si(ram_prec_cap.value, self.ram_prec_cap)
|
|
542
|
+
return PowComputer_ext_maker, (self.prime, cache_limit, prec_cap, ram_prec_cap, self.in_field, self._poly, self._prec_type, self._ext_type, self._shift_seed)
|
|
543
|
+
|
|
544
|
+
cdef void cleanup_ext(self) noexcept:
|
|
545
|
+
"""
|
|
546
|
+
Frees memory allocated in PowComputer_ext.
|
|
547
|
+
|
|
548
|
+
EXAMPLES::
|
|
549
|
+
|
|
550
|
+
sage: PC = PowComputer_ext_maker(5, 5, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
551
|
+
sage: del PC # indirect doctest
|
|
552
|
+
"""
|
|
553
|
+
Delete_ZZ_array(self.small_powers)
|
|
554
|
+
mpz_clear(self.temp_m)
|
|
555
|
+
mpz_clear(self.temp_m2)
|
|
556
|
+
|
|
557
|
+
cdef mpz_srcptr pow_mpz_t_tmp(self, long n) except NULL:
|
|
558
|
+
"""
|
|
559
|
+
Provides fast access to an mpz_t* pointing to self.prime^n.
|
|
560
|
+
|
|
561
|
+
The location pointed to depends on the underlying
|
|
562
|
+
representation. In no circumstances should you mpz_clear the
|
|
563
|
+
result. The value pointed to may be an internal temporary
|
|
564
|
+
variable for the class. In particular, you should not try to
|
|
565
|
+
refer to the results of two pow_mpz_t_tmp calls at the same
|
|
566
|
+
time, because the second call may overwrite the memory pointed
|
|
567
|
+
to by the first.
|
|
568
|
+
|
|
569
|
+
In the case of PowComputer_exts, the mpz_t pointed to will
|
|
570
|
+
always be a temporary variable.
|
|
571
|
+
|
|
572
|
+
See pow_mpz_t_tmp_demo for an example of this phenomenon.
|
|
573
|
+
|
|
574
|
+
EXAMPLES::
|
|
575
|
+
|
|
576
|
+
sage: PC = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5, 0, 1], 5^10), 'small', 'e',ntl.ZZ_pX([1],5^10))
|
|
577
|
+
sage: PC._pow_mpz_t_tmp_test(4) # indirect doctest
|
|
578
|
+
625
|
|
579
|
+
"""
|
|
580
|
+
if n < 0:
|
|
581
|
+
raise ValueError("n must be nonnegative")
|
|
582
|
+
if n <= self.cache_limit:
|
|
583
|
+
ZZ_to_mpz(self.temp_m, &(self.small_powers[n]))
|
|
584
|
+
elif n == self.prec_cap:
|
|
585
|
+
ZZ_to_mpz(self.temp_m, &self.top_power)
|
|
586
|
+
else:
|
|
587
|
+
sig_on()
|
|
588
|
+
# n may exceed self.prec_cap. Very large values can, however, lead to
|
|
589
|
+
# out-of-memory situations in the following computation. This
|
|
590
|
+
# sig_on()/sig_off() prevents sage from crashing in such cases.
|
|
591
|
+
# It does not have a significant impact on performance. For small
|
|
592
|
+
# values of n the powers are taken from self.small_powers, for large
|
|
593
|
+
# values, the computation dominates the cost of the sig_on()/sig_off().
|
|
594
|
+
mpz_pow_ui(self.temp_m, self.prime.value, n)
|
|
595
|
+
sig_off()
|
|
596
|
+
return self.temp_m
|
|
597
|
+
|
|
598
|
+
cdef ZZ_c* pow_ZZ_tmp(self, long n) except NULL:
|
|
599
|
+
"""
|
|
600
|
+
Provides fast access to a ZZ_c* pointing to self.prime^n.
|
|
601
|
+
|
|
602
|
+
The location pointed to depends on the underlying
|
|
603
|
+
representation. The value pointed to may be an internal temporary
|
|
604
|
+
variable for the class. In particular, you should not try to
|
|
605
|
+
refer to the results of two pow_ZZ_tmp calls at the same time,
|
|
606
|
+
because the second call may overwrite the memory pointed to by
|
|
607
|
+
the first.
|
|
608
|
+
|
|
609
|
+
See pow_ZZ_tmp_demo for an example of this phenomenon.
|
|
610
|
+
|
|
611
|
+
EXAMPLES::
|
|
612
|
+
|
|
613
|
+
sage: PC = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5, 0, 1], 5^10), 'small', 'e',ntl.ZZ_pX([1],5^10))
|
|
614
|
+
sage: PC._pow_mpz_t_tmp_test(4) # indirect doctest
|
|
615
|
+
625
|
|
616
|
+
"""
|
|
617
|
+
if n < 0:
|
|
618
|
+
raise ValueError("n must be nonnegative")
|
|
619
|
+
if n <= self.cache_limit:
|
|
620
|
+
return &(self.small_powers[n])
|
|
621
|
+
if n == self.prec_cap:
|
|
622
|
+
return &self.top_power
|
|
623
|
+
ZZ_power(self.temp_z, self.small_powers[1], n)
|
|
624
|
+
return &self.temp_z
|
|
625
|
+
|
|
626
|
+
def _pow_ZZ_tmp_test(self, n):
|
|
627
|
+
"""
|
|
628
|
+
Test the ``pow_ZZ_tmp`` function.
|
|
629
|
+
|
|
630
|
+
EXAMPLES::
|
|
631
|
+
|
|
632
|
+
sage: PC = PowComputer_ext_maker(5, 6, 6, 12, False, ntl.ZZ_pX([-5,0,1],5^6),'small', 'e',ntl.ZZ_pX([1],5^6))
|
|
633
|
+
sage: PC._pow_ZZ_tmp_test(4)
|
|
634
|
+
625
|
|
635
|
+
sage: PC._pow_ZZ_tmp_test(7)
|
|
636
|
+
78125
|
|
637
|
+
"""
|
|
638
|
+
cdef Integer _n = Integer(n)
|
|
639
|
+
if _n < 0: raise ValueError
|
|
640
|
+
cdef ntl_ZZ ans = ntl_ZZ.__new__(ntl_ZZ)
|
|
641
|
+
ans.x = self.pow_ZZ_tmp(mpz_get_ui(_n.value))[0]
|
|
642
|
+
return ans
|
|
643
|
+
|
|
644
|
+
def _pow_ZZ_tmp_demo(self, m, n):
|
|
645
|
+
"""
|
|
646
|
+
This function demonstrates a danger in using pow_ZZ_tmp.
|
|
647
|
+
|
|
648
|
+
EXAMPLES::
|
|
649
|
+
|
|
650
|
+
sage: PC = PowComputer_ext_maker(5, 5, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'big', 'e',ntl.ZZ_pX([1],5^10))
|
|
651
|
+
|
|
652
|
+
When you cal pow_ZZ_tmp with an input that is not stored
|
|
653
|
+
(ie n > self.cache_limit and n != self.prec_cap),
|
|
654
|
+
it stores the result in self.temp_z and returns a pointer
|
|
655
|
+
to that ZZ_c. So if you try to use the results of two
|
|
656
|
+
calls at once, things will break.
|
|
657
|
+
sage: PC._pow_ZZ_tmp_demo(6, 8) # 244140625 on some architectures and 152587890625 on others: random
|
|
658
|
+
244140625
|
|
659
|
+
sage: 5^6*5^8
|
|
660
|
+
6103515625
|
|
661
|
+
sage: 5^6*5^6
|
|
662
|
+
244140625
|
|
663
|
+
|
|
664
|
+
Note that this does not occur if you try a stored value,
|
|
665
|
+
because the result of one of the calls points to that
|
|
666
|
+
stored value.
|
|
667
|
+
sage: PC._pow_ZZ_tmp_demo(6, 10)
|
|
668
|
+
152587890625
|
|
669
|
+
sage: 5^6*5^10
|
|
670
|
+
152587890625
|
|
671
|
+
"""
|
|
672
|
+
m = Integer(m)
|
|
673
|
+
n = Integer(n)
|
|
674
|
+
if m < 0 or n < 0:
|
|
675
|
+
raise ValueError("m, n must be nonnegative")
|
|
676
|
+
cdef ntl_ZZ ans = ntl_ZZ.__new__(ntl_ZZ)
|
|
677
|
+
ZZ_mul(ans.x, self.pow_ZZ_tmp(mpz_get_ui((<Integer>m).value))[0], self.pow_ZZ_tmp(mpz_get_ui((<Integer>n).value))[0])
|
|
678
|
+
return ans
|
|
679
|
+
|
|
680
|
+
cdef mpz_srcptr pow_mpz_t_top(self) noexcept:
|
|
681
|
+
"""
|
|
682
|
+
Return ``self.prime^self.prec_cap`` as an ``mpz_srcptr``.
|
|
683
|
+
|
|
684
|
+
EXAMPLES::
|
|
685
|
+
|
|
686
|
+
sage: PC = PowComputer_ext_maker(5, 6, 6, 12, False, ntl.ZZ_pX([-5,0,1],5^6),'small', 'e',ntl.ZZ_pX([1],5^6))
|
|
687
|
+
sage: PC._pow_mpz_t_top_test() # indirect doctest
|
|
688
|
+
15625
|
|
689
|
+
"""
|
|
690
|
+
ZZ_to_mpz(self.temp_m, &self.top_power)
|
|
691
|
+
return self.temp_m
|
|
692
|
+
|
|
693
|
+
cdef ZZ_c* pow_ZZ_top(self) noexcept:
|
|
694
|
+
"""
|
|
695
|
+
Return ``self.prime^self.prec_cap`` as a ZZ_c.
|
|
696
|
+
|
|
697
|
+
EXAMPLES::
|
|
698
|
+
|
|
699
|
+
sage: PC = PowComputer_ext_maker(5, 6, 6, 12, False, ntl.ZZ_pX([-5,0,1],5^6),'small', 'e',ntl.ZZ_pX([1],5^6))
|
|
700
|
+
sage: PC._pow_ZZ_top_test() # indirect doctest
|
|
701
|
+
15625
|
|
702
|
+
"""
|
|
703
|
+
return &self.top_power
|
|
704
|
+
|
|
705
|
+
def _pow_ZZ_top_test(self):
|
|
706
|
+
"""
|
|
707
|
+
Test the ``pow_ZZ_top`` function.
|
|
708
|
+
|
|
709
|
+
EXAMPLES::
|
|
710
|
+
|
|
711
|
+
sage: PC = PowComputer_ext_maker(5, 6, 6, 12, False, ntl.ZZ_pX([-5,0,1],5^6),'small', 'e',ntl.ZZ_pX([1],5^6))
|
|
712
|
+
sage: PC._pow_ZZ_top_test()
|
|
713
|
+
15625
|
|
714
|
+
"""
|
|
715
|
+
cdef ntl_ZZ ans = ntl_ZZ.__new__(ntl_ZZ)
|
|
716
|
+
ans.x = self.pow_ZZ_top()[0]
|
|
717
|
+
return ans
|
|
718
|
+
|
|
719
|
+
def _ram_prec_cap(self):
|
|
720
|
+
"""
|
|
721
|
+
Return the precision cap of self, considered as a power of the uniformizer.
|
|
722
|
+
|
|
723
|
+
EXAMPLES::
|
|
724
|
+
|
|
725
|
+
sage: PC = PowComputer_ext_maker(5, 6, 6, 12, False, ntl.ZZ_pX([-5,0,1],5^5),'small', 'e',ntl.ZZ_pX([1],5^5))
|
|
726
|
+
sage: PC._ram_prec_cap()
|
|
727
|
+
12
|
|
728
|
+
"""
|
|
729
|
+
return self.ram_prec_cap
|
|
730
|
+
|
|
731
|
+
cdef class PowComputer_ZZ_pX(PowComputer_ext):
|
|
732
|
+
def __cinit__(self, Integer prime, long cache_limit, long prec_cap, long ram_prec_cap, bint in_field, poly, shift_seed=None):
|
|
733
|
+
"""
|
|
734
|
+
Initialization.
|
|
735
|
+
|
|
736
|
+
For input types see :func:`PowComputer_ext_maker`
|
|
737
|
+
|
|
738
|
+
TESTS::
|
|
739
|
+
|
|
740
|
+
sage: PC = PowComputer_ext_maker(5, 5, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
741
|
+
sage: TestSuite(PC).run()
|
|
742
|
+
"""
|
|
743
|
+
if not isinstance(poly, ntl_ZZ_pX):
|
|
744
|
+
raise TypeError
|
|
745
|
+
self.deg = ZZ_pX_deg((<ntl_ZZ_pX>poly).x)
|
|
746
|
+
|
|
747
|
+
def polynomial(self):
|
|
748
|
+
"""
|
|
749
|
+
Return the polynomial (with coefficient precision prec_cap) associated
|
|
750
|
+
to this ``PowComputer``.
|
|
751
|
+
|
|
752
|
+
The polynomial is output as an ntl_ZZ_pX.
|
|
753
|
+
|
|
754
|
+
EXAMPLES::
|
|
755
|
+
|
|
756
|
+
sage: PC = PowComputer_ext_maker(5, 5, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
757
|
+
sage: PC.polynomial()
|
|
758
|
+
[9765620 0 1]
|
|
759
|
+
"""
|
|
760
|
+
self.restore_top_context()
|
|
761
|
+
cdef ntl_ZZ_pX r = ntl_ZZ_pX.__new__(ntl_ZZ_pX)
|
|
762
|
+
r.c = self.get_top_context()
|
|
763
|
+
r.x = (self.get_top_modulus()[0]).val()
|
|
764
|
+
return r
|
|
765
|
+
|
|
766
|
+
cdef ntl_ZZ_pContext_class get_context(self, long n):
|
|
767
|
+
"""
|
|
768
|
+
Return a ``ZZ_pContext`` for ``self.prime^(abs(n))``.
|
|
769
|
+
|
|
770
|
+
EXAMPLES::
|
|
771
|
+
|
|
772
|
+
sage: PC = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5, 0, 1], 5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
773
|
+
sage: PC._get_context_test(15) # indirect doctest
|
|
774
|
+
NTL modulus 30517578125
|
|
775
|
+
"""
|
|
776
|
+
cdef ntl_ZZ pn = ntl_ZZ.__new__(ntl_ZZ)
|
|
777
|
+
if n < 0:
|
|
778
|
+
n = -n
|
|
779
|
+
elif n == 0:
|
|
780
|
+
# Exception will be ignored by Cython
|
|
781
|
+
raise ValueError("n must be nonzero")
|
|
782
|
+
pn.x = self.pow_ZZ_tmp(n)[0]
|
|
783
|
+
cdef ntl_ZZ_pContext_class context = (<ntl_ZZ_pContext_factory>ZZ_pContext_factory).make_c(pn)
|
|
784
|
+
return context
|
|
785
|
+
|
|
786
|
+
def _get_context_test(self, n):
|
|
787
|
+
"""
|
|
788
|
+
Return a ``ZZ_pContext`` for ``self.prime^n``.
