passagemath-modules 10.6.31__cp314-cp314-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-modules might be problematic. Click here for more details.
- passagemath_modules-10.6.31.dist-info/METADATA +281 -0
- passagemath_modules-10.6.31.dist-info/RECORD +808 -0
- passagemath_modules-10.6.31.dist-info/WHEEL +5 -0
- passagemath_modules-10.6.31.dist-info/top_level.txt +2 -0
- passagemath_modules.libs/libgcc_s-0cd532bd.so.1 +0 -0
- passagemath_modules.libs/libgfortran-2c33b284.so.5.0.0 +0 -0
- passagemath_modules.libs/libgmp-0e7fc84e.so.10.5.0 +0 -0
- passagemath_modules.libs/libgsl-42cda06f.so.28.0.0 +0 -0
- passagemath_modules.libs/libmpc-d8ebe4b5.so.3.3.1 +0 -0
- passagemath_modules.libs/libmpfr-aaecbfc0.so.6.2.1 +0 -0
- passagemath_modules.libs/libopenblasp-r0-905cb27d.3.29.so +0 -0
- passagemath_modules.libs/libquadmath-bb76a5fc.so.0.0.0 +0 -0
- sage/algebras/all__sagemath_modules.py +20 -0
- sage/algebras/catalog.py +148 -0
- sage/algebras/clifford_algebra.py +3107 -0
- sage/algebras/clifford_algebra_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/clifford_algebra_element.pxd +16 -0
- sage/algebras/clifford_algebra_element.pyx +997 -0
- sage/algebras/commutative_dga.py +4252 -0
- sage/algebras/exterior_algebra_groebner.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/exterior_algebra_groebner.pxd +55 -0
- sage/algebras/exterior_algebra_groebner.pyx +727 -0
- sage/algebras/finite_dimensional_algebras/all.py +2 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra.py +1029 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pxd +12 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pyx +706 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_ideal.py +196 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_morphism.py +255 -0
- sage/algebras/finite_gca.py +528 -0
- sage/algebras/group_algebra.py +232 -0
- sage/algebras/lie_algebras/abelian.py +197 -0
- sage/algebras/lie_algebras/affine_lie_algebra.py +1213 -0
- sage/algebras/lie_algebras/all.py +25 -0
- sage/algebras/lie_algebras/all__sagemath_modules.py +1 -0
- sage/algebras/lie_algebras/bch.py +177 -0
- sage/algebras/lie_algebras/bgg_dual_module.py +1184 -0
- sage/algebras/lie_algebras/bgg_resolution.py +232 -0
- sage/algebras/lie_algebras/center_uea.py +767 -0
- sage/algebras/lie_algebras/classical_lie_algebra.py +2516 -0
- sage/algebras/lie_algebras/examples.py +683 -0
- sage/algebras/lie_algebras/free_lie_algebra.py +973 -0
- sage/algebras/lie_algebras/heisenberg.py +820 -0
- sage/algebras/lie_algebras/lie_algebra.py +1562 -0
- sage/algebras/lie_algebras/lie_algebra_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/lie_algebras/lie_algebra_element.pxd +68 -0
- sage/algebras/lie_algebras/lie_algebra_element.pyx +2122 -0
- sage/algebras/lie_algebras/morphism.py +661 -0
- sage/algebras/lie_algebras/nilpotent_lie_algebra.py +457 -0
- sage/algebras/lie_algebras/onsager.py +1324 -0
- sage/algebras/lie_algebras/poincare_birkhoff_witt.py +816 -0
- sage/algebras/lie_algebras/quotient.py +462 -0
- sage/algebras/lie_algebras/rank_two_heisenberg_virasoro.py +355 -0
- sage/algebras/lie_algebras/representation.py +1040 -0
- sage/algebras/lie_algebras/structure_coefficients.py +459 -0
- sage/algebras/lie_algebras/subalgebra.py +967 -0
- sage/algebras/lie_algebras/symplectic_derivation.py +289 -0
- sage/algebras/lie_algebras/verma_module.py +1630 -0
- sage/algebras/lie_algebras/virasoro.py +1186 -0
- sage/algebras/octonion_algebra.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/octonion_algebra.pxd +20 -0
- sage/algebras/octonion_algebra.pyx +987 -0
- sage/algebras/orlik_solomon.py +907 -0
- sage/algebras/orlik_terao.py +779 -0
- sage/algebras/steenrod/all.py +7 -0
- sage/algebras/steenrod/steenrod_algebra.py +4258 -0
- sage/algebras/steenrod/steenrod_algebra_bases.py +1179 -0
- sage/algebras/steenrod/steenrod_algebra_misc.py +1167 -0
- sage/algebras/steenrod/steenrod_algebra_mult.py +954 -0
- sage/algebras/weyl_algebra.py +1126 -0
- sage/all__sagemath_modules.py +62 -0
- sage/calculus/all__sagemath_modules.py +19 -0
- sage/calculus/expr.py +205 -0
- sage/calculus/integration.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/integration.pyx +698 -0
- sage/calculus/interpolation.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/interpolation.pxd +13 -0
- sage/calculus/interpolation.pyx +387 -0
- sage/calculus/interpolators.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/interpolators.pyx +326 -0
- sage/calculus/ode.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/ode.pxd +5 -0
- sage/calculus/ode.pyx +610 -0
- sage/calculus/riemann.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/riemann.pyx +1521 -0
- sage/calculus/test_sympy.py +201 -0
- sage/calculus/transforms/all.py +7 -0
- sage/calculus/transforms/dft.py +844 -0
- sage/calculus/transforms/dwt.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/transforms/dwt.pxd +7 -0
- sage/calculus/transforms/dwt.pyx +160 -0
- sage/calculus/transforms/fft.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/transforms/fft.pxd +12 -0
- sage/calculus/transforms/fft.pyx +487 -0
- sage/calculus/wester.py +662 -0
- sage/coding/abstract_code.py +1108 -0
- sage/coding/ag_code.py +868 -0
- sage/coding/ag_code_decoders.cpython-314-x86_64-linux-musl.so +0 -0
- sage/coding/ag_code_decoders.pyx +2639 -0
- sage/coding/all.py +15 -0
- sage/coding/bch_code.py +494 -0
- sage/coding/binary_code.cpython-314-x86_64-linux-musl.so +0 -0
- sage/coding/binary_code.pxd +124 -0
- sage/coding/binary_code.pyx +4139 -0
- sage/coding/bounds_catalog.py +43 -0
- sage/coding/channel.py +819 -0
- sage/coding/channels_catalog.py +29 -0
- sage/coding/code_bounds.py +755 -0
- sage/coding/code_constructions.py +804 -0
- sage/coding/codes_catalog.py +111 -0
- sage/coding/cyclic_code.py +1329 -0
- sage/coding/databases.py +316 -0
- sage/coding/decoder.py +373 -0
- sage/coding/decoders_catalog.py +88 -0
- sage/coding/delsarte_bounds.py +709 -0
- sage/coding/encoder.py +390 -0
- sage/coding/encoders_catalog.py +64 -0
- sage/coding/extended_code.py +468 -0
- sage/coding/gabidulin_code.py +1058 -0
- sage/coding/golay_code.py +404 -0
- sage/coding/goppa_code.py +441 -0
- sage/coding/grs_code.py +2371 -0
- sage/coding/guava.py +107 -0
- sage/coding/guruswami_sudan/all.py +1 -0
- sage/coding/guruswami_sudan/gs_decoder.py +897 -0
- sage/coding/guruswami_sudan/interpolation.py +409 -0
- sage/coding/guruswami_sudan/utils.py +176 -0
- sage/coding/hamming_code.py +176 -0
- sage/coding/information_set_decoder.py +1032 -0