|
|
789
|
+
|
|
790
|
+
EXAMPLES::
|
|
791
|
+
|
|
792
|
+
sage: PC = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5, 0, 1], 5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
793
|
+
sage: PC._get_context_test(15)
|
|
794
|
+
NTL modulus 30517578125
|
|
795
|
+
"""
|
|
796
|
+
cdef Integer _n = Integer(n)
|
|
797
|
+
return self.get_context(mpz_get_si(_n.value))
|
|
798
|
+
|
|
799
|
+
cdef ntl_ZZ_pContext_class get_context_capdiv(self, long n):
|
|
800
|
+
"""
|
|
801
|
+
Return a ``ZZ_pContext`` for ``self.prime^((n-1) // self.e + 1)``.
|
|
802
|
+
|
|
803
|
+
For Eisenstein extensions this gives the context used for an
|
|
804
|
+
element of relative precision n.
|
|
805
|
+
|
|
806
|
+
EXAMPLES::
|
|
807
|
+
|
|
808
|
+
sage: PC = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5, 0, 1], 5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
809
|
+
sage: PC._get_context_capdiv_test(30) # indirect doctest
|
|
810
|
+
NTL modulus 30517578125
|
|
811
|
+
"""
|
|
812
|
+
return self.get_context(self.capdiv(n))
|
|
813
|
+
|
|
814
|
+
def _get_context_capdiv_test(self, n):
|
|
815
|
+
"""
|
|
816
|
+
Return a ``ZZ_pContext`` for ``self.prime^((n-1) // self.e + 1)``.
|
|
817
|
+
|
|
818
|
+
For Eisenstein extensions this gives the context used for an
|
|
819
|
+
element of relative precision n.
|
|
820
|
+
|
|
821
|
+
EXAMPLES::
|
|
822
|
+
|
|
823
|
+
sage: PC = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5, 0, 1], 5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
824
|
+
sage: PC._get_context_capdiv_test(29)
|
|
825
|
+
NTL modulus 30517578125
|
|
826
|
+
"""
|
|
827
|
+
cdef Integer _n = Integer(n)
|
|
828
|
+
return self.get_context_capdiv(mpz_get_si(_n.value))
|
|
829
|
+
|
|
830
|
+
def speed_test(self, n, runs):
|
|
831
|
+
"""
|
|
832
|
+
Run a speed test.
|
|
833
|
+
|
|
834
|
+
INPUT:
|
|
835
|
+
|
|
836
|
+
- ``n`` -- input to a function to be tested (the function needs to be
|
|
837
|
+
set in the source code)
|
|
838
|
+
- ``runs`` -- the number of runs of that function
|
|
839
|
+
|
|
840
|
+
OUTPUT:
|
|
841
|
+
|
|
842
|
+
- The time in seconds that it takes to call the function on ``n``,
|
|
843
|
+
``runs`` times.
|
|
844
|
+
|
|
845
|
+
EXAMPLES::
|
|
846
|
+
|
|
847
|
+
sage: PC = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5, 0, 1], 5^10), 'small', 'e',ntl.ZZ_pX([1],5^10))
|
|
848
|
+
sage: PC.speed_test(10, 10^6) # random
|
|
849
|
+
0.0090679999999991878
|
|
850
|
+
"""
|
|
851
|
+
cdef Py_ssize_t i, end, _n
|
|
852
|
+
end = mpz_get_ui((<Integer>Integer(runs)).value)
|
|
853
|
+
_n = mpz_get_ui((<Integer>Integer(n)).value)
|
|
854
|
+
t = cputime()
|
|
855
|
+
for i in range(end):
|
|
856
|
+
# Put the function you want speed tested here.
|
|
857
|
+
self.get_modulus(_n)
|
|
858
|
+
return cputime(t)
|
|
859
|
+
|
|
860
|
+
cdef ntl_ZZ_pContext_class get_top_context(self):
|
|
861
|
+
"""
|
|
862
|
+
Return a ``ZZ_pContext`` for ``self.prime^self.prec_cap``.
|
|
863
|
+
|
|
864
|
+
TESTS::
|
|
865
|
+
|
|
866
|
+
sage: PC = PowComputer_ext_maker(5, 5, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
867
|
+
sage: PC._get_top_context_test() # indirect doctest
|
|
868
|
+
NTL modulus 9765625
|
|
869
|
+
"""
|
|
870
|
+
return self.get_context(self.prec_cap)
|
|
871
|
+
|
|
872
|
+
def _get_top_context_test(self):
|
|
873
|
+
"""
|
|
874
|
+
Return a ``ZZ_pContext`` for ``self.prime^self.prec_cap``.
|
|
875
|
+
|
|
876
|
+
TESTS::
|
|
877
|
+
|
|
878
|
+
sage: PC = PowComputer_ext_maker(5, 5, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
879
|
+
sage: PC._get_top_context_test()
|
|
880
|
+
NTL modulus 9765625
|
|
881
|
+
"""
|
|
882
|
+
return self.get_top_context()
|
|
883
|
+
|
|
884
|
+
cdef restore_context(self, long n):
|
|
885
|
+
"""
|
|
886
|
+
Restore the contest corresponding to ``self.prime^n``.
|
|
887
|
+
|
|
888
|
+
EXAMPLES::
|
|
889
|
+
|
|
890
|
+
sage: PC = PowComputer_ext_maker(5, 5, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
891
|
+
sage: PC._restore_context_test(4) # indirect doctest
|
|
892
|
+
"""
|
|
893
|
+
self.get_context(n).restore_c()
|
|
894
|
+
|
|
895
|
+
def _restore_context_test(self, n):
|
|
896
|
+
"""
|
|
897
|
+
Restore the contest corresponding to ``self.prime^n``.
|
|
898
|
+
|
|
899
|
+
EXAMPLES::
|
|
900
|
+
|
|
901
|
+
sage: PC = PowComputer_ext_maker(5, 5, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
902
|
+
sage: PC._restore_context_test(4)
|
|
903
|
+
"""
|
|
904
|
+
cdef Integer _n = Integer(n)
|
|
905
|
+
self.restore_context(mpz_get_si(_n.value))
|
|
906
|
+
|
|
907
|
+
cdef restore_context_capdiv(self, long n):
|
|
908
|
+
"""
|
|
909
|
+
Restore the context for ``self.prime^((n-1) // self.e + 1)``.
|
|
910
|
+
|
|
911
|
+
EXAMPLES::
|
|
912
|
+
|
|
913
|
+
sage: PC = PowComputer_ext_maker(5, 5, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
914
|
+
sage: PC._restore_context_capdiv_test(4) # indirect doctest
|
|
915
|
+
"""
|
|
916
|
+
self.restore_context(self.capdiv(n))
|
|
917
|
+
|
|
918
|
+
def _restore_context_capdiv_test(self, n):
|
|
919
|
+
"""
|
|
920
|
+
Restore the context for ``self.prime^((n-1) // self.e + 1)``.
|
|
921
|
+
|
|
922
|
+
EXAMPLES::
|
|
923
|
+
|
|
924
|
+
sage: PC = PowComputer_ext_maker(5, 5, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
925
|
+
sage: PC._restore_context_capdiv_test(8) # indirect doctest
|
|
926
|
+
"""
|
|
927
|
+
cdef Integer _n = Integer(n)
|
|
928
|
+
self.restore_context_capdiv(mpz_get_si(_n.value))
|
|
929
|
+
|
|
930
|
+
cdef void restore_top_context(self) noexcept:
|
|
931
|
+
"""
|
|
932
|
+
Restore the context corresponding to ``self.prime^self.prec_cap``.
|
|
933
|
+
|
|
934
|
+
EXAMPLES::
|
|
935
|
+
|
|
936
|
+
sage: PC = PowComputer_ext_maker(5, 5, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
937
|
+
sage: PC._restore_top_context_test()
|
|
938
|
+
"""
|
|
939
|
+
(<ntl_ZZ_pContext_class>self.get_top_context()).restore_c()
|
|
940
|
+
|
|
941
|
+
def _restore_top_context_test(self):
|
|
942
|
+
"""
|
|
943
|
+
Restore the context corresponding to ``self.prime^self.prec_cap``.
|
|
944
|
+
|
|
945
|
+
EXAMPLES::
|
|
946
|
+
|
|
947
|
+
sage: PC = PowComputer_ext_maker(5, 5, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
948
|
+
sage: PC._restore_top_context_test()
|
|
949
|
+
"""
|
|
950
|
+
self.restore_top_context()
|
|
951
|
+
|
|
952
|
+
cdef ZZ_pX_Modulus_c* get_modulus(self, long n) noexcept:
|
|
953
|
+
"""
|
|
954
|
+
Return the modulus corresponding to ``self.polynomial()`` (mod
|
|
955
|
+
``self.prime^n``).
|
|
956
|
+
|
|
957
|
+
EXAMPLES::
|
|
958
|
+
|
|
959
|
+
sage: A = PowComputer_ext_maker(5, 10, 1000, 2000, False, ntl.ZZ_pX([-5,0,1],5^1000), 'big', 'e',ntl.ZZ_pX([1],5^1000))
|
|
960
|
+
sage: a = ntl.ZZ_pX([4,2],5^2)
|
|
961
|
+
sage: b = ntl.ZZ_pX([6,3],5^2)
|
|
962
|
+
sage: A._get_modulus_test(a, b, 2) # indirect doctest
|
|
963
|
+
[4 24]
|
|
964
|
+
"""
|
|
965
|
+
# Exception will be ignored by Cython
|
|
966
|
+
raise NotImplementedError
|
|
967
|
+
|
|
968
|
+
def _get_modulus_test(self, ntl_ZZ_pX a, ntl_ZZ_pX b, Integer n):
|
|
969
|
+
"""
|
|
970
|
+
Multiply ``a`` and ``b`` modulo the modulus corresponding to
|
|
971
|
+
``self.polynomial()`` (mod ``self.prime^n``).
|
|
972
|
+
|
|
973
|
+
EXAMPLES::
|
|
974
|
+
|
|
975
|
+
sage: A = PowComputer_ext_maker(5, 10, 1000, 2000, False, ntl.ZZ_pX([-5,0,1],5^1000), 'big', 'e',ntl.ZZ_pX([1],5^1000))
|
|
976
|
+
sage: a = ntl.ZZ_pX([4,2],5^2)
|
|
977
|
+
sage: b = ntl.ZZ_pX([6,3],5^2)
|
|
978
|
+
sage: A._get_modulus_test(a, b, 2)
|
|
979
|
+
[4 24]
|
|
980
|
+
sage: a * b
|
|
981
|
+
[24 24 6]
|
|
982
|
+
sage: mod(6 * 5 + 24, 25) # needs sage.rings.finite_rings
|
|
983
|
+
4
|
|
984
|
+
"""
|
|
985
|
+
if self.pow_Integer(mpz_get_si(n.value)) != Integer(a.c.p):
|
|
986
|
+
raise ValueError("a context mismatch")
|
|
987
|
+
if self.pow_Integer(mpz_get_si(n.value)) != Integer(b.c.p):
|
|
988
|
+
raise ValueError("b context mismatch")
|
|
989
|
+
cdef ntl_ZZ_pX r = (<ntl_ZZ_pX>a)._new()
|
|
990
|
+
cdef ntl_ZZ_pX aa = (<ntl_ZZ_pX>a)._new()
|
|
991
|
+
cdef ntl_ZZ_pX bb = (<ntl_ZZ_pX>b)._new()
|
|
992
|
+
ZZ_pX_rem(aa.x, a.x, self.get_modulus(mpz_get_si(n.value))[0].val())
|
|
993
|
+
ZZ_pX_rem(bb.x, b.x, self.get_modulus(mpz_get_si(n.value))[0].val())
|
|
994
|
+
ZZ_pX_MulMod_pre(r.x, aa.x, bb.x, self.get_modulus(mpz_get_si(n.value))[0])
|
|
995
|
+
return r
|
|
996
|
+
|
|
997
|
+
cdef ZZ_pX_Modulus_c* get_modulus_capdiv(self, long n) noexcept:
|
|
998
|
+
"""
|
|
999
|
+
Return the modulus corresponding to ``self.polynomial()`` (mod
|
|
1000
|
+
``self.prime^((n-1) // self.e + 1``).
|
|
1001
|
+
"""
|
|
1002
|
+
return self.get_modulus(self.capdiv(n))
|
|
1003
|
+
|
|
1004
|
+
cdef ZZ_pX_Modulus_c* get_top_modulus(self) noexcept:
|
|
1005
|
+
"""
|
|
1006
|
+
Return the modulus corresponding to ``self.polynomial()`` (mod
|
|
1007
|
+
``self.prime^self.prec_cap``).
|
|
1008
|
+
|
|
1009
|
+
EXAMPLES::
|
|
1010
|
+
|
|
1011
|
+
sage: A = PowComputer_ext_maker(5, 3, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
1012
|
+
sage: a = ntl.ZZ_pX([129223,1231],5^10)
|
|
1013
|
+
sage: b = ntl.ZZ_pX([289741,323],5^10)
|
|
1014
|
+
sage: A._get_top_modulus_test(a, b) # indirect doctest
|
|
1015
|
+
[1783058 7785200]
|
|
1016
|
+
"""
|
|
1017
|
+
# Exception will be ignored by Cython
|
|
1018
|
+
raise NotImplementedError
|
|
1019
|
+
|
|
1020
|
+
def _get_top_modulus_test(self, ntl_ZZ_pX a, ntl_ZZ_pX b):
|
|
1021
|
+
"""
|
|
1022
|
+
Multiply ``a`` and ``b`` modulo the modulus corresponding to
|
|
1023
|
+
``self.polynomial()`` (mod ``self.prime^self.prec_cap``).
|
|
1024
|
+
|
|
1025
|
+
EXAMPLES::
|
|
1026
|
+
|
|
1027
|
+
sage: A = PowComputer_ext_maker(5, 3, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
1028
|
+
sage: a = ntl.ZZ_pX([129223,1231],5^10)
|
|
1029
|
+
sage: b = ntl.ZZ_pX([289741,323],5^10)
|
|
1030
|
+
sage: A._get_top_modulus_test(a, b)
|
|
1031
|
+
[1783058 7785200]
|
|
1032
|
+
sage: a*b
|
|
1033
|
+
[9560618 7785200 397613]
|
|
1034
|
+
sage: mod(397613 * 5 + 9560618, 5^10) # needs sage.rings.finite_rings
|
|
1035
|
+
1783058
|
|
1036
|
+
"""
|
|
1037
|
+
cdef ntl_ZZ_pX ans = a._new()
|
|
1038
|
+
ZZ_pX_MulMod_pre(ans.x, a.x, b.x, self.get_top_modulus()[0])
|
|
1039
|
+
return ans
|
|
1040
|
+
|
|
1041
|
+
cdef long capdiv(self, long n) noexcept:
|
|
1042
|
+
"""
|
|
1043
|
+
If n >= 0 returns ceil(n / self.e)
|
|
1044
|
+
|
|
1045
|
+
If n < 0 returns ceil(-n / self.e)
|
|
1046
|
+
|
|
1047
|
+
EXAMPLES::
|
|
1048
|
+
|
|
1049
|
+
sage: PC = PowComputer_ext_maker(5, 3, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
1050
|
+
sage: PC._capdiv_test(15)
|
|
1051
|
+
8
|
|
1052
|
+
sage: PC._capdiv_test(-7)
|
|
1053
|
+
4
|
|
1054
|
+
"""
|
|
1055
|
+
if self.e == 1:
|
|
1056
|
+
return n
|
|
1057
|
+
if n > 0:
|
|
1058
|
+
return (n-1) / self.e + 1
|
|
1059
|
+
elif n < 0:
|
|
1060
|
+
return (-1-n) / self.e + 1
|
|
1061
|
+
else:
|
|
1062
|
+
return 0
|
|
1063
|
+
|
|
1064
|
+
def _capdiv_test(self, n):
|
|
1065
|
+
"""
|
|
1066
|
+
If n >= 0, return ceil(n / self.e).