- sage/coding/kasami_codes.cpython-314-x86_64-linux-musl.so +0 -0
- sage/coding/kasami_codes.pyx +351 -0
- sage/coding/linear_code.py +3067 -0
- sage/coding/linear_code_no_metric.py +1354 -0
- sage/coding/linear_rank_metric.py +961 -0
- sage/coding/parity_check_code.py +353 -0
- sage/coding/punctured_code.py +719 -0
- sage/coding/reed_muller_code.py +999 -0
- sage/coding/self_dual_codes.py +942 -0
- sage/coding/source_coding/all.py +2 -0
- sage/coding/source_coding/huffman.py +553 -0
- sage/coding/subfield_subcode.py +423 -0
- sage/coding/two_weight_db.py +399 -0
- sage/combinat/all__sagemath_modules.py +7 -0
- sage/combinat/cartesian_product.py +347 -0
- sage/combinat/family.py +11 -0
- sage/combinat/free_module.py +1977 -0
- sage/combinat/root_system/all.py +147 -0
- sage/combinat/root_system/ambient_space.py +527 -0
- sage/combinat/root_system/associahedron.py +471 -0
- sage/combinat/root_system/braid_move_calculator.py +143 -0
- sage/combinat/root_system/braid_orbit.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/root_system/braid_orbit.pyx +144 -0
- sage/combinat/root_system/branching_rules.py +2301 -0
- sage/combinat/root_system/cartan_matrix.py +1245 -0
- sage/combinat/root_system/cartan_type.py +3069 -0
- sage/combinat/root_system/coxeter_group.py +162 -0
- sage/combinat/root_system/coxeter_matrix.py +1261 -0
- sage/combinat/root_system/coxeter_type.py +681 -0
- sage/combinat/root_system/dynkin_diagram.py +900 -0
- sage/combinat/root_system/extended_affine_weyl_group.py +2993 -0
- sage/combinat/root_system/fundamental_group.py +795 -0
- sage/combinat/root_system/hecke_algebra_representation.py +1203 -0
- sage/combinat/root_system/integrable_representations.py +1227 -0
- sage/combinat/root_system/non_symmetric_macdonald_polynomials.py +1965 -0
- sage/combinat/root_system/pieri_factors.py +1147 -0
- sage/combinat/root_system/plot.py +1615 -0
- sage/combinat/root_system/root_lattice_realization_algebras.py +1214 -0
- sage/combinat/root_system/root_lattice_realizations.py +4628 -0
- sage/combinat/root_system/root_space.py +487 -0
- sage/combinat/root_system/root_system.py +882 -0
- sage/combinat/root_system/type_A.py +348 -0
- sage/combinat/root_system/type_A_affine.py +227 -0
- sage/combinat/root_system/type_A_infinity.py +241 -0
- sage/combinat/root_system/type_B.py +347 -0
- sage/combinat/root_system/type_BC_affine.py +287 -0
- sage/combinat/root_system/type_B_affine.py +216 -0
- sage/combinat/root_system/type_C.py +317 -0
- sage/combinat/root_system/type_C_affine.py +188 -0
- sage/combinat/root_system/type_D.py +357 -0
- sage/combinat/root_system/type_D_affine.py +208 -0
- sage/combinat/root_system/type_E.py +641 -0
- sage/combinat/root_system/type_E_affine.py +231 -0
- sage/combinat/root_system/type_F.py +387 -0
- sage/combinat/root_system/type_F_affine.py +137 -0
- sage/combinat/root_system/type_G.py +293 -0
- sage/combinat/root_system/type_G_affine.py +132 -0
- sage/combinat/root_system/type_H.py +105 -0
- sage/combinat/root_system/type_I.py +110 -0
- sage/combinat/root_system/type_Q.py +150 -0
- sage/combinat/root_system/type_affine.py +509 -0
- sage/combinat/root_system/type_dual.py +704 -0
- sage/combinat/root_system/type_folded.py +301 -0
- sage/combinat/root_system/type_marked.py +748 -0
- sage/combinat/root_system/type_reducible.py +601 -0
- sage/combinat/root_system/type_relabel.py +730 -0
- sage/combinat/root_system/type_super_A.py +837 -0
- sage/combinat/root_system/weight_lattice_realizations.py +1188 -0
- sage/combinat/root_system/weight_space.py +639 -0
- sage/combinat/root_system/weyl_characters.py +2238 -0
- sage/crypto/__init__.py +4 -0
- sage/crypto/all.py +28 -0
- sage/crypto/block_cipher/all.py +7 -0
- sage/crypto/block_cipher/des.py +1065 -0
- sage/crypto/block_cipher/miniaes.py +2171 -0
- sage/crypto/block_cipher/present.py +909 -0
- sage/crypto/block_cipher/sdes.py +1527 -0
- sage/crypto/boolean_function.cpython-314-x86_64-linux-musl.so +0 -0
- sage/crypto/boolean_function.pxd +10 -0
- sage/crypto/boolean_function.pyx +1487 -0
- sage/crypto/cipher.py +78 -0
- sage/crypto/classical.py +3668 -0
- sage/crypto/classical_cipher.py +569 -0
- sage/crypto/cryptosystem.py +387 -0
- sage/crypto/key_exchange/all.py +7 -0
- sage/crypto/key_exchange/catalog.py +24 -0
- sage/crypto/key_exchange/diffie_hellman.py +323 -0
- sage/crypto/key_exchange/key_exchange_scheme.py +107 -0
- sage/crypto/lattice.py +312 -0
- sage/crypto/lfsr.py +295 -0
- sage/crypto/lwe.py +840 -0
- sage/crypto/mq/__init__.py +4 -0
- sage/crypto/mq/mpolynomialsystemgenerator.py +204 -0
- sage/crypto/mq/rijndael_gf.py +2345 -0
- sage/crypto/mq/sbox.py +7 -0
- sage/crypto/mq/sr.py +3344 -0
- sage/crypto/public_key/all.py +5 -0
- sage/crypto/public_key/blum_goldwasser.py +776 -0
- sage/crypto/sbox.cpython-314-x86_64-linux-musl.so +0 -0
- sage/crypto/sbox.pyx +2090 -0
- sage/crypto/sboxes.py +2090 -0
- sage/crypto/stream.py +390 -0
- sage/crypto/stream_cipher.py +297 -0
- sage/crypto/util.py +519 -0
- sage/ext/all__sagemath_modules.py +1 -0
- sage/ext/interpreters/__init__.py +1 -0
- sage/ext/interpreters/all__sagemath_modules.py +2 -0
- sage/ext/interpreters/wrapper_cc.cpython-314-x86_64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_cc.pxd +30 -0
- sage/ext/interpreters/wrapper_cc.pyx +252 -0
- sage/ext/interpreters/wrapper_cdf.cpython-314-x86_64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_cdf.pxd +26 -0
- sage/ext/interpreters/wrapper_cdf.pyx +245 -0
- sage/ext/interpreters/wrapper_rdf.cpython-314-x86_64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_rdf.pxd +23 -0
- sage/ext/interpreters/wrapper_rdf.pyx +221 -0
- sage/ext/interpreters/wrapper_rr.cpython-314-x86_64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_rr.pxd +28 -0
- sage/ext/interpreters/wrapper_rr.pyx +335 -0
- sage/geometry/all__sagemath_modules.py +5 -0
- sage/geometry/toric_lattice.py +1745 -0
- sage/geometry/toric_lattice_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/geometry/toric_lattice_element.pyx +432 -0
- sage/groups/abelian_gps/abelian_group.py +1925 -0
- sage/groups/abelian_gps/abelian_group_element.py +164 -0
- sage/groups/abelian_gps/all__sagemath_modules.py +5 -0
- sage/groups/abelian_gps/dual_abelian_group.py +421 -0
- sage/groups/abelian_gps/dual_abelian_group_element.py +179 -0
- sage/groups/abelian_gps/element_base.py +341 -0
- sage/groups/abelian_gps/values.py +488 -0
- sage/groups/additive_abelian/additive_abelian_group.py +476 -0
- sage/groups/additive_abelian/additive_abelian_wrapper.py +857 -0