|
|
1067
|
+
|
|
1068
|
+
If n < 0, return ceil(-n / self.e).
|
|
1069
|
+
|
|
1070
|
+
EXAMPLES::
|
|
1071
|
+
|
|
1072
|
+
sage: PC = PowComputer_ext_maker(5, 3, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
1073
|
+
sage: PC._capdiv_test(15)
|
|
1074
|
+
8
|
|
1075
|
+
sage: PC._capdiv_test(-7)
|
|
1076
|
+
4
|
|
1077
|
+
"""
|
|
1078
|
+
cdef Integer _n = Integer(n)
|
|
1079
|
+
cdef Integer ans = Integer.__new__(Integer)
|
|
1080
|
+
mpz_set_si(ans.value, self.capdiv(mpz_get_si(_n.value)))
|
|
1081
|
+
return ans
|
|
1082
|
+
|
|
1083
|
+
cdef int eis_shift(self, ZZ_pX_c* x, ZZ_pX_c* a, long n, long finalprec) except -1:
|
|
1084
|
+
raise NotImplementedError
|
|
1085
|
+
|
|
1086
|
+
cdef int eis_shift_capdiv(self, ZZ_pX_c* x, ZZ_pX_c* a, long n, long finalprec) except -1:
|
|
1087
|
+
return self.eis_shift(x, a, n, self.capdiv(finalprec))
|
|
1088
|
+
|
|
1089
|
+
cdef int teichmuller_set_c (self, ZZ_pX_c* x, ZZ_pX_c* a, long absprec) except -1:
|
|
1090
|
+
r"""
|
|
1091
|
+
Set `x` to the Teichmuller lift congruent to a modulo the
|
|
1092
|
+
uniformizer, ie such that `x = a \mod \pi` and
|
|
1093
|
+
`x^q = x \mod \pi^{\mbox{absprec}}`.
|
|
1094
|
+
|
|
1095
|
+
If `a = 0 \mod \pi` this function does nothing and returns 1.
|
|
1096
|
+
Otherwise returns 0.
|
|
1097
|
+
|
|
1098
|
+
`x` should be created with context p^absprec.
|
|
1099
|
+
|
|
1100
|
+
Does not affect ``self``.
|
|
1101
|
+
|
|
1102
|
+
INPUT:
|
|
1103
|
+
|
|
1104
|
+
- ``x`` -- the ``ZZ_pX_c`` to be set
|
|
1105
|
+
|
|
1106
|
+
- ``a`` -- a ``ZZ_pX_c`` ``currently holding an approximation to the
|
|
1107
|
+
Teichmuller representative (this approximation can be any
|
|
1108
|
+
integer). It will be set to the actual Teichmuller lift.
|
|
1109
|
+
|
|
1110
|
+
- ``absprec`` -- the desired precision of the Teichmuller lift
|
|
1111
|
+
|
|
1112
|
+
OUTPUT:
|
|
1113
|
+
|
|
1114
|
+
- 1 -- `x` should be set to zero
|
|
1115
|
+
- 0 -- normal
|
|
1116
|
+
|
|
1117
|
+
EXAMPLES::
|
|
1118
|
+
|
|
1119
|
+
sage: R = Zp(17,5)
|
|
1120
|
+
sage: S.<x> = R[]
|
|
1121
|
+
sage: f = x^5 + 34*x^3 - 17*x^2 +289*x - 17
|
|
1122
|
+
sage: W.<w> = R.ext(f)
|
|
1123
|
+
sage: y = W.teichmuller(3,10); y
|
|
1124
|
+
3 + 13*w^5 + 4*w^7 + 9*w^8 + 13*w^9 + O(w^10)
|
|
1125
|
+
sage: y^17 == y
|
|
1126
|
+
True
|
|
1127
|
+
sage: g = x^3 + 9*x^2 + 1
|
|
1128
|
+
sage: A.<a> = R.ext(g)
|
|
1129
|
+
sage: b = A.teichmuller(1 + 2*a - a^2, 3); b
|
|
1130
|
+
(16*a^2 + 2*a + 1) + (4*a^2 + 5*a + 3)*17 + (10*a^2 + 15*a + 11)*17^2 + O(17^3)
|
|
1131
|
+
sage: b^(17^3) == b
|
|
1132
|
+
True
|
|
1133
|
+
"""
|
|
1134
|
+
cdef mpz_t u, xnew, value
|
|
1135
|
+
cdef ZZ_c tmp, q, u_q
|
|
1136
|
+
cdef ZZ_pX_c xnew_q
|
|
1137
|
+
cdef ntl_ZZ_pContext_class c
|
|
1138
|
+
cdef long mini = 0, minval = 0
|
|
1139
|
+
if absprec == 0:
|
|
1140
|
+
return 1
|
|
1141
|
+
if absprec < 0:
|
|
1142
|
+
absprec = -absprec
|
|
1143
|
+
if self.e != 1:
|
|
1144
|
+
mpz_init(value)
|
|
1145
|
+
tmp = ZZ_p_rep(ZZ_pX_ConstTerm(a[0]))
|
|
1146
|
+
ZZ_to_mpz(value, &tmp)
|
|
1147
|
+
if mpz_divisible_p(value, self.prime.value) != 0:
|
|
1148
|
+
mpz_clear(value)
|
|
1149
|
+
return 1
|
|
1150
|
+
self.pow_mpz_t_tmp(self.capdiv(absprec)) # sets self.temp_m
|
|
1151
|
+
if mpz_sgn(value) < 0 or mpz_cmp(value, self.temp_m) >= 0:
|
|
1152
|
+
mpz_mod(value, value, self.temp_m)
|
|
1153
|
+
mpz_init(u)
|
|
1154
|
+
mpz_init(xnew)
|
|
1155
|
+
# u = 1 / Mod(1 - p, self.temp_m)
|
|
1156
|
+
mpz_sub(u, self.temp_m, self.prime.value)
|
|
1157
|
+
mpz_add_ui(u, u, 1)
|
|
1158
|
+
mpz_invert(u, u, self.temp_m)
|
|
1159
|
+
# Consider x as Mod(self.value, self.temp_m)
|
|
1160
|
+
# xnew = x + u*(x^p - x)
|
|
1161
|
+
mpz_powm(xnew, value, self.prime.value, self.temp_m)
|
|
1162
|
+
mpz_sub(xnew, xnew, value)
|
|
1163
|
+
mpz_mul(xnew, xnew, u)
|
|
1164
|
+
mpz_add(xnew, xnew, value)
|
|
1165
|
+
mpz_mod(xnew, xnew, self.temp_m)
|
|
1166
|
+
# while x != xnew:
|
|
1167
|
+
# x = xnew
|
|
1168
|
+
# xnew = x + u*(x^p - x)
|
|
1169
|
+
while mpz_cmp(value, xnew) != 0:
|
|
1170
|
+
mpz_set(value, xnew)
|
|
1171
|
+
mpz_powm(xnew, value, self.prime.value, self.temp_m)
|
|
1172
|
+
mpz_sub(xnew, xnew, value)
|
|
1173
|
+
mpz_mul(xnew, xnew, u)
|
|
1174
|
+
mpz_add(xnew, xnew, value)
|
|
1175
|
+
mpz_mod(xnew, xnew, self.temp_m)
|
|
1176
|
+
mpz_clear(u)
|
|
1177
|
+
mpz_clear(xnew)
|
|
1178
|
+
mpz_to_ZZ(&tmp, value)
|
|
1179
|
+
self.restore_context_capdiv(absprec)
|
|
1180
|
+
if ZZ_pX_IsZero(x[0]): # shortcut for the case x = 0
|
|
1181
|
+
ZZ_pX_SetCoeff(x[0], 0, ZZ_to_ZZ_p(tmp))
|
|
1182
|
+
else:
|
|
1183
|
+
ZZ_pX_SetX(x[0])
|
|
1184
|
+
ZZ_pX_SetCoeff(x[0], 0, ZZ_to_ZZ_p(tmp))
|
|
1185
|
+
ZZ_pX_SetCoeff_long(x[0], 1, 0)
|
|
1186
|
+
mpz_clear(value)
|
|
1187
|
+
else:
|
|
1188
|
+
c = self.get_context(absprec)
|
|
1189
|
+
c.restore_c()
|
|
1190
|
+
q = self.pow_ZZ_tmp(self.f)[0]
|
|
1191
|
+
ZZ_pX_min_val_coeff(minval, mini, a[0], self.pow_ZZ_tmp(1)[0])
|
|
1192
|
+
if mini == -1 or minval > 0:
|
|
1193
|
+
return 1
|
|
1194
|
+
ZZ_pX_conv_modulus(x[0], a[0], c.x)
|
|
1195
|
+
# u = 1 / Mod(1 - q, p^absprec)
|
|
1196
|
+
ZZ_conv_from_long(u_q, 1)
|
|
1197
|
+
ZZ_sub(u_q, u_q, q)
|
|
1198
|
+
ZZ_rem(u_q, u_q, (<ntl_ZZ>c.p).x)
|
|
1199
|
+
ZZ_InvMod(u_q, u_q, (<ntl_ZZ>c.p).x)
|
|
1200
|
+
# xnew = x + u*(x^q - x)
|
|
1201
|
+
ZZ_pX_PowerMod_pre(xnew_q, x[0], q, self.get_modulus(absprec)[0])
|
|
1202
|
+
ZZ_pX_sub(xnew_q, xnew_q, x[0])
|
|
1203
|
+
ZZ_pX_mul_ZZ_p(xnew_q, xnew_q, ZZ_to_ZZ_p(u_q))
|
|
1204
|
+
ZZ_pX_add(xnew_q, xnew_q, x[0])
|
|
1205
|
+
# while x != xnew:
|
|
1206
|
+
# x = xnew
|
|
1207
|
+
# xnew = x + u*(x^q - x)
|
|
1208
|
+
while x[0] != xnew_q:
|
|
1209
|
+
x[0] = xnew_q
|
|
1210
|
+
ZZ_pX_PowerMod_pre(xnew_q, x[0], q, self.get_modulus(absprec)[0])
|
|
1211
|
+
ZZ_pX_sub(xnew_q, xnew_q, x[0])
|
|
1212
|
+
ZZ_pX_mul_ZZ_p(xnew_q, xnew_q, ZZ_to_ZZ_p(u_q))
|
|
1213
|
+
ZZ_pX_add(xnew_q, xnew_q, x[0])
|
|
1214
|
+
return 0
|
|
1215
|
+
|
|
1216
|
+
|
|
1217
|
+
cdef class PowComputer_ZZ_pX_FM(PowComputer_ZZ_pX):
|
|
1218
|
+
r"""
|
|
1219
|
+
This class only caches a context and modulus for p^prec_cap.
|
|
1220
|
+
|
|
1221
|
+
Designed for use with fixed modulus `p`-adic rings, in Eisenstein
|
|
1222
|
+
and unramified extensions of `\ZZ_p`.
|
|
1223
|
+
"""
|
|
1224
|
+
|
|
1225
|
+
def __cinit__(self, Integer prime, long cache_limit, long prec_cap, long ram_prec_cap, bint in_field, poly, shift_seed=None):
|
|
1226
|
+
"""
|
|
1227
|
+
Caches a context and modulus for ``prime^prec_cap``.
|
|
1228
|
+
|
|
1229
|
+
EXAMPLES::
|
|
1230
|
+
|
|
1231
|
+
sage: A = PowComputer_ext_maker(5, 3, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10)) # indirect doctest
|
|
1232
|
+
sage: A
|
|
1233
|
+
PowComputer_ext for 5, with polynomial [9765620 0 1]
|
|
1234
|
+
"""
|
|
1235
|
+
|
|
1236
|
+
# The __new__ method for PowComputer_ext has already run, so we have access to small_powers, top_power.
|
|
1237
|
+
|
|
1238
|
+
# We use ntl_ZZ_pContexts so that contexts are cached centrally.
|
|
1239
|
+
|
|
1240
|
+
self._prec_type = 'FM'
|
|
1241
|
+
self._ext_type = 'u'
|
|
1242
|
+
self.c = self.get_context(prec_cap)
|
|
1243
|
+
self.c.restore_c()
|
|
1244
|
+
# For now, we don't do anything complicated with poly
|
|
1245
|
+
if isinstance(poly, ntl_ZZ_pX) and (<ntl_ZZ_pX>poly).c is self.c:
|
|
1246
|
+
ZZ_pX_Modulus_build(self.mod, (<ntl_ZZ_pX>poly).x)
|
|
1247
|
+
if prec_cap == ram_prec_cap:
|
|
1248
|
+
self.e = 1
|
|
1249
|
+
self.f = ZZ_pX_deg((<ntl_ZZ_pX>poly).x)
|
|
1250
|
+
else:
|
|
1251
|
+
self.e = ZZ_pX_deg((<ntl_ZZ_pX>poly).x)
|
|
1252
|
+
self.f = 1
|
|
1253
|
+
self.ram_prec_cap = ram_prec_cap
|
|
1254
|
+
else:
|
|
1255
|
+
raise NotImplementedError("NOT IMPLEMENTED IN PowComputer_ZZ_pX_FM")
|
|
1256
|
+
|
|
1257
|
+
cdef ntl_ZZ_pContext_class get_top_context(self):
|
|
1258
|
+
"""
|
|
1259
|
+
Return a ``ZZ_pContext`` for ``self.prime^self.prec_cap``.
|
|
1260
|
+
|
|
1261
|
+
EXAMPLES::
|
|
1262
|
+
|
|
1263
|
+
sage: PC = PowComputer_ext_maker(5, 5, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
1264
|
+
sage: PC._get_top_context_test() # indirect doctest
|
|
1265
|
+
NTL modulus 9765625
|
|
1266
|
+
"""
|
|
1267
|
+
return self.c
|
|
1268
|
+
|
|
1269
|
+
cdef void restore_top_context(self) noexcept:
|
|
1270
|
+
"""
|
|
1271
|
+
Restore the context corresponding to ``self.prime^self.prec_cap``.
|
|
1272
|
+
|
|
1273
|
+
EXAMPLES::
|
|
1274
|
+
|
|
1275
|
+
sage: PC = PowComputer_ext_maker(5, 5, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
1276
|
+
sage: PC._restore_top_context_test() # indirect doctest
|
|
1277
|
+
"""
|
|
1278
|
+
self.c.restore_c()
|
|
1279
|
+
|
|
1280
|
+
cdef ZZ_pX_Modulus_c* get_top_modulus(self) noexcept:
|
|
1281
|
+
"""
|
|
1282
|
+
Return the modulus corresponding to ``self.polynomial()``
|
|
1283
|
+
(mod ``self.prime^self.prec_cap``).
|
|
1284
|
+
|
|
1285
|
+
EXAMPLES::
|
|
1286
|
+
|
|
1287
|
+
sage: A = PowComputer_ext_maker(5, 3, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
1288
|
+
sage: a = ntl.ZZ_pX([129223,1231],5^10)
|
|
1289
|
+
sage: b = ntl.ZZ_pX([289741,323],5^10)
|
|
1290
|
+
sage: A._get_top_modulus_test(a, b) # indirect doctest
|
|
1291
|
+
[1783058 7785200]
|
|
1292
|
+
"""
|
|
1293
|
+
return &self.mod
|
|
1294
|
+
|
|
1295
|
+
cdef ZZ_pX_Modulus_c* get_modulus(self, long n) noexcept:
|
|
1296
|
+
"""
|
|
1297
|
+
Duplicates functionality of get_top_modulus if n == self.prec_cap.
|
|
1298
|
+
|
|
1299
|
+
If not, raise an exception (which will be ignored by Cython).
|
|
1300
|
+
|
|
1301
|
+
EXAMPLES::
|
|
1302
|
+
|
|
1303
|
+
sage: A = PowComputer_ext_maker(5, 3, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
1304
|
+
sage: a = ntl.ZZ_pX([129223,1231],5^10)
|
|
1305
|
+
sage: b = ntl.ZZ_pX([289741,323],5^10)
|
|
1306
|
+
sage: A._get_modulus_test(a, b, 10) # indirect doctest
|
|
1307
|
+
[1783058 7785200]
|
|
1308
|
+
"""
|
|
1309
|
+
if n == self.prec_cap:
|
|
1310
|
+
return &self.mod
|
|
1311
|
+
else:
|
|
1312
|
+
# Exception will be ignored by Cython
|
|
1313
|
+
raise ValueError("fixed modulus PowComputers only store top modulus")
|
|
1314
|
+
|
|
1315
|
+
cdef class PowComputer_ZZ_pX_FM_Eis(PowComputer_ZZ_pX_FM):
|
|
1316
|
+
"""
|
|
1317
|
+
This class computes and stores ``low_shifter`` and ``high_shifter``, which aid in right shifting elements.
|
|
1318
|
+
"""
|
|
1319
|
+
|
|
1320
|
+
def __cinit__(self, Integer prime, long cache_limit, long prec_cap, long ram_prec_cap, bint in_field, poly, shift_seed=None):
|
|
1321
|
+
"""
|
|
1322
|
+
Call ``Eis_init``, which initializes ``high_shifter`` and
|
|
1323
|
+
``low_shifter``.
|
|
1324
|
+
|
|
1325
|
+
TESTS::
|
|
1326
|
+
|
|
1327
|
+
sage: A = PowComputer_ext_maker(5, 3, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10)) # indirect doctest
|
|
1328
|
+
"""
|
|
1329
|
+
# The __new__ method for PowComputer_ZZ_pX_FM has already run, so we have access to self.mod
|
|
1330
|
+
self._ext_type = 'e'
|
|
1331
|
+
if not isinstance(shift_seed, ntl_ZZ_pX):
|
|
1332
|
+
raise TypeError("shift_seed must be an ntl_ZZ_pX")
|
|
1333
|
+
ZZ_pX_Eis_init(self, <ntl_ZZ_pX>shift_seed)
|
|
1334
|
+
|
|
1335
|
+
def _low_shifter(self, i):
|
|
1336
|
+
"""
|
|
1337
|
+
Accessor function for low_shifter, which are the polynomials used to shift right.
|
|
1338
|
+
|
|
1339
|
+
If low_length is the number of low_shifters, then:
|
|
1340
|
+
* if deg = 2, low_length = 1 (store p/x)
|
|
1341
|
+
* if deg = 3,4, low_length = 2 (store p/x, p/x^2)
|
|
1342
|
+
* if deg = 5,6,7,8, low_length = 3 (store p/x, p/x^2, p/x^4)
|
|
1343
|
+
* if deg = 9,...,16, low_length = 4 (store p/x, p/x^2, p/x^4, p/x^8)
|
|
1344
|
+
|
|
1345
|
+
These polynomials are used to shift by amounts less than the degree of the defining polynomial.
|
|
1346
|
+
|
|
1347
|
+
EXAMPLES::
|
|
1348
|
+
|
|
1349
|
+
sage: A = PowComputer_ext_maker(5, 3, 10, 40, False, ntl.ZZ_pX([-5,75,15,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1,-15,-3],5^10))
|
|
1350
|
+
sage: A._low_shifter(0)
|
|
1351
|
+
[75 15 0 1]
|
|
1352
|
+
|
|
1353
|
+
Note that if we multiply this by x and reduce using the relation that x^4 = 5 - 75x - 15x^2, we just get 5.
|
|
1354
|
+
|
|
1355
|
+
sage: A._low_shifter(1)
|
|
1356
|
+
[1140 225 1 15]
|
|
1357
|
+
|
|
1358
|
+
This one's a bit less obvious, but if we multiply by x^2, we get 5 (modulo x^4 = 5 - 75x - 15x^2).
|
|
1359
|
+
"""
|
|
1360
|
+
cdef long _i = i
|
|
1361
|
+
cdef ntl_ZZ_pX ans
|
|
1362
|
+
if _i >= 0 and _i < self.low_length:
|
|
1363
|
+
ans = ntl_ZZ_pX([], self.get_top_context())
|
|
1364
|
+
ans.x = self.low_shifter[i].val()
|
|
1365
|
+
return ans
|
|
1366
|
+
else:
|
|
1367
|
+
raise IndexError
|
|
1368
|
+
|
|
1369
|
+
def _high_shifter(self, i):
|
|
1370
|
+
"""
|
|
1371
|
+
Accessor function for high_shifter, which are the polynomials used to shift right.
|
|
1372
|
+
|
|
1373
|
+
If high_length is the number of high_shifters, then:
|
|
1374
|
+
* if prec_cap = 2, high_length = 1 (store p/x^e)
|
|
1375
|
+
* if prec_cap = 3,4, high_length = 2 (store p/x^e, p^2/x^(2e))
|
|
1376
|
+
* if prec_cap = 5,6,7,8, high_length = 3 (store p/x^e, p^2/x^(2e), p^4/x^(4e))
|
|
1377
|
+
* if prec_cap = 9,...,16, high_length = 4 (store p/x, p^2/x^(2e), p^4/x^(4e), p^8/x^(8e))
|
|
1378
|
+
|
|
1379
|
+
These polynomials are used to shift by amounts greater than the degree of the defining polynomial, but less than e*prec_cap.
|
|
1380
|
+
|
|
1381
|
+
EXAMPLES::
|
|
1382
|
+
|
|
1383
|
+
sage: A = PowComputer_ext_maker(5, 3, 10, 40, False, ntl.ZZ_pX([-5,75,15,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1,-15,-3],5^10))
|
|
1384
|
+
sage: A._high_shifter(0)
|
|
1385
|
+
[263296 51990 228 3465]
|
|
1386
|
+
|
|
1387
|
+
If we take this and multiply by x^4, and reduce modulo x^4 + 15*x^2 + 75*x - 5, we should get 5.::
|
|
1388
|
+
|
|
1389
|
+
sage: R.<x> = ZZ[]
|
|
1390
|
+
sage: f = 263296 + 51990*x + 228*x^2 + 3465*x^3
|
|
1391
|
+
sage: g = x^4 + 15*x^2 + 75*x - 5
|
|
1392
|
+
sage: f*x^4 % g
|
|
1393
|
+
5
|
|
1394
|
+
|
|
1395
|
+
sage: A._high_shifter(1)
|
|
1396
|
+
[1420786 9298230 2217816 6212495]
|
|
1397
|
+
|
|
1398
|
+
Similarly::
|
|
1399
|
+
|
|
1400
|
+
sage: f = 1420786 + 9298230*x + 2217816*x^2 + 6212495*x^3
|
|
1401
|
+
sage: h = f*x^8 % g; h
|
|
1402
|
+
-1328125000000*x^3 + 2962646484375*x^2 + 22094970703125*x - 1466308593725
|
|
1403
|
+
|
|
1404
|
+
Here, we need to remember that we're working modulo 5^10::
|
|
1405
|
+
|
|
1406
|
+
sage: h[0].valuation(5), h[1].valuation(5), h[2].valuation(5), h[3].valuation(5)
|
|
1407
|
+
(2, 12, 13, 13)
|
|
1408
|
+
sage: (h[0] - 25).valuation(5)
|
|
1409
|
+
12
|
|
1410
|
+
"""
|
|
1411
|
+
cdef long _i = i
|
|
1412
|
+
cdef ntl_ZZ_pX ans
|
|
1413
|
+
if _i >= 0 and _i < self.high_length:
|
|
1414
|
+
ans = ntl_ZZ_pX([], self.get_top_context())
|
|
1415
|
+
ans.x = self.high_shifter[i].val()
|
|
1416
|
+
return ans
|
|
1417
|
+
else:
|
|
1418
|
+
raise IndexError
|
|
1419
|
+
|
|
1420
|
+
def __dealloc__(self):
|
|
1421
|
+
"""
|
|
1422
|
+
Deallocate ``low_shifter`` and ``high_shifter``.
|
|
1423
|
+
|
|
1424
|
+
TESTS::
|
|
1425
|
+
|
|
1426
|
+
sage: A = PowComputer_ext_maker(5, 3, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
1427
|
+
sage: del A # indirect doctest
|
|
1428
|
+
"""
|
|
1429
|
+
if self._initialized:
|
|
1430
|
+
self.cleanup_ZZ_pX_FM_Eis()
|
|
1431
|
+
|
|
1432
|
+
cdef void cleanup_ZZ_pX_FM_Eis(self) noexcept:
|
|
1433
|
+
"""
|
|
1434
|
+
Do the actual work of deallocating ``low_shifter`` and
|
|
1435
|
+
``high_shifter``.
|
|
1436
|
+
|
|
1437
|
+
TESTS::
|
|
1438
|
+
|
|
1439
|
+
sage: A = PowComputer_ext_maker(5, 3, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
1440
|
+
sage: del A # indirect doctest
|
|
1441
|
+
"""
|
|
1442
|
+
Delete_ZZ_pX_Multiplier_array(self.low_shifter)
|
|
1443
|
+
Delete_ZZ_pX_Multiplier_array(self.high_shifter)
|
|
1444
|
+
|
|
1445
|
+
cdef int eis_shift(self, ZZ_pX_c* x, ZZ_pX_c* a, long n, long finalprec) except -1:
|
|
1446
|
+
"""
|
|
1447
|
+
Shift ``a`` right ``n`` pi-adic digits, where pi is considered modulo
|
|
1448
|
+
the polynomial in ``self``.
|
|
1449
|
+
|
|
1450
|
+
Puts the result in ``x``.
|
|
1451
|
+
|
|
1452
|
+
EXAMPLES::
|
|
1453
|
+
|
|
1454
|
+
sage: from sage.rings.padics.pow_computer_ext import ZZ_pX_eis_shift_test
|
|
1455
|
+
sage: A = PowComputer_ext_maker(5, 3, 10, 40, False, ntl.ZZ_pX([-5,75,15,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1,-15,-3],5^10))
|
|
1456
|
+
sage: ZZ_pX_eis_shift_test(A, [0, 1], 1, 5) # indirect doctest
|
|
1457
|
+
[1]
|
|
1458
|
+
sage: ZZ_pX_eis_shift_test(A, [0, 0, 1], 1, 5)
|
|
1459
|
+
[0 1]
|
|
1460
|
+
sage: ZZ_pX_eis_shift_test(A, [5], 1, 5)
|
|
1461
|
+
[75 15 0 1]
|
|
1462
|
+
sage: ZZ_pX_eis_shift_test(A, [1], 1, 5)
|
|
1463
|
+
[]
|
|
1464
|
+
sage: ZZ_pX_eis_shift_test(A, [17, 91, 8, -2], 1, 5)
|
|
1465
|
+
[316 53 3123 3]
|
|
1466
|
+
sage: ZZ_pX_eis_shift_test(A, [316, 53, 3123, 3], -1, 5)
|
|
1467
|
+
[15 91 8 3123]
|
|
1468
|
+
sage: ZZ_pX_eis_shift_test(A, [15, 91, 8, 3123], 1, 5)
|
|
1469
|
+
[316 53 3123 3]
|
|
1470
|
+
"""
|
|
1471
|
+
return ZZ_pX_eis_shift_p(self, x, a, n, finalprec)
|
|
1472
|
+
|
|
1473
|
+
# cdef ZZ_pX_c low_part
|
|
1474
|
+
# cdef ZZ_pX_c shifted_high_part
|
|
1475
|
+
# cdef ZZ_pX_c high_shifter
|
|
1476
|
+
|
|
1477
|
+
# ##cdef ntl_ZZ_pX printer
|
|
1478
|
+
# if n < 0:
|
|
1479
|
+
# self.restore_top_context()
|
|
1480
|
+
# ##printer = ntl_ZZ_pX([],self.get_top_context())
|
|
1481
|
+
# ZZ_pX_PowerXMod_long_pre(high_shifter, -n, self.get_top_modulus()[0])
|
|
1482
|
+
# ##printer.x = high_shifter
|
|
1483
|
+
# ZZ_pX_MulMod_pre(x[0],high_shifter,a[0],self.get_top_modulus()[0])
|
|
1484
|
+
# ##printer.x = x[0]
|
|
1485
|
+
# return 0
|
|
1486
|
+
# elif n == 0:
|
|
1487
|
+
# if x != a:
|
|
1488
|
+
# x[0] = a[0]
|
|
1489
|
+
# return 0
|
|
1490
|
+
# cdef long pshift = n / self.e
|
|
1491
|
+
# cdef long eis_part = n % self.e
|
|
1492
|
+
# cdef long two_shift = 1
|
|
1493
|
+
# cdef int i
|
|
1494
|
+
|
|
1495
|
+
# ##printer = ntl_ZZ_pX([],self.get_top_context())
|
|
1496
|
+
# if x != a:
|
|
1497
|
+
# x[0] = a[0]
|
|
1498
|
+
# ##printer.x = a[0]
|
|
1499
|
+
# if pshift:
|
|
1500
|
+
# i = 0
|
|
1501
|
+
# # This line restores the top context
|
|
1502
|
+
# ZZ_pX_right_pshift(x[0], x[0], self.pow_ZZ_tmp(pshift)[0], self.get_top_context().x)
|
|
1503
|
+
# ##printer.x = x[0]
|
|
1504
|
+
# if pshift >= self.prec_cap:
|
|
1505
|
+
# # high_shifter = p^(2^(high_length - 1))/x^(e*2^(high_length - 1))
|
|
1506
|
+
# # if val = r + s * 2^(high_length - 1)
|
|
1507
|
+
# # then high_shifter = p^(s*2^(high_length - 1))/x^(e*s*2^(high_length - 1))
|
|
1508
|
+
# ZZ_pX_PowerMod_long_pre(high_shifter, self.high_shifter[self.high_length-1].val(), (pshift / (1L << (self.high_length - 1))), self.get_top_modulus()[0])