- sage/groups/additive_abelian/all.py +4 -0
- sage/groups/additive_abelian/qmodnz.py +231 -0
- sage/groups/additive_abelian/qmodnz_element.py +349 -0
- sage/groups/affine_gps/affine_group.py +535 -0
- sage/groups/affine_gps/all.py +1 -0
- sage/groups/affine_gps/catalog.py +17 -0
- sage/groups/affine_gps/euclidean_group.py +246 -0
- sage/groups/affine_gps/group_element.py +562 -0
- sage/groups/all__sagemath_modules.py +12 -0
- sage/groups/galois_group.py +479 -0
- sage/groups/matrix_gps/all.py +4 -0
- sage/groups/matrix_gps/all__sagemath_modules.py +13 -0
- sage/groups/matrix_gps/catalog.py +26 -0
- sage/groups/matrix_gps/coxeter_group.py +927 -0
- sage/groups/matrix_gps/finitely_generated.py +487 -0
- sage/groups/matrix_gps/group_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/groups/matrix_gps/group_element.pxd +11 -0
- sage/groups/matrix_gps/group_element.pyx +431 -0
- sage/groups/matrix_gps/linear.py +440 -0
- sage/groups/matrix_gps/matrix_group.py +617 -0
- sage/groups/matrix_gps/named_group.py +296 -0
- sage/groups/matrix_gps/orthogonal.py +544 -0
- sage/groups/matrix_gps/symplectic.py +251 -0
- sage/groups/matrix_gps/unitary.py +436 -0
- sage/groups/misc_gps/all__sagemath_modules.py +1 -0
- sage/groups/misc_gps/argument_groups.py +1905 -0
- sage/groups/misc_gps/imaginary_groups.py +479 -0
- sage/groups/perm_gps/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.cpython-314-x86_64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pxd +41 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pyx +1167 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.cpython-314-x86_64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pxd +31 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pyx +385 -0
- sage/homology/algebraic_topological_model.py +595 -0
- sage/homology/all.py +2 -0
- sage/homology/all__sagemath_modules.py +8 -0
- sage/homology/chain_complex.py +2148 -0
- sage/homology/chain_complex_homspace.py +165 -0
- sage/homology/chain_complex_morphism.py +629 -0
- sage/homology/chain_homotopy.py +604 -0
- sage/homology/chains.py +653 -0
- sage/homology/free_resolution.py +923 -0
- sage/homology/graded_resolution.py +567 -0
- sage/homology/hochschild_complex.py +756 -0
- sage/homology/homology_group.py +188 -0
- sage/homology/homology_morphism.py +422 -0
- sage/homology/homology_vector_space_with_basis.py +1454 -0
- sage/homology/koszul_complex.py +169 -0
- sage/homology/matrix_utils.py +205 -0
- sage/libs/all__sagemath_modules.py +1 -0
- sage/libs/gsl/__init__.py +1 -0
- sage/libs/gsl/airy.pxd +56 -0
- sage/libs/gsl/all.pxd +66 -0
- sage/libs/gsl/array.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/gsl/array.pxd +5 -0
- sage/libs/gsl/array.pyx +102 -0
- sage/libs/gsl/bessel.pxd +208 -0
- sage/libs/gsl/blas.pxd +116 -0
- sage/libs/gsl/blas_types.pxd +34 -0
- sage/libs/gsl/block.pxd +52 -0
- sage/libs/gsl/chebyshev.pxd +37 -0
- sage/libs/gsl/clausen.pxd +12 -0
- sage/libs/gsl/combination.pxd +47 -0
- sage/libs/gsl/complex.pxd +151 -0
- sage/libs/gsl/coulomb.pxd +30 -0
- sage/libs/gsl/coupling.pxd +21 -0
- sage/libs/gsl/dawson.pxd +12 -0
- sage/libs/gsl/debye.pxd +24 -0
- sage/libs/gsl/dilog.pxd +14 -0
- sage/libs/gsl/eigen.pxd +46 -0
- sage/libs/gsl/elementary.pxd +12 -0
- sage/libs/gsl/ellint.pxd +48 -0
- sage/libs/gsl/elljac.pxd +8 -0
- sage/libs/gsl/erf.pxd +32 -0
- sage/libs/gsl/errno.pxd +26 -0
- sage/libs/gsl/exp.pxd +44 -0
- sage/libs/gsl/expint.pxd +44 -0
- sage/libs/gsl/fermi_dirac.pxd +44 -0
- sage/libs/gsl/fft.pxd +121 -0
- sage/libs/gsl/fit.pxd +50 -0
- sage/libs/gsl/gamma.pxd +94 -0
- sage/libs/gsl/gegenbauer.pxd +26 -0
- sage/libs/gsl/histogram.pxd +176 -0
- sage/libs/gsl/hyperg.pxd +52 -0
- sage/libs/gsl/integration.pxd +69 -0
- sage/libs/gsl/interp.pxd +109 -0
- sage/libs/gsl/laguerre.pxd +24 -0
- sage/libs/gsl/lambert.pxd +16 -0
- sage/libs/gsl/legendre.pxd +90 -0
- sage/libs/gsl/linalg.pxd +185 -0
- sage/libs/gsl/log.pxd +26 -0
- sage/libs/gsl/math.pxd +43 -0
- sage/libs/gsl/matrix.pxd +143 -0
- sage/libs/gsl/matrix_complex.pxd +130 -0
- sage/libs/gsl/min.pxd +67 -0
- sage/libs/gsl/monte.pxd +56 -0
- sage/libs/gsl/ntuple.pxd +32 -0
- sage/libs/gsl/odeiv.pxd +70 -0
- sage/libs/gsl/permutation.pxd +78 -0
- sage/libs/gsl/poly.pxd +40 -0
- sage/libs/gsl/pow_int.pxd +12 -0
- sage/libs/gsl/psi.pxd +28 -0
- sage/libs/gsl/qrng.pxd +29 -0
- sage/libs/gsl/random.pxd +257 -0
- sage/libs/gsl/rng.pxd +100 -0
- sage/libs/gsl/roots.pxd +72 -0
- sage/libs/gsl/sort.pxd +36 -0
- sage/libs/gsl/statistics.pxd +59 -0
- sage/libs/gsl/sum.pxd +55 -0
- sage/libs/gsl/synchrotron.pxd +16 -0
- sage/libs/gsl/transport.pxd +24 -0
- sage/libs/gsl/trig.pxd +58 -0
- sage/libs/gsl/types.pxd +137 -0
- sage/libs/gsl/vector.pxd +101 -0
- sage/libs/gsl/vector_complex.pxd +83 -0
- sage/libs/gsl/wavelet.pxd +49 -0
- sage/libs/gsl/zeta.pxd +28 -0
- sage/libs/mpc/__init__.pxd +114 -0
- sage/libs/mpc/types.pxd +28 -0
- sage/libs/mpfr/__init__.pxd +299 -0
- sage/libs/mpfr/types.pxd +26 -0
- sage/libs/mpmath/__init__.py +1 -0
- sage/libs/mpmath/all.py +27 -0
- sage/libs/mpmath/all__sagemath_modules.py +1 -0
- sage/libs/mpmath/utils.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/mpmath/utils.pxd +4 -0
- sage/libs/mpmath/utils.pyx +319 -0
- sage/matrix/action.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/action.pxd +26 -0
- sage/matrix/action.pyx +596 -0
- sage/matrix/all.py +9 -0
- sage/matrix/args.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/args.pxd +144 -0
- sage/matrix/args.pyx +1668 -0
- sage/matrix/benchmark.py +1258 -0
- sage/matrix/berlekamp_massey.py +95 -0
- sage/matrix/compute_J_ideal.py +926 -0
- sage/matrix/constructor.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/constructor.pyx +750 -0
- sage/matrix/docs.py +430 -0
- sage/matrix/echelon_matrix.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/echelon_matrix.pyx +155 -0
- sage/matrix/matrix.pxd +2 -0
- sage/matrix/matrix0.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix0.pxd +68 -0
- sage/matrix/matrix0.pyx +6324 -0
- sage/matrix/matrix1.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix1.pxd +8 -0
- sage/matrix/matrix1.pyx +2851 -0
- sage/matrix/matrix2.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix2.pxd +25 -0
- sage/matrix/matrix2.pyx +20181 -0
- sage/matrix/matrix_cdv.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_cdv.pxd +4 -0
- sage/matrix/matrix_cdv.pyx +93 -0
- sage/matrix/matrix_complex_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_complex_double_dense.pxd +5 -0
- sage/matrix/matrix_complex_double_dense.pyx +98 -0
- sage/matrix/matrix_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_dense.pxd +5 -0
- sage/matrix/matrix_dense.pyx +343 -0
- sage/matrix/matrix_domain_dense.pxd +5 -0
- sage/matrix/matrix_domain_sparse.pxd +5 -0
- sage/matrix/matrix_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_double_dense.pxd +7 -0
- sage/matrix/matrix_double_dense.pyx +3906 -0
- sage/matrix/matrix_double_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_double_sparse.pxd +6 -0
- sage/matrix/matrix_double_sparse.pyx +248 -0
- sage/matrix/matrix_generic_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_generic_dense.pxd +7 -0
- sage/matrix/matrix_generic_dense.pyx +354 -0
- sage/matrix/matrix_generic_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_generic_sparse.pxd +7 -0
- sage/matrix/matrix_generic_sparse.pyx +461 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pxd +5 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pyx +115 -0
- sage/matrix/matrix_misc.py +313 -0
- sage/matrix/matrix_numpy_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_numpy_dense.pxd +14 -0
- sage/matrix/matrix_numpy_dense.pyx +450 -0
- sage/matrix/matrix_numpy_integer_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_numpy_integer_dense.pxd +7 -0
- sage/matrix/matrix_numpy_integer_dense.pyx +59 -0
- sage/matrix/matrix_polynomial_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_polynomial_dense.pxd +5 -0
- sage/matrix/matrix_polynomial_dense.pyx +5341 -0
- sage/matrix/matrix_real_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_real_double_dense.pxd +7 -0
- sage/matrix/matrix_real_double_dense.pyx +122 -0
- sage/matrix/matrix_space.py +2848 -0
- sage/matrix/matrix_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_sparse.pxd +5 -0
- sage/matrix/matrix_sparse.pyx +1222 -0
- sage/matrix/matrix_window.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_window.pxd +37 -0
- sage/matrix/matrix_window.pyx +242 -0
- sage/matrix/misc_mpfr.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/misc_mpfr.pyx +80 -0
- sage/matrix/operation_table.py +1182 -0
- sage/matrix/special.py +3666 -0
- sage/matrix/strassen.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/strassen.pyx +851 -0
- sage/matrix/symplectic_basis.py +541 -0
- sage/matrix/template.pxd +6 -0
- sage/matrix/tests.py +71 -0
- sage/matroids/advanced.py +77 -0
- sage/matroids/all.py +13 -0
- sage/matroids/basis_exchange_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/basis_exchange_matroid.pxd +96 -0
- sage/matroids/basis_exchange_matroid.pyx +2344 -0
- sage/matroids/basis_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/basis_matroid.pxd +45 -0
- sage/matroids/basis_matroid.pyx +1217 -0
- sage/matroids/catalog.py +44 -0
- sage/matroids/chow_ring.py +473 -0
- sage/matroids/chow_ring_ideal.py +849 -0
- sage/matroids/circuit_closures_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/circuit_closures_matroid.pxd +16 -0
- sage/matroids/circuit_closures_matroid.pyx +559 -0
- sage/matroids/circuits_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/circuits_matroid.pxd +38 -0
- sage/matroids/circuits_matroid.pyx +947 -0
- sage/matroids/constructor.py +1086 -0
- sage/matroids/database_collections.py +365 -0
- sage/matroids/database_matroids.py +5338 -0
- sage/matroids/dual_matroid.py +583 -0
- sage/matroids/extension.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/extension.pxd +34 -0
- sage/matroids/extension.pyx +519 -0
- sage/matroids/flats_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/flats_matroid.pxd +28 -0
- sage/matroids/flats_matroid.pyx +715 -0
- sage/matroids/gammoid.py +600 -0
- sage/matroids/graphic_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/graphic_matroid.pxd +39 -0
- sage/matroids/graphic_matroid.pyx +2024 -0
- sage/matroids/lean_matrix.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/lean_matrix.pxd +126 -0
- sage/matroids/lean_matrix.pyx +3667 -0
- sage/matroids/linear_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/linear_matroid.pxd +180 -0
- sage/matroids/linear_matroid.pyx +6649 -0
- sage/matroids/matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/matroid.pxd +243 -0
- sage/matroids/matroid.pyx +8759 -0
- sage/matroids/matroids_catalog.py +190 -0
- sage/matroids/matroids_plot_helpers.py +890 -0
- sage/matroids/minor_matroid.py +480 -0
- sage/matroids/minorfix.h +9 -0
- sage/matroids/named_matroids.py +5 -0
- sage/matroids/rank_matroid.py +268 -0
- sage/matroids/set_system.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/set_system.pxd +38 -0
- sage/matroids/set_system.pyx +800 -0
- sage/matroids/transversal_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/transversal_matroid.pxd +14 -0
- sage/matroids/transversal_matroid.pyx +893 -0
- sage/matroids/union_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/union_matroid.pxd +20 -0
- sage/matroids/union_matroid.pyx +331 -0
- sage/matroids/unpickling.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/unpickling.pyx +843 -0
- sage/matroids/utilities.py +809 -0
- sage/misc/all__sagemath_modules.py +20 -0
- sage/misc/c3.cpython-314-x86_64-linux-musl.so +0 -0
- sage/misc/c3.pyx +238 -0
- sage/misc/compat.py +87 -0
- sage/misc/element_with_label.py +173 -0
- sage/misc/func_persist.py +79 -0
- sage/misc/pickle_old.cpython-314-x86_64-linux-musl.so +0 -0
- sage/misc/pickle_old.pyx +19 -0
- sage/misc/proof.py +7 -0
- sage/misc/replace_dot_all.py +472 -0
- sage/misc/sagedoc_conf.py +168 -0
- sage/misc/sphinxify.py +167 -0
- sage/misc/test_class_pickling.py +85 -0
- sage/modules/all.py +42 -0
- sage/modules/complex_double_vector.py +25 -0
- sage/modules/diamond_cutting.py +380 -0
- sage/modules/fg_pid/all.py +1 -0
- sage/modules/fg_pid/fgp_element.py +456 -0
- sage/modules/fg_pid/fgp_module.py +2091 -0
- sage/modules/fg_pid/fgp_morphism.py +550 -0
- sage/modules/filtered_vector_space.py +1271 -0
- sage/modules/finite_submodule_iter.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/finite_submodule_iter.pxd +27 -0
- sage/modules/finite_submodule_iter.pyx +452 -0
- sage/modules/fp_graded/all.py +1 -0
- sage/modules/fp_graded/element.py +346 -0
- sage/modules/fp_graded/free_element.py +298 -0
- sage/modules/fp_graded/free_homspace.py +53 -0
- sage/modules/fp_graded/free_module.py +1060 -0
- sage/modules/fp_graded/free_morphism.py +217 -0
- sage/modules/fp_graded/homspace.py +563 -0
- sage/modules/fp_graded/module.py +1340 -0
- sage/modules/fp_graded/morphism.py +1990 -0
- sage/modules/fp_graded/steenrod/all.py +1 -0