|
|
1509
|
+
# ##printer.x = high_shifter
|
|
1510
|
+
# ZZ_pX_MulMod_pre(x[0], x[0], high_shifter, self.get_top_modulus()[0])
|
|
1511
|
+
# ##printer.x = high_shifter
|
|
1512
|
+
# # Now we only need to multiply self.unit by p^r/x^(e*r) where r < 2^(high_length - 1), which is tractible.
|
|
1513
|
+
# pshift = pshift % (1L << (self.high_length - 1))
|
|
1514
|
+
# while pshift > 0:
|
|
1515
|
+
# if pshift & 1:
|
|
1516
|
+
# ##printer.x = x[0]
|
|
1517
|
+
# ZZ_pX_MulMod_premul(x[0], x[0], self.high_shifter[i], self.get_top_modulus()[0])
|
|
1518
|
+
# i += 1
|
|
1519
|
+
# pshift = pshift >> 1
|
|
1520
|
+
# else:
|
|
1521
|
+
# self.restore_top_context()
|
|
1522
|
+
# i = 0
|
|
1523
|
+
# two_shift = 1
|
|
1524
|
+
# while eis_part > 0:
|
|
1525
|
+
# if eis_part & 1:
|
|
1526
|
+
# ZZ_pX_RightShift(shifted_high_part, x[0], two_shift)
|
|
1527
|
+
# ##printer.x = shifted_high_part
|
|
1528
|
+
# ZZ_pX_LeftShift(low_part, shifted_high_part, two_shift)
|
|
1529
|
+
# ZZ_pX_sub(low_part, x[0], low_part)
|
|
1530
|
+
# ##printer.x = low_part
|
|
1531
|
+
# ZZ_pX_right_pshift(low_part, low_part, self.pow_ZZ_tmp(1)[0], self.get_top_context().x)
|
|
1532
|
+
# ##printer.x = low_part
|
|
1533
|
+
# ZZ_pX_MulMod_premul(low_part, low_part, self.low_shifter[i], self.get_top_modulus()[0])
|
|
1534
|
+
# ##printer.x = low_part
|
|
1535
|
+
# ZZ_pX_add(x[0], low_part, shifted_high_part)
|
|
1536
|
+
# ##printer.x = x[0]
|
|
1537
|
+
# i += 1
|
|
1538
|
+
# two_shift = two_shift << 1
|
|
1539
|
+
# eis_part = eis_part >> 1
|
|
1540
|
+
|
|
1541
|
+
cdef class PowComputer_ZZ_pX_small(PowComputer_ZZ_pX):
|
|
1542
|
+
"""
|
|
1543
|
+
This class caches contexts and moduli densely between 1 and cache_limit. It requires cache_limit == prec_cap.
|
|
1544
|
+
|
|
1545
|
+
It is intended for use with capped relative and capped absolute rings and fields, in Eisenstein and unramified
|
|
1546
|
+
extensions of the base `p`-adic fields.
|
|
1547
|
+
"""
|
|
1548
|
+
|
|
1549
|
+
def __cinit__(self, Integer prime, long cache_limit, long prec_cap, long ram_prec_cap, bint in_field, poly, shift_seed=None):
|
|
1550
|
+
"""
|
|
1551
|
+
Caches contexts and moduli densely between 1 and cache_limit.
|
|
1552
|
+
|
|
1553
|
+
EXAMPLES::
|
|
1554
|
+
|
|
1555
|
+
sage: A = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'small', 'e',ntl.ZZ_pX([1],5^10)) # indirect doctest
|
|
1556
|
+
sage: A
|
|
1557
|
+
PowComputer_ext for 5, with polynomial [9765620 0 1]
|
|
1558
|
+
"""
|
|
1559
|
+
# The __new__ method for PowComputer_ext has already run, so we have access to small_powers, top_power.
|
|
1560
|
+
|
|
1561
|
+
# We use ntl_ZZ_pContexts so that contexts are cached centrally.
|
|
1562
|
+
|
|
1563
|
+
self._prec_type = 'small'
|
|
1564
|
+
self._ext_type = 'u'
|
|
1565
|
+
if not isinstance(poly, ntl_ZZ_pX):
|
|
1566
|
+
self.cleanup_ext()
|
|
1567
|
+
raise TypeError
|
|
1568
|
+
|
|
1569
|
+
if cache_limit != prec_cap:
|
|
1570
|
+
self.cleanup_ext()
|
|
1571
|
+
raise ValueError("prec_cap and cache_limit must be equal in the small case")
|
|
1572
|
+
|
|
1573
|
+
self.c = []
|
|
1574
|
+
# We cache from 0 to cache_limit inclusive, and provide one extra slot to return moduli above the cache_limit
|
|
1575
|
+
sig_on()
|
|
1576
|
+
self.mod = Allocate_ZZ_pX_Modulus_array(cache_limit + 2)
|
|
1577
|
+
sig_off()
|
|
1578
|
+
if self.mod == NULL:
|
|
1579
|
+
self.cleanup_ext()
|
|
1580
|
+
raise MemoryError("out of memory allocating moduli")
|
|
1581
|
+
|
|
1582
|
+
cdef Py_ssize_t i
|
|
1583
|
+
cdef ZZ_pX_c tmp, pol
|
|
1584
|
+
if isinstance(poly, ntl_ZZ_pX):
|
|
1585
|
+
pol = (<ntl_ZZ_pX>poly).x
|
|
1586
|
+
self.c.append(None)
|
|
1587
|
+
for i in range(1, cache_limit + 1):
|
|
1588
|
+
self.c.append(PowComputer_ZZ_pX.get_context(self,i))
|
|
1589
|
+
|
|
1590
|
+
# create a temporary polynomial with the highest modulus to
|
|
1591
|
+
# ensure all mod[i]'s will fit into it
|
|
1592
|
+
(<ntl_ZZ_pContext_class>self.c[cache_limit]).restore_c()
|
|
1593
|
+
tmp = (<ntl_ZZ_pX>poly).x
|
|
1594
|
+
|
|
1595
|
+
for i in range(1, cache_limit + 1):
|
|
1596
|
+
(<ntl_ZZ_pContext_class>self.c[i]).restore_c()
|
|
1597
|
+
ZZ_pX_conv_modulus(tmp, pol, (<ntl_ZZ_pContext_class>self.c[i]).x)
|
|
1598
|
+
ZZ_pX_Modulus_build(self.mod[i], tmp)
|
|
1599
|
+
if prec_cap == ram_prec_cap:
|
|
1600
|
+
self.e = 1
|
|
1601
|
+
self.f = ZZ_pX_deg((<ntl_ZZ_pX>poly).x)
|
|
1602
|
+
else:
|
|
1603
|
+
self.e = ZZ_pX_deg((<ntl_ZZ_pX>poly).x)
|
|
1604
|
+
self.f = 1
|
|
1605
|
+
self.ram_prec_cap = ram_prec_cap
|
|
1606
|
+
else:
|
|
1607
|
+
raise NotImplementedError("NOT IMPLEMENTED IN PowComputer_ZZ_pX_FM")
|
|
1608
|
+
|
|
1609
|
+
def __dealloc__(self):
|
|
1610
|
+
"""
|
|
1611
|
+
Deallocate cache of contexts, moduli.
|
|
1612
|
+
|
|
1613
|
+
EXAMPLES::
|
|
1614
|
+
|
|
1615
|
+
sage: A = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'small','e',ntl.ZZ_pX([1],5^10))
|
|
1616
|
+
sage: del A # indirect doctest
|
|
1617
|
+
"""
|
|
1618
|
+
if self._initialized:
|
|
1619
|
+
self.cleanup_ZZ_pX_small()
|
|
1620
|
+
|
|
1621
|
+
cdef void cleanup_ZZ_pX_small(self) noexcept:
|
|
1622
|
+
"""
|
|
1623
|
+
Deallocate cache of contexts, moduli.
|
|
1624
|
+
|
|
1625
|
+
EXAMPLES::
|
|
1626
|
+
|
|
1627
|
+
sage: A = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'small','e',ntl.ZZ_pX([1],5^10))
|
|
1628
|
+
sage: del A # indirect doctest
|
|
1629
|
+
"""
|
|
1630
|
+
Delete_ZZ_pX_Modulus_array(self.mod)
|
|
1631
|
+
|
|
1632
|
+
cdef ntl_ZZ_pContext_class get_context(self, long n):
|
|
1633
|
+
"""
|
|
1634
|
+
Return the context for p^n. This will use the cache if
|
|
1635
|
+
``abs(n) <= self.cache_limit``.
|
|
1636
|
+
|
|
1637
|
+
INPUT:
|
|
1638
|
+
|
|
1639
|
+
- ``n`` -- nonzero long
|
|
1640
|
+
|
|
1641
|
+
OUTPUT: a context for p^n
|
|
1642
|
+
|
|
1643
|
+
EXAMPLES::
|
|
1644
|
+
|
|
1645
|
+
sage: A = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'small','e',ntl.ZZ_pX([1],5^10))
|
|
1646
|
+
sage: A._get_context_test(4) # indirect doctest
|
|
1647
|
+
NTL modulus 625
|
|
1648
|
+
"""
|
|
1649
|
+
if n < 0:
|
|
1650
|
+
n = -n
|
|
1651
|
+
try:
|
|
1652
|
+
return self.c[n]
|
|
1653
|
+
except IndexError:
|
|
1654
|
+
return PowComputer_ZZ_pX.get_context(self, n)
|
|
1655
|
+
|
|
1656
|
+
cdef restore_context(self, long n):
|
|
1657
|
+
"""
|
|
1658
|
+
Restore the context for p^n. This will use the cache if
|
|
1659
|
+
``abs(n) <= self.cache_limit``.
|
|
1660
|
+
|
|
1661
|
+
INPUT:
|
|
1662
|
+
|
|
1663
|
+
- ``n`` -- nonzero long
|
|
1664
|
+
|
|
1665
|
+
EXAMPLES::
|
|
1666
|
+
|
|
1667
|
+
sage: A = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'small','e',ntl.ZZ_pX([1],5^10))
|
|
1668
|
+
sage: A._restore_context_test(4) # indirect doctest
|
|
1669
|
+
"""
|
|
1670
|
+
if n < 0:
|
|
1671
|
+
n = -n
|
|
1672
|
+
try:
|
|
1673
|
+
(<ntl_ZZ_pContext_class>self.c[n]).restore_c()
|
|
1674
|
+
except IndexError:
|
|
1675
|
+
(<ntl_ZZ_pContext_class>PowComputer_ZZ_pX.get_context(self, n)).restore_c()
|
|
1676
|
+
|
|
1677
|
+
cdef ntl_ZZ_pContext_class get_top_context(self):
|
|
1678
|
+
"""
|
|
1679
|
+
Return a ``ZZ_pContext`` for ``self.prime^self.prec_cap``.
|
|
1680
|
+
|
|
1681
|
+
EXAMPLES::
|
|
1682
|
+
|
|
1683
|
+
sage: PC = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'small','e',ntl.ZZ_pX([1],5^10))
|
|
1684
|
+
sage: PC._get_top_context_test() # indirect doctest
|
|
1685
|
+
NTL modulus 9765625
|
|
1686
|
+
"""
|
|
1687
|
+
return self.c[self.prec_cap]
|
|
1688
|
+
|
|
1689
|
+
cdef void restore_top_context(self) noexcept:
|
|
1690
|
+
"""
|
|
1691
|
+
Restore the context corresponding to ``self.prime^self.prec_cap``.
|
|
1692
|
+
|
|
1693
|
+
EXAMPLES::
|
|
1694
|
+
|
|
1695
|
+
sage: PC = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'small','e',ntl.ZZ_pX([1],5^10))
|
|
1696
|
+
sage: PC._restore_top_context_test() # indirect doctest
|
|
1697
|
+
"""
|
|
1698
|
+
(<ntl_ZZ_pContext_class>self.c[self.prec_cap]).restore_c()
|
|
1699
|
+
|
|
1700
|
+
cdef ZZ_pX_Modulus_c* get_modulus(self, long n) noexcept:
|
|
1701
|
+
"""
|
|
1702
|
+
Return the modulus corresponding to ``self.polynomial()`` (mod
|
|
1703
|
+
``self.prime^n``).
|
|
1704
|
+
|
|
1705
|
+
INPUT:
|
|
1706
|
+
|
|
1707
|
+
- ``n`` -- a long between 1 and ``self.cache_limit``, inclusive.
|
|
1708
|
+
If `n` is larger, this function will return ``self.mod[prec_cap]``
|
|
1709
|
+
lifted to that precision.
|
|
1710
|
+
|
|
1711
|
+
EXAMPLES::
|
|
1712
|
+
|
|
1713
|
+
sage: A = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'small','e',ntl.ZZ_pX([1],5^10))
|
|
1714
|
+
sage: a = ntl.ZZ_pX([4,2],5^2)
|
|
1715
|
+
sage: b = ntl.ZZ_pX([6,3],5^2)
|
|
1716
|
+
sage: A._get_modulus_test(a, b, 2)
|
|
1717
|
+
[4 24]
|
|
1718
|
+
"""
|
|
1719
|
+
cdef ZZ_pX_c tmp
|
|
1720
|
+
if n < 0:
|
|
1721
|
+
n = -n
|
|
1722
|
+
if n <= self.prec_cap:
|
|
1723
|
+
return &(self.mod[n])
|
|
1724
|
+
else:
|
|
1725
|
+
ZZ_pX_conv_modulus(tmp, self.mod[self.prec_cap].val(), (<ntl_ZZ_pContext_class>self.get_context(n)).x)
|
|
1726
|
+
ZZ_pX_Modulus_build(self.mod[self.prec_cap+1], tmp)
|
|
1727
|
+
return &(self.mod[self.prec_cap+1])
|
|
1728
|
+
|
|
1729
|
+
cdef ZZ_pX_Modulus_c* get_top_modulus(self) noexcept:
|
|
1730
|
+
"""
|
|
1731
|
+
Return the modulus corresponding to ``self.polynomial()``
|
|
1732
|
+
(mod ``self.prime^self.prec_cap``).
|
|
1733
|
+
|
|
1734
|
+
EXAMPLES::
|
|
1735
|
+
|
|
1736
|
+
sage: A = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'small','e',ntl.ZZ_pX([1],5^10))
|
|
1737
|
+
sage: a = ntl.ZZ_pX([129223,1231],5^10)
|
|
1738
|
+
sage: b = ntl.ZZ_pX([289741,323],5^10)
|
|
1739
|
+
sage: A._get_top_modulus_test(a, b) # indirect doctest
|
|
1740
|
+
[1783058 7785200]
|
|
1741
|
+
"""
|
|
1742
|
+
return &(self.mod[self.prec_cap])
|
|
1743
|
+
|
|
1744
|
+
cdef class PowComputer_ZZ_pX_small_Eis(PowComputer_ZZ_pX_small):
|
|
1745
|
+
"""
|
|
1746
|
+
This class computes and stores ``low_shifter`` and ``high_shifter``, which aid in right shifting elements.
|
|
1747
|
+
These are only stored at maximal precision: in order to get lower precision versions just reduce mod p^n.
|
|
1748
|
+
"""
|
|
1749
|
+
def __cinit__(self, Integer prime, long cache_limit, long prec_cap, long ram_prec_cap, bint in_field, poly, shift_seed=None):
|
|
1750
|
+
"""
|
|
1751
|
+
Initialization.
|
|
1752
|
+
|
|
1753
|
+
For input types see :func:`PowComputer_ext_maker`
|
|
1754
|
+
|
|
1755
|
+
TESTS::
|
|
1756
|
+
|
|
1757
|
+
sage: A = PowComputer_ext_maker(5, 10, 10, 40, False, ntl.ZZ_pX([-5,75,15,0,1],5^10), 'small', 'e',ntl.ZZ_pX([1,-15,-3],5^10))
|
|
1758
|
+
sage: type(A)
|
|
1759
|
+
<class 'sage.rings.padics.pow_computer_ext.PowComputer_ZZ_pX_small_Eis'>
|
|
1760
|
+
sage: TestSuite(A).run()
|
|
1761
|
+
"""
|
|
1762
|
+
self._ext_type = 'e'
|
|
1763
|
+
if not isinstance(shift_seed, ntl_ZZ_pX):
|
|
1764
|
+
raise TypeError("shift_seed must be an ntl_ZZ_pX")
|
|
1765
|
+
ZZ_pX_Eis_init(self, <ntl_ZZ_pX>shift_seed)
|
|
1766
|
+
|
|
1767
|
+
def _low_shifter(self, i):
|
|
1768
|
+
"""
|
|
1769
|
+
Accessor function for low_shifter, which are the polynomials used to shift right.
|
|
1770
|
+
|
|
1771
|
+
If low_length is the number of low_shifters, then:
|
|
1772
|
+
* if deg = 2, low_length = 1 (store p/x)
|
|
1773
|
+
* if deg = 3,4, low_length = 2 (store p/x, p/x^2)
|
|
1774
|
+
* if deg = 5,6,7,8, low_length = 3 (store p/x, p/x^2, p/x^4)
|
|
1775
|
+
* if deg = 9,...,16, low_length = 4 (store p/x, p/x^2, p/x^4, p/x^8)
|
|
1776
|
+
|
|
1777
|
+
These polynomials are used to shift by amounts less than the degree of the defining polynomial.
|
|
1778
|
+
|
|
1779
|
+
EXAMPLES::
|
|
1780
|
+
|
|
1781
|
+
sage: A = PowComputer_ext_maker(5, 10, 10, 40, False, ntl.ZZ_pX([-5,75,15,0,1],5^10), 'small', 'e',ntl.ZZ_pX([1,-15,-3],5^10))
|
|
1782
|
+
sage: A._low_shifter(0)
|
|
1783
|
+
[75 15 0 1]
|
|
1784
|
+
|
|
1785
|
+
Note that if we multiply this by x and reduce using the relation that x^4 = 5 - 75x - 15x^2, we just get 5.
|
|
1786
|
+
|
|
1787
|
+
sage: A._low_shifter(1)
|
|
1788
|
+
[1140 225 1 15]
|
|
1789
|
+
|
|
1790
|
+
This one's a bit less obvious, but if we multiply by x^2, we get 5 (modulo x^4 = 5 - 75x - 15x^2).
|
|
1791
|
+
"""
|
|
1792
|
+
cdef long _i = i
|
|
1793
|
+
cdef ntl_ZZ_pX ans
|
|
1794
|
+
if _i >= 0 and _i < self.low_length:
|
|
1795
|
+
ans = ntl_ZZ_pX([], self.get_top_context())
|
|
1796
|
+
ans.x = self.low_shifter[i]
|
|
1797
|
+
return ans
|
|
1798
|
+
else:
|
|
1799
|
+
raise IndexError
|
|
1800
|
+
|
|
1801
|
+
def _high_shifter(self, i):
|
|
1802
|
+
"""
|
|
1803
|
+
Accessor function for high_shifter, which are the polynomials used to shift right.
|
|
1804
|
+
|
|
1805
|
+
If high_length is the number of high_shifters, then:
|
|
1806
|
+
* if prec_cap = 2, high_length = 1 (store p/x^e)
|
|
1807
|
+
* if prec_cap = 3,4, high_length = 2 (store p/x^e, p^2/x^(2e))
|
|
1808
|
+
* if prec_cap = 5,6,7,8, high_length = 3 (store p/x^e, p^2/x^(2e), p^4/x^(4e))
|
|
1809
|
+
* if prec_cap = 9,...,16, high_length = 4 (store p/x, p^2/x^(2e), p^4/x^(4e), p^8/x^(8e))
|
|
1810
|
+
|
|
1811
|
+
These polynomials are used to shift by amounts greater than the degree of the defining polynomial, but less than e*prec_cap.
|
|
1812
|
+
|
|
1813
|
+
EXAMPLES::
|
|
1814
|
+
|
|
1815
|
+
sage: A = PowComputer_ext_maker(5, 10, 10, 40, False, ntl.ZZ_pX([-5,75,15,0,1],5^10), 'small', 'e',ntl.ZZ_pX([1,-15,-3],5^10))
|
|
1816
|
+
sage: A._high_shifter(0)
|
|
1817
|
+
[263296 51990 228 3465]
|
|
1818
|
+
|
|
1819
|
+
If we take this and multiply by x^4, and reduce modulo x^4 + 15*x^2 + 75*x - 5, we should get 5. ::
|
|
1820
|
+
|
|
1821
|
+
sage: R.<x> = ZZ[]
|
|
1822
|
+
sage: f = 263296 + 51990*x + 228*x^2 + 3465*x^3
|
|
1823
|
+
sage: g = x^4 + 15*x^2 + 75*x - 5
|
|
1824
|
+
sage: f*x^4 % g
|
|
1825
|
+
5
|
|
1826
|
+
|
|
1827
|
+
sage: A._high_shifter(1)
|
|
1828
|
+
[1420786 9298230 2217816 6212495]
|
|
1829
|
+
|
|
1830
|
+
Similarly::
|
|
1831
|
+
|
|
1832
|
+
sage: f = 1420786 + 9298230*x + 2217816*x^2 + 6212495*x^3
|
|
1833
|
+
sage: h = f*x^8 % g; h
|
|
1834
|
+
-1328125000000*x^3 + 2962646484375*x^2 + 22094970703125*x - 1466308593725
|
|
1835
|
+
|
|
1836
|
+
Here, we need to remember that we're working modulo 5^10::
|
|
1837
|
+
|
|
1838
|
+
sage: h[0].valuation(5), h[1].valuation(5), h[2].valuation(5), h[3].valuation(5)
|
|
1839
|
+
(2, 12, 13, 13)
|
|
1840
|
+
sage: (h[0] - 25).valuation(5)
|
|
1841
|
+
12
|
|
1842
|
+
"""
|
|
1843
|
+
cdef long _i = i
|
|
1844
|
+
cdef ntl_ZZ_pX ans
|
|
1845
|
+
if _i >= 0 and _i < self.high_length:
|
|
1846
|
+
ans = ntl_ZZ_pX([], self.get_top_context())
|
|
1847
|
+
ans.x = self.high_shifter[i]
|
|
1848
|
+
return ans
|
|
1849
|
+
else:
|
|
1850
|
+
raise IndexError
|
|
1851
|
+
|
|
1852
|
+
def __dealloc__(self):
|
|
1853
|
+
"""
|
|
1854
|
+
Deallocate ``low_shifter`` and ``high_shifter``.
|
|
1855
|
+
|
|
1856
|
+
TESTS::
|
|
1857
|
+
|
|
1858
|
+
sage: A = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'small', 'e',ntl.ZZ_pX([1],5^10))
|
|
1859
|
+
sage: del A # indirect doctest
|
|
1860
|
+
"""
|
|
1861
|
+
if self._initialized:
|
|
1862
|
+
self.cleanup_ZZ_pX_small_Eis()
|
|
1863
|
+
|
|
1864
|
+
cdef void cleanup_ZZ_pX_small_Eis(self) noexcept:
|
|
1865
|
+
"""
|
|
1866
|
+
Do the actual work of deallocating ``low_shifter`` and
|
|
1867
|
+
``high_shifter``.
|
|
1868
|
+
|
|
1869
|
+
TESTS::
|
|
1870
|
+
|
|
1871
|
+
sage: A = PowComputer_ext_maker(5, 3, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
1872
|
+
sage: del A # indirect doctest
|
|
1873
|
+
"""
|
|
1874
|
+
Delete_ZZ_pX_array(self.low_shifter)
|
|
1875
|
+
Delete_ZZ_pX_array(self.high_shifter)
|
|
1876
|
+
|
|
1877
|
+
cdef int eis_shift(self, ZZ_pX_c* x, ZZ_pX_c* a, long n, long finalprec) except -1:
|
|
1878
|
+
"""
|
|
1879
|
+
Shift ``a`` right ``n`` pi-adic digits, where pi is considered modulo
|
|
1880
|
+
the polynomial in ``self``.
|
|
1881
|
+
|
|
1882
|
+
Puts the result in ``x``.
|
|
1883
|
+
|
|
1884
|
+
EXAMPLES::
|
|
1885
|
+
|
|
1886
|
+
sage: from sage.rings.padics.pow_computer_ext import ZZ_pX_eis_shift_test
|
|
1887
|
+
sage: A = PowComputer_ext_maker(5, 10, 10, 40, False, ntl.ZZ_pX([-5,75,15,0,1],5^10), 'small', 'e',ntl.ZZ_pX([1,-15,-3],5^10))
|
|
1888
|
+
sage: ZZ_pX_eis_shift_test(A, [0, 1], 1, 5) # indirect doctest
|
|
1889
|
+
[1]
|
|
1890
|
+
sage: ZZ_pX_eis_shift_test(A, [0, 0, 1], 1, 5)
|
|
1891
|
+
[0 1]
|
|
1892
|
+
sage: ZZ_pX_eis_shift_test(A, [5], 1, 5)
|
|
1893
|
+
[75 15 0 1]
|
|
1894
|
+
sage: ZZ_pX_eis_shift_test(A, [1], 1, 5)
|
|
1895
|
+
[]
|
|
1896
|
+
sage: ZZ_pX_eis_shift_test(A, [17, 91, 8, -2], 1, 5)
|
|
1897
|
+
[316 53 3123 3]
|
|
1898
|
+
sage: ZZ_pX_eis_shift_test(A, [316, 53, 3123, 3], -1, 5)
|
|
1899
|
+
[15 91 8 3123]
|
|
1900
|
+
sage: ZZ_pX_eis_shift_test(A, [15, 91, 8, 3123], 1, 5)
|
|
1901
|
+
[316 53 3123 3]
|
|
1902
|
+
"""
|
|
1903
|
+
return ZZ_pX_eis_shift_p(self, x, a, n, finalprec)
|
|
1904
|
+
|
|
1905
|
+
cdef class PowComputer_ZZ_pX_big(PowComputer_ZZ_pX):
|
|
1906
|
+
"""
|
|
1907
|
+
This class caches all contexts and moduli between 1 and cache_limit, and also caches for prec_cap. In addition, it stores
|
|
1908
|
+
a dictionary of contexts and moduli of
|
|
1909
|
+
"""
|
|
1910
|
+
|
|
1911
|
+
def __cinit__(self, Integer prime, long cache_limit, long prec_cap, long ram_prec_cap, bint in_field, poly, shift_seed=None):
|
|
1912
|
+
"""
|
|
1913
|
+
Caches contexts and moduli densely between 1 and cache_limit. Caches a context and modulus for prec_cap.
|
|
1914
|
+
Also creates the dictionaries.
|
|
1915
|
+
|
|
1916
|
+
EXAMPLES::
|
|
1917
|
+
|
|
1918
|
+
sage: A = PowComputer_ext_maker(5, 6, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'big','e',ntl.ZZ_pX([1],5^10)) # indirect doctest
|
|
1919
|
+
sage: A
|
|
1920
|
+
PowComputer_ext for 5, with polynomial [9765620 0 1]
|
|
1921
|
+
"""
|
|
1922
|
+
# The __new__ method for PowComputer_ext has already run, so we have access to small_powers, top_power.
|
|
1923
|
+
|
|
1924
|
+
# We use ntl_ZZ_pContexts so that contexts are cached centrally.
|
|
1925
|
+
|
|
1926
|
+
self._prec_type = 'big'
|
|
1927
|
+
self._ext_type = 'u'
|
|
1928
|
+
if not isinstance(poly, ntl_ZZ_pX):
|
|
1929
|
+
self.cleanup_ext()
|
|
1930
|
+
raise TypeError
|
|
1931
|
+
|
|
1932
|
+
self.context_list = []
|
|
1933
|
+
#if self.c == NULL:
|
|
1934
|
+
# self.cleanup_ext()
|
|
1935
|
+
# raise MemoryError("out of memory allocating contexts")
|
|
1936
|
+
sig_on()
|
|
1937
|
+
self.modulus_list = Allocate_ZZ_pX_Modulus_array(cache_limit + 1)
|
|
1938
|
+
sig_off()
|
|
1939
|
+
if self.modulus_list == NULL:
|
|
1940
|
+
self.cleanup_ext()
|
|
1941
|
+
raise MemoryError("out of memory allocating moduli")
|
|
1942
|
+
|
|
1943
|
+
cdef Py_ssize_t i
|
|
1944
|
+
cdef ZZ_pX_c tmp, pol
|
|
1945
|
+
if isinstance(poly, ntl_ZZ_pX):
|
|
1946
|
+
pol = (<ntl_ZZ_pX>poly).x
|
|
1947
|
+
self.context_list.append(None)
|
|
1948
|
+
for i in range(1, cache_limit + 1):
|
|
1949
|
+
self.context_list.append(PowComputer_ZZ_pX.get_context(self,i))
|
|
1950
|
+
|
|
1951
|
+
# create a temporary polynomial with the highest modulus to
|
|
1952
|
+
# ensure all mod[i]'s will fit into it
|
|
1953
|
+
self.top_context = PowComputer_ZZ_pX.get_context(self, prec_cap)
|
|
1954
|
+
(<ntl_ZZ_pContext_class>self.top_context).restore_c()
|
|
1955
|
+
tmp = (<ntl_ZZ_pX>poly).x
|
|
1956
|
+
|
|
1957
|
+
for i in range(1, cache_limit + 1):
|
|
1958
|
+
(<ntl_ZZ_pContext_class>self.context_list[i]).restore_c()
|
|
1959
|
+
ZZ_pX_conv_modulus(tmp, pol, (<ntl_ZZ_pContext_class>self.context_list[i]).x)
|
|
1960
|
+
ZZ_pX_Modulus_build(self.modulus_list[i], tmp)
|
|
1961
|
+
(<ntl_ZZ_pContext_class>self.top_context).restore_c()
|
|
1962
|
+
ZZ_pX_conv_modulus(tmp, pol, self.top_context.x)
|
|
1963
|
+
ZZ_pX_Modulus_build(self.top_mod, tmp)
|
|
1964
|
+
self.context_dict = {}
|
|
1965
|
+
self.modulus_dict = {}
|
|
1966
|
+
if prec_cap == ram_prec_cap:
|
|
1967
|
+
self.e = 1
|
|
1968
|
+
self.f = ZZ_pX_deg((<ntl_ZZ_pX>poly).x)
|
|
1969
|
+
else:
|
|
1970
|
+
self.e = ZZ_pX_deg((<ntl_ZZ_pX>poly).x)
|
|
1971
|
+
self.f = 1
|
|
1972
|
+
self.ram_prec_cap = ram_prec_cap
|
|
1973
|
+
else:
|
|
1974
|
+
raise NotImplementedError("NOT IMPLEMENTED IN PowComputer_ZZ_pX_FM")
|
|
1975
|
+
|
|
1976
|
+
def __dealloc__(self):
|
|
1977
|
+
"""
|
|
1978
|
+
Deallocate the stored moduli and contexts.