- sage/modules/fp_graded/steenrod/homspace.py +65 -0
- sage/modules/fp_graded/steenrod/module.py +477 -0
- sage/modules/fp_graded/steenrod/morphism.py +404 -0
- sage/modules/fp_graded/steenrod/profile.py +241 -0
- sage/modules/free_module.py +8447 -0
- sage/modules/free_module_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/free_module_element.pxd +22 -0
- sage/modules/free_module_element.pyx +5445 -0
- sage/modules/free_module_homspace.py +369 -0
- sage/modules/free_module_integer.py +896 -0
- sage/modules/free_module_morphism.py +823 -0
- sage/modules/free_module_pseudohomspace.py +352 -0
- sage/modules/free_module_pseudomorphism.py +578 -0
- sage/modules/free_quadratic_module.py +1706 -0
- sage/modules/free_quadratic_module_integer_symmetric.py +1790 -0
- sage/modules/matrix_morphism.py +1745 -0
- sage/modules/misc.py +103 -0
- sage/modules/module_functors.py +192 -0
- sage/modules/multi_filtered_vector_space.py +719 -0
- sage/modules/ore_module.py +2208 -0
- sage/modules/ore_module_element.py +178 -0
- sage/modules/ore_module_homspace.py +147 -0
- sage/modules/ore_module_morphism.py +968 -0
- sage/modules/quotient_module.py +699 -0
- sage/modules/real_double_vector.py +22 -0
- sage/modules/submodule.py +255 -0
- sage/modules/tensor_operations.py +567 -0
- sage/modules/torsion_quadratic_module.py +1352 -0
- sage/modules/tutorial_free_modules.py +248 -0
- sage/modules/vector_complex_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_complex_double_dense.pxd +6 -0
- sage/modules/vector_complex_double_dense.pyx +117 -0
- sage/modules/vector_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_double_dense.pxd +6 -0
- sage/modules/vector_double_dense.pyx +604 -0
- sage/modules/vector_integer_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_integer_dense.pxd +15 -0
- sage/modules/vector_integer_dense.pyx +361 -0
- sage/modules/vector_integer_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_integer_sparse.pxd +29 -0
- sage/modules/vector_integer_sparse.pyx +406 -0
- sage/modules/vector_modn_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_modn_dense.pxd +12 -0
- sage/modules/vector_modn_dense.pyx +394 -0
- sage/modules/vector_modn_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_modn_sparse.pxd +21 -0
- sage/modules/vector_modn_sparse.pyx +298 -0
- sage/modules/vector_numpy_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_numpy_dense.pxd +15 -0
- sage/modules/vector_numpy_dense.pyx +304 -0
- sage/modules/vector_numpy_integer_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_numpy_integer_dense.pxd +7 -0
- sage/modules/vector_numpy_integer_dense.pyx +54 -0
- sage/modules/vector_rational_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_rational_dense.pxd +15 -0
- sage/modules/vector_rational_dense.pyx +387 -0
- sage/modules/vector_rational_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_rational_sparse.pxd +30 -0
- sage/modules/vector_rational_sparse.pyx +413 -0
- sage/modules/vector_real_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_real_double_dense.pxd +6 -0
- sage/modules/vector_real_double_dense.pyx +126 -0
- sage/modules/vector_space_homspace.py +430 -0
- sage/modules/vector_space_morphism.py +989 -0
- sage/modules/with_basis/all.py +15 -0
- sage/modules/with_basis/cell_module.py +494 -0
- sage/modules/with_basis/indexed_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/with_basis/indexed_element.pxd +13 -0
- sage/modules/with_basis/indexed_element.pyx +1058 -0
- sage/modules/with_basis/invariant.py +1075 -0
- sage/modules/with_basis/morphism.py +1636 -0
- sage/modules/with_basis/representation.py +2939 -0
- sage/modules/with_basis/subquotient.py +685 -0
- sage/numerical/all__sagemath_modules.py +6 -0
- sage/numerical/gauss_legendre.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/gauss_legendre.pyx +381 -0
- sage/numerical/optimize.py +910 -0
- sage/probability/all.py +10 -0
- sage/probability/probability_distribution.cpython-314-x86_64-linux-musl.so +0 -0
- sage/probability/probability_distribution.pyx +1242 -0
- sage/probability/random_variable.py +411 -0
- sage/quadratic_forms/all.py +4 -0
- sage/quadratic_forms/all__sagemath_modules.py +15 -0
- sage/quadratic_forms/binary_qf.py +2042 -0
- sage/quadratic_forms/bqf_class_group.py +748 -0
- sage/quadratic_forms/constructions.py +93 -0
- sage/quadratic_forms/count_local_2.cpython-314-x86_64-linux-musl.so +0 -0
- sage/quadratic_forms/count_local_2.pyx +365 -0
- sage/quadratic_forms/extras.py +195 -0
- sage/quadratic_forms/quadratic_form.py +1753 -0
- sage/quadratic_forms/quadratic_form__count_local_2.py +221 -0
- sage/quadratic_forms/quadratic_form__equivalence_testing.py +708 -0
- sage/quadratic_forms/quadratic_form__evaluate.cpython-314-x86_64-linux-musl.so +0 -0
- sage/quadratic_forms/quadratic_form__evaluate.pyx +139 -0
- sage/quadratic_forms/quadratic_form__local_density_congruence.py +977 -0
- sage/quadratic_forms/quadratic_form__local_field_invariants.py +1072 -0
- sage/quadratic_forms/quadratic_form__neighbors.py +424 -0
- sage/quadratic_forms/quadratic_form__reduction_theory.py +488 -0
- sage/quadratic_forms/quadratic_form__split_local_covering.py +416 -0
- sage/quadratic_forms/quadratic_form__ternary_Tornaria.py +657 -0
- sage/quadratic_forms/quadratic_form__theta.py +352 -0
- sage/quadratic_forms/quadratic_form__variable_substitutions.py +370 -0
- sage/quadratic_forms/random_quadraticform.py +209 -0
- sage/quadratic_forms/ternary.cpython-314-x86_64-linux-musl.so +0 -0
- sage/quadratic_forms/ternary.pyx +1154 -0
- sage/quadratic_forms/ternary_qf.py +2027 -0
- sage/rings/all__sagemath_modules.py +28 -0
- sage/rings/asymptotic/all__sagemath_modules.py +1 -0
- sage/rings/asymptotic/misc.py +1252 -0
- sage/rings/cc.py +4 -0
- sage/rings/cfinite_sequence.py +1306 -0
- sage/rings/complex_conversion.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/complex_conversion.pxd +8 -0
- sage/rings/complex_conversion.pyx +23 -0
- sage/rings/complex_double.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/complex_double.pxd +21 -0
- sage/rings/complex_double.pyx +2654 -0
- sage/rings/complex_mpc.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/complex_mpc.pxd +21 -0
- sage/rings/complex_mpc.pyx +2576 -0
- sage/rings/complex_mpfr.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/complex_mpfr.pxd +18 -0
- sage/rings/complex_mpfr.pyx +3602 -0
- sage/rings/derivation.py +2334 -0
- sage/rings/finite_rings/all__sagemath_modules.py +1 -0
- sage/rings/finite_rings/maps_finite_field.py +191 -0
- sage/rings/function_field/all__sagemath_modules.py +8 -0
- sage/rings/function_field/derivations.py +102 -0
- sage/rings/function_field/derivations_rational.py +132 -0
- sage/rings/function_field/differential.py +853 -0
- sage/rings/function_field/divisor.py +1107 -0
- sage/rings/function_field/drinfeld_modules/action.py +199 -0
- sage/rings/function_field/drinfeld_modules/all.py +1 -0
- sage/rings/function_field/drinfeld_modules/charzero_drinfeld_module.py +673 -0
- sage/rings/function_field/drinfeld_modules/drinfeld_module.py +2087 -0
- sage/rings/function_field/drinfeld_modules/finite_drinfeld_module.py +1131 -0
- sage/rings/function_field/drinfeld_modules/homset.py +420 -0
- sage/rings/function_field/drinfeld_modules/morphism.py +820 -0
- sage/rings/function_field/hermite_form_polynomial.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/function_field/hermite_form_polynomial.pyx +188 -0
- sage/rings/function_field/khuri_makdisi.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/function_field/khuri_makdisi.pyx +935 -0
- sage/rings/invariants/all.py +4 -0
- sage/rings/invariants/invariant_theory.py +4597 -0
- sage/rings/invariants/reconstruction.py +395 -0
- sage/rings/polynomial/all__sagemath_modules.py +17 -0
- sage/rings/polynomial/integer_valued_polynomials.py +1230 -0
- sage/rings/polynomial/laurent_polynomial_mpair.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pxd +15 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pyx +2023 -0
- sage/rings/polynomial/ore_function_element.py +952 -0
- sage/rings/polynomial/ore_function_field.py +1028 -0
- sage/rings/polynomial/ore_polynomial_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/ore_polynomial_element.pxd +48 -0
- sage/rings/polynomial/ore_polynomial_element.pyx +3145 -0
- sage/rings/polynomial/ore_polynomial_ring.py +1334 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.pyx +788 -0
- sage/rings/polynomial/q_integer_valued_polynomials.py +1264 -0
- sage/rings/polynomial/skew_polynomial_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_element.pxd +9 -0
- sage/rings/polynomial/skew_polynomial_element.pyx +684 -0
- sage/rings/polynomial/skew_polynomial_finite_field.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pxd +19 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pyx +1093 -0
- sage/rings/polynomial/skew_polynomial_finite_order.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pxd +10 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pyx +567 -0
- sage/rings/polynomial/skew_polynomial_ring.py +908 -0
- sage/rings/real_double_element_gsl.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/real_double_element_gsl.pxd +8 -0
- sage/rings/real_double_element_gsl.pyx +794 -0
- sage/rings/real_field.py +58 -0
- sage/rings/real_mpfr.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/real_mpfr.pxd +29 -0
- sage/rings/real_mpfr.pyx +6122 -0
- sage/rings/ring_extension.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/ring_extension.pxd +42 -0
- sage/rings/ring_extension.pyx +2779 -0
- sage/rings/ring_extension_conversion.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/ring_extension_conversion.pxd +16 -0
- sage/rings/ring_extension_conversion.pyx +462 -0
- sage/rings/ring_extension_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/ring_extension_element.pxd +21 -0
- sage/rings/ring_extension_element.pyx +1635 -0
- sage/rings/ring_extension_homset.py +64 -0
- sage/rings/ring_extension_morphism.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/ring_extension_morphism.pxd +35 -0
- sage/rings/ring_extension_morphism.pyx +920 -0
- sage/schemes/all__sagemath_modules.py +1 -0
- sage/schemes/projective/all__sagemath_modules.py +1 -0
- sage/schemes/projective/coherent_sheaf.py +300 -0
- sage/schemes/projective/cohomology.py +510 -0
- sage/stats/all.py +15 -0
- sage/stats/basic_stats.py +489 -0
- sage/stats/distributions/all.py +7 -0
- sage/stats/distributions/catalog.py +34 -0
- sage/stats/distributions/dgs.h +50 -0
- sage/stats/distributions/dgs.pxd +111 -0
- sage/stats/distributions/dgs_bern.h +400 -0
- sage/stats/distributions/dgs_gauss.h +614 -0
- sage/stats/distributions/dgs_misc.h +104 -0
- sage/stats/distributions/discrete_gaussian_integer.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/distributions/discrete_gaussian_integer.pxd +14 -0
- sage/stats/distributions/discrete_gaussian_integer.pyx +498 -0
- sage/stats/distributions/discrete_gaussian_lattice.py +908 -0
- sage/stats/distributions/discrete_gaussian_polynomial.py +141 -0
- sage/stats/hmm/all.py +15 -0
- sage/stats/hmm/chmm.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/hmm/chmm.pyx +1595 -0
- sage/stats/hmm/distributions.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/hmm/distributions.pxd +29 -0
- sage/stats/hmm/distributions.pyx +531 -0
- sage/stats/hmm/hmm.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/hmm/hmm.pxd +17 -0
- sage/stats/hmm/hmm.pyx +1388 -0
- sage/stats/hmm/util.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/hmm/util.pxd +7 -0
- sage/stats/hmm/util.pyx +165 -0
- sage/stats/intlist.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/intlist.pxd +14 -0
- sage/stats/intlist.pyx +588 -0
- sage/stats/r.py +49 -0
- sage/stats/time_series.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/time_series.pxd +6 -0
- sage/stats/time_series.pyx +2546 -0
- sage/tensor/all.py +2 -0
- sage/tensor/modules/all.py +8 -0
- sage/tensor/modules/alternating_contr_tensor.py +761 -0
- sage/tensor/modules/comp.py +5598 -0
- sage/tensor/modules/ext_pow_free_module.py +824 -0
- sage/tensor/modules/finite_rank_free_module.py +3589 -0
- sage/tensor/modules/format_utilities.py +333 -0
- sage/tensor/modules/free_module_alt_form.py +858 -0
- sage/tensor/modules/free_module_automorphism.py +1207 -0
- sage/tensor/modules/free_module_basis.py +1074 -0
- sage/tensor/modules/free_module_element.py +284 -0
- sage/tensor/modules/free_module_homset.py +652 -0
- sage/tensor/modules/free_module_linear_group.py +564 -0
- sage/tensor/modules/free_module_morphism.py +1581 -0
- sage/tensor/modules/free_module_tensor.py +3289 -0
- sage/tensor/modules/reflexive_module.py +386 -0
- sage/tensor/modules/tensor_free_module.py +780 -0
- sage/tensor/modules/tensor_free_submodule.py +538 -0
- sage/tensor/modules/tensor_free_submodule_basis.py +140 -0
- sage/tensor/modules/tensor_with_indices.py +1043 -0
|
@@ -0,0 +1,1075 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-modules
|
|
2
|
+
# sage.doctest: needs sage.groups
|
|
3
|
+
r"""