|
|
1979
|
+
|
|
1980
|
+
EXAMPLES::
|
|
1981
|
+
|
|
1982
|
+
sage: A = PowComputer_ext_maker(5, 6, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'big','e',ntl.ZZ_pX([1],5^10))
|
|
1983
|
+
sage: del A # indirect doctest
|
|
1984
|
+
"""
|
|
1985
|
+
if self._initialized:
|
|
1986
|
+
self.cleanup_ZZ_pX_big()
|
|
1987
|
+
|
|
1988
|
+
cdef void cleanup_ZZ_pX_big(self) noexcept:
|
|
1989
|
+
"""
|
|
1990
|
+
Deallocate the stored moduli and contexts.
|
|
1991
|
+
|
|
1992
|
+
EXAMPLES::
|
|
1993
|
+
|
|
1994
|
+
sage: A = PowComputer_ext_maker(5, 6, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'big','e',ntl.ZZ_pX([1],5^10))
|
|
1995
|
+
sage: del A # indirect doctest
|
|
1996
|
+
"""
|
|
1997
|
+
Delete_ZZ_pX_Modulus_array(self.modulus_list)
|
|
1998
|
+
|
|
1999
|
+
def reset_dictionaries(self):
|
|
2000
|
+
"""
|
|
2001
|
+
Reset the dictionaries. Note that if there are elements
|
|
2002
|
+
lying around that need access to these dictionaries, calling
|
|
2003
|
+
this function and then doing arithmetic with those elements
|
|
2004
|
+
could cause trouble (if the context object gets garbage
|
|
2005
|
+
collected for example. The bugs introduced could be very
|
|
2006
|
+
subtle, because NTL will generate a new context object and use
|
|
2007
|
+
it, but there's the potential for the object to be
|
|
2008
|
+
incompatible with the different context object).
|
|
2009
|
+
|
|
2010
|
+
EXAMPLES::
|
|
2011
|
+
|
|
2012
|
+
sage: A = PowComputer_ext_maker(5, 6, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'big','e',ntl.ZZ_pX([1],5^10))
|
|
2013
|
+
sage: P = A._get_context_test(8)
|
|
2014
|
+
sage: A._context_dict()
|
|
2015
|
+
{8: NTL modulus 390625}
|
|
2016
|
+
sage: A.reset_dictionaries()
|
|
2017
|
+
sage: A._context_dict()
|
|
2018
|
+
{}
|
|
2019
|
+
"""
|
|
2020
|
+
self.context_dict = {}
|
|
2021
|
+
self.modulus_dict = {}
|
|
2022
|
+
|
|
2023
|
+
def _context_dict(self):
|
|
2024
|
+
"""
|
|
2025
|
+
Return the context dictionary.
|
|
2026
|
+
|
|
2027
|
+
EXAMPLES::
|
|
2028
|
+
|
|
2029
|
+
sage: A = PowComputer_ext_maker(5, 6, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'big','e',ntl.ZZ_pX([1],5^10))
|
|
2030
|
+
sage: P = A._get_context_test(8)
|
|
2031
|
+
sage: A._context_dict()
|
|
2032
|
+
{8: NTL modulus 390625}
|
|
2033
|
+
"""
|
|
2034
|
+
return self.context_dict
|
|
2035
|
+
|
|
2036
|
+
def _modulus_dict(self):
|
|
2037
|
+
"""
|
|
2038
|
+
Return the context dictionary.
|
|
2039
|
+
|
|
2040
|
+
EXAMPLES::
|
|
2041
|
+
|
|
2042
|
+
sage: A = PowComputer_ext_maker(5, 6, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'big','e',ntl.ZZ_pX([1],5^10))
|
|
2043
|
+
sage: P = A._get_context_test(8)
|
|
2044
|
+
sage: A._modulus_dict()
|
|
2045
|
+
{}
|
|
2046
|
+
sage: a = ntl.ZZ_pX([4,2],5^8)
|
|
2047
|
+
sage: b = ntl.ZZ_pX([6,3],5^8)
|
|
2048
|
+
sage: A._get_modulus_test(a, b, 8)
|
|
2049
|
+
[54 24]
|
|
2050
|
+
sage: A._modulus_dict()
|
|
2051
|
+
{8: NTL ZZ_pXModulus [390620 0 1] (mod 390625)}
|
|
2052
|
+
"""
|
|
2053
|
+
return self.modulus_dict
|
|
2054
|
+
|
|
2055
|
+
cdef ntl_ZZ_pContext_class get_context(self, long n):
|
|
2056
|
+
"""
|
|
2057
|
+
Return the context for p^n.
|
|
2058
|
+
|
|
2059
|
+
INPUT:
|
|
2060
|
+
|
|
2061
|
+
- ``n`` -- nonzero long
|
|
2062
|
+
|
|
2063
|
+
OUTPUT: a context for p^n
|
|
2064
|
+
|
|
2065
|
+
EXAMPLES::
|
|
2066
|
+
|
|
2067
|
+
sage: A = PowComputer_ext_maker(5, 6, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'big')
|
|
2068
|
+
sage: A._get_context_test(4) # indirect doctest
|
|
2069
|
+
NTL modulus 625
|
|
2070
|
+
sage: A._get_context_test(8) # indirect doctest
|
|
2071
|
+
NTL modulus 390625
|
|
2072
|
+
"""
|
|
2073
|
+
if n == 0:
|
|
2074
|
+
# Exception will be ignored by Cython
|
|
2075
|
+
raise ValueError("n must be nonzero")
|
|
2076
|
+
if n < 0:
|
|
2077
|
+
n = -n
|
|
2078
|
+
if n <= self.cache_limit:
|
|
2079
|
+
return self.context_list[n]
|
|
2080
|
+
elif n == self.prec_cap:
|
|
2081
|
+
return self.top_context
|
|
2082
|
+
else:
|
|
2083
|
+
try:
|
|
2084
|
+
return self.context_dict[n]
|
|
2085
|
+
except KeyError:
|
|
2086
|
+
self.context_dict[n] = PowComputer_ZZ_pX.get_context(self, n)
|
|
2087
|
+
return self.context_dict[n]
|
|
2088
|
+
|
|
2089
|
+
cdef ntl_ZZ_pContext_class get_top_context(self):
|
|
2090
|
+
"""
|
|
2091
|
+
Return a ``ZZ_pContext`` for ``self.prime^self.prec_cap``.
|
|
2092
|
+
|
|
2093
|
+
EXAMPLES::
|
|
2094
|
+
|
|
2095
|
+
sage: PC = PowComputer_ext_maker(5, 5, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'big','e',ntl.ZZ_pX([1],5^10))
|
|
2096
|
+
sage: PC._get_top_context_test() # indirect doctest
|
|
2097
|
+
NTL modulus 9765625
|
|
2098
|
+
"""
|
|
2099
|
+
return self.top_context
|
|
2100
|
+
|
|
2101
|
+
cdef void restore_top_context(self) noexcept:
|
|
2102
|
+
"""
|
|
2103
|
+
Restore the context corresponding to ``self.prime^self.prec_cap``.
|
|
2104
|
+
|
|
2105
|
+
EXAMPLES::
|
|
2106
|
+
|
|
2107
|
+
sage: PC = PowComputer_ext_maker(5, 5, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'big','e',ntl.ZZ_pX([1],5^10))
|
|
2108
|
+
sage: PC._restore_top_context_test() # indirect doctest
|
|
2109
|
+
"""
|
|
2110
|
+
self.top_context.restore_c()
|
|
2111
|
+
|
|
2112
|
+
cdef ZZ_pX_Modulus_c* get_modulus(self, long n) noexcept:
|
|
2113
|
+
"""
|
|
2114
|
+
Return the modulus corresponding to ``self.polynomial()`` (mod
|
|
2115
|
+
``self.prime^n``).
|
|
2116
|
+
|
|
2117
|
+
INPUT:
|
|
2118
|
+
|
|
2119
|
+
- ``n`` -- nonzero long
|
|
2120
|
+
|
|
2121
|
+
EXAMPLES::
|
|
2122
|
+
|
|
2123
|
+
sage: A = PowComputer_ext_maker(5, 3, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'big','e',ntl.ZZ_pX([1],5^10))
|
|
2124
|
+
sage: a = ntl.ZZ_pX([4,2],5^2)
|
|
2125
|
+
sage: b = ntl.ZZ_pX([6,3],5^2)
|
|
2126
|
+
sage: A._get_modulus_test(a, b, 2) # indirect doctest
|
|
2127
|
+
[4 24]
|
|
2128
|
+
sage: a = ntl.ZZ_pX([4,2],5^6)
|
|
2129
|
+
sage: b = ntl.ZZ_pX([6,3],5^6)
|
|
2130
|
+
sage: A._get_modulus_test(a, b, 6) # indirect doctest
|
|
2131
|
+
[54 24]
|
|
2132
|
+
sage: A._get_modulus_test(a, b, 6) # indirect doctest
|
|
2133
|
+
[54 24]
|
|
2134
|
+
"""
|
|
2135
|
+
cdef ntl_ZZ_pX tmp
|
|
2136
|
+
cdef ntl_ZZ_pX_Modulus holder
|
|
2137
|
+
cdef ntl_ZZ_pContext_class c
|
|
2138
|
+
if n == 0:
|
|
2139
|
+
# Exception will be ignored by Cython
|
|
2140
|
+
raise ValueError("n must be nonzero")
|
|
2141
|
+
if n < 0:
|
|
2142
|
+
n = -n
|
|
2143
|
+
elif n <= self.cache_limit:
|
|
2144
|
+
return &(self.modulus_list[n])
|
|
2145
|
+
elif n == self.prec_cap:
|
|
2146
|
+
return &self.top_mod
|
|
2147
|
+
else:
|
|
2148
|
+
if n in self.modulus_dict:
|
|
2149
|
+
return &((<ntl_ZZ_pX_Modulus>self.modulus_dict[n]).x)
|
|
2150
|
+
else:
|
|
2151
|
+
c = self.get_context(n)
|
|
2152
|
+
c.restore_c()
|
|
2153
|
+
tmp = ntl_ZZ_pX.__new__(ntl_ZZ_pX)
|
|
2154
|
+
tmp.c = c
|
|
2155
|
+
ZZ_pX_conv_modulus(tmp.x, self.top_mod.val(), c.x)
|
|
2156
|
+
holder = ntl_ZZ_pX_Modulus(tmp)
|
|
2157
|
+
self.modulus_dict[n] = holder
|
|
2158
|
+
return &(holder.x)
|
|
2159
|
+
|
|
2160
|
+
cdef ZZ_pX_Modulus_c* get_top_modulus(self) noexcept:
|
|
2161
|
+
"""
|
|
2162
|
+
Return the modulus corresponding to ``self.polynomial()``
|
|
2163
|
+
(mod ``self.prime^self.prec_cap``).
|
|
2164
|
+
|
|
2165
|
+
EXAMPLES::
|
|
2166
|
+
|
|
2167
|
+
sage: A = PowComputer_ext_maker(5, 5, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'big','e',ntl.ZZ_pX([1],5^10))
|
|
2168
|
+
sage: a = ntl.ZZ_pX([129223,1231],5^10)
|
|
2169
|
+
sage: b = ntl.ZZ_pX([289741,323],5^10)
|
|
2170
|
+
sage: A._get_top_modulus_test(a, b) # indirect doctest
|
|
2171
|
+
[1783058 7785200]
|
|
2172
|
+
"""
|
|
2173
|
+
return &self.top_mod
|
|
2174
|
+
|
|
2175
|
+
cdef class PowComputer_ZZ_pX_big_Eis(PowComputer_ZZ_pX_big):
|
|
2176
|
+
"""
|
|
2177
|
+
This class computes and stores ``low_shifter`` and ``high_shifter``, which
|
|
2178
|
+
aid in right shifting elements.
|
|
2179
|
+
These are only stored at maximal precision: in order to get lower precision
|
|
2180
|
+
versions just reduce mod p^n.
|
|
2181
|
+
"""
|
|
2182
|
+
def __cinit__(self, Integer prime, long cache_limit, long prec_cap, long ram_prec_cap, bint in_field, poly, shift_seed=None):
|
|
2183
|
+
"""
|
|
2184
|
+
Initialization.
|
|
2185
|
+
|
|
2186
|
+
For input types see :func:`PowComputer_ext_maker`
|
|
2187
|
+
|
|
2188
|
+
TESTS::
|
|
2189
|
+
|
|
2190
|
+
sage: A = PowComputer_ext_maker(5, 3, 10, 40, False, ntl.ZZ_pX([-5,75,15,0,1],5^10), 'big', 'e',ntl.ZZ_pX([1,-15,-3],5^10))
|
|
2191
|
+
sage: type(A)
|
|
2192
|
+
<class 'sage.rings.padics.pow_computer_ext.PowComputer_ZZ_pX_big_Eis'>
|
|
2193
|
+
sage: TestSuite(A).run()
|
|
2194
|
+
"""
|
|
2195
|
+
self._ext_type = 'e'
|
|
2196
|
+
if not isinstance(shift_seed, ntl_ZZ_pX):
|
|
2197
|
+
raise TypeError("shift_seed must be an ntl_ZZ_pX")
|
|
2198
|
+
ZZ_pX_Eis_init(self, <ntl_ZZ_pX>shift_seed)
|
|
2199
|
+
|
|
2200
|
+
def _low_shifter(self, i):
|
|
2201
|
+
"""
|
|
2202
|
+
Accessor function for low_shifter, which are the polynomials used to shift right.