|
|
4
|
+
Invariant modules
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
# ****************************************************************************
|
|
8
|
+
# Copyright (C) 2021 Trevor K. Karn <karnx018 at umn.edu>
|
|
9
|
+
# 2021 Travis Scrimshaw
|
|
10
|
+
# 2022 Matthias Koeppe
|
|
11
|
+
#
|
|
12
|
+
# This program is free software: you can redistribute it and/or modify
|
|
13
|
+
# it under the terms of the GNU General Public License as published by
|
|
14
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
15
|
+
# (at your option) any later version.
|
|
16
|
+
# https://www.gnu.org/licenses/
|
|
17
|
+
# ****************************************************************************
|
|
18
|
+
|
|
19
|
+
import operator
|
|
20
|
+
from sage.modules.with_basis.subquotient import SubmoduleWithBasis
|
|
21
|
+
from sage.modules.with_basis.representation import Representation
|
|
22
|
+
from sage.categories.finitely_generated_semigroups import FinitelyGeneratedSemigroups
|
|
23
|
+
from sage.categories.finite_dimensional_modules_with_basis import FiniteDimensionalModulesWithBasis
|
|
24
|
+
from sage.sets.family import Family
|
|
25
|
+
from sage.matrix.constructor import Matrix
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
class FiniteDimensionalInvariantModule(SubmoduleWithBasis):
|
|
29
|
+
r"""
|
|
30
|
+
The invariant submodule under a semigroup action.
|
|
31
|
+
|
|
32
|
+
When a semigroup `S` acts on a module `M`, the invariant module is the
|
|
33
|
+
set of elements `m \in M` such that `s \cdot m = m` for all `s \in S`:
|
|
34
|
+
|
|
35
|
+
.. MATH::
|
|
36
|
+
|
|
37
|
+
M^S := \{m \in M : s \cdot m = m,\, \forall s \in S \}.
|
|
38
|
+
|
|
39
|
+
INPUT:
|
|
40
|
+
|
|
41
|
+
- ``M`` -- a module in the category of
|
|
42
|
+
:class:`~sage.categories.finite_dimensional_modules_with_basis.FiniteDimensionalModulesWithBasis`
|
|
43
|
+
|
|
44
|
+
- ``S`` -- a semigroup in the category of
|
|
45
|
+
:class:`~sage.categories.finitely_generated_semigroups.FinitelyGeneratedSemigroups`
|
|
46
|
+
|
|
47
|
+
- ``action`` -- (default: ``operator.mul``) the action of ``S`` on ``M``
|
|
48
|
+
|
|
49
|
+
- ``side`` -- (default: ``'left'``) the side on which ``S`` acts
|
|
50
|
+
|
|
51
|
+
EXAMPLES:
|
|
52
|
+
|
|
53
|
+
First, we create the invariant defined by the cyclic group action on the
|
|
54
|
+
free module with basis `\{1,2,3\}`::
|
|
55
|
+
|
|
56
|
+
sage: G = CyclicPermutationGroup(3)
|
|
57
|
+
sage: M = CombinatorialFreeModule(QQ, [1,2,3], prefix='M')
|
|
58
|
+
sage: action = lambda g, m: M.monomial(g(m)) # cyclically permute coordinates
|
|
59
|
+
|
|
60
|
+
In order to give the module an action of ``G``, we create a
|
|
61
|
+
:class:`~sage.modules.with_basis.representation.Representation`::
|
|
62
|
+
|
|
63
|
+
sage: from sage.modules.with_basis.representation import Representation
|
|
64
|
+
sage: R = Representation(G, M, action)
|
|
65
|
+
sage: I = R.invariant_module()
|
|
66
|
+
|
|
67
|
+
Then we can lift the basis from the invariant to the original module::
|
|
68
|
+
|
|
69
|
+
sage: [I.lift(b) for b in I.basis()]
|
|
70
|
+
[M[1] + M[2] + M[3]]
|
|
71
|
+
|
|
72
|
+
The we could also have the action be a right-action, instead of the
|
|
73
|
+
default left-action::
|
|
74
|
+
|
|
75
|
+
sage: def rt_action(g, m): return M.monomial(g(m)) # cyclically permute coordinates
|
|
76
|
+
sage: R = Representation(G, M, rt_action, side='right') # same as last but on right
|
|
77
|
+
sage: g = G.an_element(); g
|
|
78
|
+
(1,2,3)
|
|
79
|
+
sage: r = R.an_element(); r
|
|
80
|
+
2*M[1] + 2*M[2] + 3*M[3]
|
|
81
|
+
sage: R.side()
|
|
82
|
+
'right'
|
|
83
|
+
|
|
84
|
+
So now we can see that multiplication with ``g`` on the right sends
|
|
85
|
+
``M[1]`` to ``M[2]`` and so on::
|
|
86
|
+
|
|
87
|
+
sage: r * g
|
|
88
|
+
3*M[1] + 2*M[2] + 2*M[3]
|
|
89
|
+
sage: I = R.invariant_module()
|
|
90
|
+
sage: [I.lift(b) for b in I.basis()]
|
|
91
|
+
[M[1] + M[2] + M[3]]
|
|
92
|
+
|
|
93
|
+
Now we will take the regular representation of the symmetric group on
|
|
94
|
+
three elements to be the module, and compute its invariant submodule::
|
|
95
|
+
|
|
96
|
+
sage: G = SymmetricGroup(3)
|
|
97
|
+
sage: R = G.regular_representation(QQ)
|
|
98
|
+
sage: I = R.invariant_module()
|
|
99
|
+
sage: [I.lift(b).to_vector() for b in I.basis()]
|
|
100
|
+
[(1, 1, 1, 1, 1, 1)]
|
|
101
|
+
|
|
102
|
+
We can also check the scalar multiplication by elements of the base ring
|
|
103
|
+
(for this example, the rational field)::
|
|
104
|
+
|
|
105
|
+
sage: [I.lift(3*b).to_vector() for b in I.basis()]
|
|
106
|
+
[(3, 3, 3, 3, 3, 3)]
|
|
107
|
+
|
|
108
|
+
A more subtle example is the invariant submodule of a skew-commutative
|
|
109
|
+
module, for example the exterior algebra `E[x_0,x_1,x_2]` generated
|
|
110
|
+
by three elements::
|
|
111
|
+
|
|
112
|
+
sage: G = CyclicPermutationGroup(3)
|
|
113
|
+
sage: M = algebras.Exterior(QQ, 'x', 3)
|
|
114
|
+
sage: def cyclic_ext_action(g, m):
|
|
115
|
+
....: # cyclically permute generators
|
|
116
|
+
....: return M.prod([M.monomial(FrozenBitset([g(j+1)-1])) for j in m])
|
|
117
|
+
|
|
118
|
+
If you care about being able to exploit the algebra structure of the
|
|
119
|
+
exterior algebra (i.e. if you want to multiply elements together), you
|
|
120
|
+