|
|
2203
|
+
|
|
2204
|
+
If low_length is the number of low_shifters, then:
|
|
2205
|
+
* if deg = 2, low_length = 1 (store p/x)
|
|
2206
|
+
* if deg = 3,4, low_length = 2 (store p/x, p/x^2)
|
|
2207
|
+
* if deg = 5,6,7,8, low_length = 3 (store p/x, p/x^2, p/x^4)
|
|
2208
|
+
* if deg = 9,...,16, low_length = 4 (store p/x, p/x^2, p/x^4, p/x^8)
|
|
2209
|
+
|
|
2210
|
+
These polynomials are used to shift by amounts less than the degree of the defining polynomial.
|
|
2211
|
+
|
|
2212
|
+
EXAMPLES::
|
|
2213
|
+
|
|
2214
|
+
sage: A = PowComputer_ext_maker(5, 3, 10, 40, False, ntl.ZZ_pX([-5,75,15,0,1],5^10), 'big', 'e',ntl.ZZ_pX([1,-15,-3],5^10))
|
|
2215
|
+
sage: A._low_shifter(0)
|
|
2216
|
+
[75 15 0 1]
|
|
2217
|
+
|
|
2218
|
+
Note that if we multiply this by x and reduce using the relation that x^4 = 5 - 75x - 15x^2, we just get 5.
|
|
2219
|
+
|
|
2220
|
+
sage: A._low_shifter(1)
|
|
2221
|
+
[1140 225 1 15]
|
|
2222
|
+
|
|
2223
|
+
This one's a bit less obvious, but if we multiply by x^2, we get 5 (modulo x^4 = 5 - 75x - 15x^2).
|
|
2224
|
+
"""
|
|
2225
|
+
cdef long _i = i
|
|
2226
|
+
cdef ntl_ZZ_pX ans
|
|
2227
|
+
if _i >= 0 and _i < self.low_length:
|
|
2228
|
+
ans = ntl_ZZ_pX([], self.get_top_context())
|
|
2229
|
+
ans.x = self.low_shifter[i]
|
|
2230
|
+
return ans
|
|
2231
|
+
else:
|
|
2232
|
+
raise IndexError
|
|
2233
|
+
|
|
2234
|
+
def _high_shifter(self, i):
|
|
2235
|
+
"""
|
|
2236
|
+
Accessor function for high_shifter, which are the polynomials used to shift right.
|
|
2237
|
+
|
|
2238
|
+
If high_length is the number of high_shifters, then:
|
|
2239
|
+
* if prec_cap = 2, high_length = 1 (store p/x^e)
|
|
2240
|
+
* if prec_cap = 3,4, high_length = 2 (store p/x^e, p^2/x^(2e))
|
|
2241
|
+
* if prec_cap = 5,6,7,8, high_length = 3 (store p/x^e, p^2/x^(2e), p^4/x^(4e))
|
|
2242
|
+
* if prec_cap = 9,...,16, high_length = 4 (store p/x, p^2/x^(2e), p^4/x^(4e), p^8/x^(8e))
|
|
2243
|
+
|
|
2244
|
+
These polynomials are used to shift by amounts greater than the degree of the defining polynomial, but less than e*prec_cap.
|
|
2245
|
+
|
|
2246
|
+
EXAMPLES::
|
|
2247
|
+
|
|
2248
|
+
sage: A = PowComputer_ext_maker(5, 3, 10, 40, False, ntl.ZZ_pX([-5,75,15,0,1],5^10), 'big', 'e',ntl.ZZ_pX([1,-15,-3],5^10))
|
|
2249
|
+
sage: A._high_shifter(0)
|
|
2250
|
+
[263296 51990 228 3465]
|
|
2251
|
+
|
|
2252
|
+
If we take this and multiply by x^4, and reduce modulo x^4 + 15*x^2 + 75*x - 5, we should get 5. ::
|
|
2253
|
+
|
|
2254
|
+
sage: R.<x> = ZZ[]
|
|
2255
|
+
sage: f = 263296 + 51990*x + 228*x^2 + 3465*x^3
|
|
2256
|
+
sage: g = x^4 + 15*x^2 + 75*x - 5
|
|
2257
|
+
sage: f*x^4 % g
|
|
2258
|
+
5
|
|
2259
|
+
|
|
2260
|
+
sage: A._high_shifter(1)
|
|
2261
|
+
[1420786 9298230 2217816 6212495]
|
|
2262
|
+
|
|
2263
|
+
Similarly::
|
|
2264
|
+
|
|
2265
|
+
sage: f = 1420786 + 9298230*x + 2217816*x^2 + 6212495*x^3
|
|
2266
|
+
sage: h = f*x^8 % g; h
|
|
2267
|
+
-1328125000000*x^3 + 2962646484375*x^2 + 22094970703125*x - 1466308593725
|
|
2268
|
+
|
|
2269
|
+
Here, we need to remember that we're working modulo 5^10::
|
|
2270
|
+
|
|
2271
|
+
sage: h[0].valuation(5), h[1].valuation(5), h[2].valuation(5), h[3].valuation(5)
|
|
2272
|
+
(2, 12, 13, 13)
|
|
2273
|
+
sage: (h[0] - 25).valuation(5)
|
|
2274
|
+
12
|
|
2275
|
+
"""
|
|
2276
|
+
cdef long _i = i
|
|
2277
|
+
cdef ntl_ZZ_pX ans
|
|
2278
|
+
if _i >= 0 and _i < self.high_length:
|
|
2279
|
+
ans = ntl_ZZ_pX([], self.get_top_context())
|
|
2280
|
+
ans.x = self.high_shifter[i]
|
|
2281
|
+
return ans
|
|
2282
|
+
else:
|
|
2283
|
+
raise IndexError
|
|
2284
|
+
|
|
2285
|
+
def __dealloc__(self):
|
|
2286
|
+
"""
|
|
2287
|
+
Deallocate ``low_shifter`` and ``high_shifter``.
|
|
2288
|
+
|
|
2289
|
+
TESTS::
|
|
2290
|
+
|
|
2291
|
+
sage: A = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'big', 'e',ntl.ZZ_pX([1],5^10))
|
|
2292
|
+
sage: del A # indirect doctest
|
|
2293
|
+
"""
|
|
2294
|
+
if self._initialized:
|
|
2295
|
+
self.cleanup_ZZ_pX_big_Eis()
|
|
2296
|
+
|
|
2297
|
+
cdef void cleanup_ZZ_pX_big_Eis(self) noexcept:
|
|
2298
|
+
"""
|
|
2299
|
+
Do the actual work of deallocating ``low_shifter`` and
|
|
2300
|
+
``high_shifter``.
|
|
2301
|
+
|
|
2302
|
+
TESTS::
|
|
2303
|
+
|
|
2304
|
+
sage: A = PowComputer_ext_maker(5, 3, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
|
|
2305
|
+
sage: del A # indirect doctest
|
|
2306
|
+
"""
|
|
2307
|
+
Delete_ZZ_pX_array(self.low_shifter)
|
|
2308
|
+
Delete_ZZ_pX_array(self.high_shifter)
|
|
2309
|
+
|
|
2310
|
+
cdef int eis_shift(self, ZZ_pX_c* x, ZZ_pX_c* a, long n, long finalprec) except -1:
|
|
2311
|
+
"""
|
|
2312
|
+
Shift ``a`` right ``n`` pi-adic digits, where pi is considered modulo
|
|
2313
|
+
the polynomial in ``self``.
|
|
2314
|
+
|
|
2315
|
+
Puts the result in ``x``.
|
|
2316
|
+
|
|
2317
|
+
EXAMPLES::
|
|
2318
|
+
|
|
2319
|
+
sage: from sage.rings.padics.pow_computer_ext import ZZ_pX_eis_shift_test
|
|
2320
|
+
sage: A = PowComputer_ext_maker(5, 10, 10, 40, False, ntl.ZZ_pX([-5,75,15,0,1],5^10), 'big', 'e',ntl.ZZ_pX([1,-15,-3],5^10))
|
|
2321
|
+
sage: ZZ_pX_eis_shift_test(A, [0, 1], 1, 5) # indirect doctest
|
|
2322
|
+
[1]
|
|
2323
|
+
sage: ZZ_pX_eis_shift_test(A, [0, 0, 1], 1, 5)
|
|
2324
|
+
[0 1]
|
|
2325
|
+
sage: ZZ_pX_eis_shift_test(A, [5], 1, 5)
|
|
2326
|
+
[75 15 0 1]
|
|
2327
|
+
sage: ZZ_pX_eis_shift_test(A, [1], 1, 5)
|
|
2328
|
+
[]
|
|
2329
|
+
sage: ZZ_pX_eis_shift_test(A, [17, 91, 8, -2], 1, 5)
|
|
2330
|
+
[316 53 3123 3]
|
|
2331
|
+
sage: ZZ_pX_eis_shift_test(A, [316, 53, 3123, 3], -1, 5)
|
|
2332
|
+
[15 91 8 3123]
|
|
2333
|
+
sage: ZZ_pX_eis_shift_test(A, [15, 91, 8, 3123], 1, 5)
|
|
2334
|
+
[316 53 3123 3]
|
|
2335
|
+
"""
|
|
2336
|
+
return ZZ_pX_eis_shift_p(self, x, a, n, finalprec)
|
|
2337
|
+
|
|
2338
|
+
|
|
2339
|
+
def PowComputer_ext_maker(prime, cache_limit, prec_cap, ram_prec_cap, in_field, poly, prec_type="small", ext_type="u", shift_seed=None):
|
|
2340
|
+
r"""
|
|
2341
|
+
Return a ``PowComputer`` that caches the values `1, p, p^2, \ldots, p^C`,
|
|
2342
|
+
where `C` is ``cache_limit``.
|
|
2343
|
+
|
|
2344
|
+
Once you create a ``PowComputer``, merely call it to get values out.
|
|
2345
|
+
You can input any integer, even if it's outside of the precomputed range.
|
|
2346
|
+
|
|
2347
|
+
INPUT:
|
|
2348
|
+
|
|
2349
|
+
- ``prime`` -- integer; the base that you want to exponentiate
|
|
2350
|
+
|
|
2351
|
+
- ``cache_limit`` -- positive integer that you want to cache
|
|
2352
|
+
powers up to
|
|
2353
|
+
|
|
2354
|
+
- ``prec_cap`` -- the cap on precisions of elements. For ramified
|
|
2355
|
+
extensions, p^((prec_cap - 1) // e) will be the largest
|
|
2356
|
+
power of p distinguishable from zero.
|
|
2357
|
+
|
|
2358
|
+
- ``in_field`` -- boolean indicating whether this PowComputer is
|
|
2359
|
+
attached to a field or not
|
|
2360
|
+
|
|
2361
|
+
- ``poly`` -- an ``ntl_ZZ_pX`` or ``ntl_ZZ_pEX`` defining the extension.
|
|
2362
|
+
It should be defined modulo ``p^((prec_cap - 1) // e + 1)``.
|
|
2363
|
+
|
|
2364
|
+
- ``prec_type`` -- ``'FM'``, ``'small'``, or ``'big'``, defining how
|
|
2365
|
+
caching is done
|
|
2366
|
+
|
|
2367
|
+
- ``ext_type`` -- ``'u'`` = unramified, ``'e'`` = Eisenstein, ``'t'`` =
|
|
2368
|
+
two-step
|
|
2369
|
+
|
|
2370
|
+
- ``shift_seed`` -- (required only for Eisenstein and two-step)
|
|
2371
|
+
for Eisenstein and two-step extensions, if f = a_n x^n - p
|
|
2372
|
+
a_{n-1} x^{n-1} - ... - p a_0 with a_n a unit, then
|
|
2373
|
+
shift_seed should be 1/a_n (a_{n-1} x^{n-1} + ... + a_0)
|
|
2374
|
+
|
|
2375
|
+
EXAMPLES::
|
|
2376
|
+
|
|
2377
|
+
sage: PC = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5, 0, 1], 5^10), 'small','e',ntl.ZZ_pX([1],5^10))
|
|
2378
|
+
sage: PC
|
|
2379
|
+
PowComputer_ext for 5, with polynomial [9765620 0 1]
|
|
2380
|
+
"""
|
|
2381
|
+
cdef Integer _prime = <Integer>Integer(prime)
|
|
2382
|
+
cdef long _cache_limit = mpz_get_si((<Integer>Integer(cache_limit)).value)
|
|
2383
|
+
cdef long _prec_cap = mpz_get_si((<Integer>Integer(prec_cap)).value)
|
|
2384
|
+
cdef long _ram_prec_cap = mpz_get_si((<Integer>Integer(ram_prec_cap)).value)
|
|
2385
|
+
cdef bint inf = in_field
|
|
2386
|
+
if ext_type != "u" and shift_seed is None:
|
|
2387
|
+
raise ValueError("must provide shift seed")
|
|
2388
|
+
if prec_type == "small" and ext_type == "u":
|
|
2389
|
+
return PowComputer_ZZ_pX_small(_prime, _cache_limit, _prec_cap, _ram_prec_cap, inf, poly, None)
|
|
2390
|
+
elif prec_type == "small" and ext_type == "e":
|
|
2391
|
+
return PowComputer_ZZ_pX_small_Eis(_prime, _cache_limit, _prec_cap, _ram_prec_cap, inf, poly, shift_seed)
|
|
2392
|
+
elif prec_type == "big" and ext_type == "u":
|
|
2393
|
+
return PowComputer_ZZ_pX_big(_prime, _cache_limit, _prec_cap, _ram_prec_cap, inf, poly, None)
|
|
2394
|
+
elif prec_type == "big" and ext_type == "e":
|
|
2395
|
+
return PowComputer_ZZ_pX_big_Eis(_prime, _cache_limit, _prec_cap, _ram_prec_cap, inf, poly, shift_seed)
|
|
2396
|
+
elif prec_type == "FM" and ext_type == "u":
|
|
2397
|
+
return PowComputer_ZZ_pX_FM(_prime, _cache_limit, _prec_cap, _ram_prec_cap, inf, poly, None)
|
|
2398
|
+
elif prec_type == "FM" and ext_type == "e":
|
|
2399
|
+
return PowComputer_ZZ_pX_FM_Eis(_prime, _cache_limit, _prec_cap, _ram_prec_cap, inf, poly, shift_seed)
|
|
2400
|
+
else:
|
|
2401
|
+
raise ValueError("prec_type must be one of 'small', 'big' or 'FM' and ext_type must be one of 'u' or 'e' or 't'")
|