should make sure the representation knows it is also an algebra with
|
|
121
|
+
the semigroup action being by algebra endomorphisms::
|
|
122
|
+
|
|
123
|
+
sage: cat = Algebras(QQ).WithBasis().FiniteDimensional()
|
|
124
|
+
sage: R = Representation(G, M, cyclic_ext_action, category=cat)
|
|
125
|
+
sage: I = R.invariant_module()
|
|
126
|
+
|
|
127
|
+
We can express the basis in the ambient algebra (`E[x_0,x_1,x_2]`)::
|
|
128
|
+
|
|
129
|
+
sage: [I.lift(b) for b in I.basis()]
|
|
130
|
+
[1, x0 + x1 + x2, x0*x1 - x0*x2 + x1*x2, x0*x1*x2]
|
|
131
|
+
|
|
132
|
+
or we can express the basis intrinsicallly to the invariant ``I``::
|
|
133
|
+
|
|
134
|
+
sage: B = I.basis()
|
|
135
|
+
sage: m = 3*B[0] + 2*B[1] + 7*B[3]
|
|
136
|
+
|
|
137
|
+
This lifts to the exterior algebra::
|
|
138
|
+
|
|
139
|
+
sage: I.lift(m)
|
|
140
|
+
3 + 2*x0 + 7*x0*x1*x2 + 2*x1 + 2*x2
|
|
141
|
+
|
|
142
|
+
We can also check using the invariant element ``m`` that arithmetic works::
|
|
143
|
+
|
|
144
|
+
sage: m^2
|
|
145
|
+
9*B[0] + 12*B[1] + 42*B[3]
|
|
146
|
+
sage: m+m
|
|
147
|
+
6*B[0] + 4*B[1] + 14*B[3]
|
|
148
|
+
|
|
149
|
+
To see the actual elements expressed in the exterior algebra, we lift them
|
|
150
|
+
again::
|
|
151
|
+
|
|
152
|
+
sage: I.lift(m+m)
|
|
153
|
+
6 + 4*x0 + 14*x0*x1*x2 + 4*x1 + 4*x2
|
|
154
|
+
sage: 7*m
|
|
155
|
+
21*B[0] + 14*B[1] + 49*B[3]
|
|
156
|
+
sage: I.lift(7*m)
|
|
157
|
+
21 + 14*x0 + 49*x0*x1*x2 + 14*x1 + 14*x2
|
|
158
|
+
|
|
159
|
+
The classic example of an invariant module is the module of symmetric
|
|
160
|
+
functions, which is the invariant module of polynomials whose variables
|
|
161
|
+
are acted upon by permutation. We can create a module isomorphic to the
|
|
162
|
+
homogeneous component of a a polynomial ring in `n` variable of a fixed
|
|
163
|
+
degree `d` by looking at weak compositions of `d` of length `n`, which
|
|
164
|
+
we consider as the exponent vector. For example, `x^2yz \in \QQ[x,y,z]`
|
|
165
|
+
would have the exponent vector `(2,1,1)`. The vector `(2,1,1)` is a
|
|
166
|
+
weak composition of `4`, with length `3`, and so we can think of it as
|
|
167
|
+
being in the degree-`4` homogeneous component of a polynomial ring
|
|
168
|
+
in three variables::
|
|
169
|
+
|
|
170
|
+
sage: C = IntegerVectors(4, length=3, min_part=0) # representing degree-4 monomials
|
|
171
|
+
sage: M = CombinatorialFreeModule(QQ, C) # isomorphic to deg-4 homog. polynomials
|
|
172
|
+
sage: G = SymmetricGroup(3)
|
|
173
|
+
sage: def perm_action(g, x): return M.monomial(C(g(list(x))))
|
|
174
|
+
sage: perm_action(G((1,2,3)), C([4,3,2]))
|
|
175
|
+
B[[3, 2, 4]]
|
|
176
|
+
sage: R = Representation(G, M, perm_action)
|
|
177
|
+
sage: I = R.invariant_module()
|
|
178
|
+
sage: [I.lift(b) for b in I.basis()]
|
|
179
|
+
[B[[0, 0, 4]] + B[[0, 4, 0]] + B[[4, 0, 0]],
|
|
180
|
+
B[[0, 1, 3]] + B[[0, 3, 1]] + B[[1, 0, 3]]
|
|
181
|
+
+ B[[1, 3, 0]] + B[[3, 0, 1]] + B[[3, 1, 0]],
|
|
182
|
+
B[[0, 2, 2]] + B[[2, 0, 2]] + B[[2, 2, 0]],
|
|
183
|
+
B[[1, 1, 2]] + B[[1, 2, 1]] + B[[2, 1, 1]]]
|
|
184
|
+
|
|
185
|
+
These are the monomial symmetric functions, which are a well-known
|
|
186
|
+
basis for the symmetric functions. For comparison::
|
|
187
|
+
|
|
188
|
+
sage: Sym = SymmetricFunctions(QQ)
|
|
189
|
+
sage: m = Sym.monomial()
|
|
190
|
+
sage: [m[mu].expand(3) for mu in Partitions(4)]
|
|
191
|
+
[x0^4 + x1^4 + x2^4,
|
|
192
|
+
x0^3*x1 + x0*x1^3 + x0^3*x2 + x1^3*x2 + x0*x2^3 + x1*x2^3,
|
|
193
|
+
x0^2*x1^2 + x0^2*x2^2 + x1^2*x2^2,
|
|
194
|
+
x0^2*x1*x2 + x0*x1^2*x2 + x0*x1*x2^2,
|
|
195
|
+
0]
|
|
196
|
+
|
|
197
|
+
.. NOTE::
|
|
198
|
+
|
|
199
|
+
The current implementation works when `S` is a finitely-generated
|
|
200
|
+
semigroup, and when `M` is a finite-dimensional free module with
|
|
201
|
+
a distinguished basis.
|
|
202
|
+
|
|
203
|
+
.. TODO::
|
|
204
|
+
|
|
205
|
+
Extend this to have multiple actions, including actions on both sides.
|
|
206
|
+
|
|
207
|
+
.. TODO::
|
|
208
|
+
|
|
209
|
+
Extend when `M` does not have a basis and `S` is a permutation
|
|
210
|
+
group using:
|
|
211
|
+
|
|
212
|
+
- :arxiv:`0812.3082`
|
|
213
|
+
- https://www.dmtcs.org/pdfpapers/dmAA0123.pdf
|
|
214
|
+
"""
|
|
215
|
+
def __init__(self, M, S, action=operator.mul, side='left', *args, **kwargs):
|
|
216
|
+
"""
|
|
217
|
+
Initialize ``self``.
|
|
218
|
+
|
|
219
|
+
EXAMPLES::
|
|
220
|
+
|
|
221
|
+
sage: G = CyclicPermutationGroup(3)
|
|
222
|
+
sage: R = G.regular_representation()
|
|
223
|
+
sage: I = R.invariant_module()
|
|
224
|
+
sage: TestSuite(I).run()
|
|
225
|
+
|
|
226
|
+
TESTS::
|
|
227
|
+
|
|
228
|
+
sage: G = GroupExp()(QQ) # a group that is not finitely generated
|
|
229
|
+
sage: M = CombinatorialFreeModule(QQ, [1,2,3])
|
|
230
|
+
sage: def on_basis(g, m): return M.monomial(m) # trivial rep'n
|
|
231
|
+
sage: from sage.modules.with_basis.representation import Representation
|
|
232
|
+
sage: R = Representation(G, M, on_basis)
|
|
233
|
+
sage: R.invariant_module()
|
|
234
|
+
Traceback (most recent call last):
|
|
235
|
+
...
|
|
236
|
+
ValueError: Multiplicative form of Rational Field is not finitely generated
|
|
237
|
+
"""
|
|
238
|
+
if S not in FinitelyGeneratedSemigroups():
|
|
239
|
+
raise ValueError(f"{S} is not finitely generated")
|
|
240
|
+
if M not in FiniteDimensionalModulesWithBasis:
|
|
241
|
+
raise ValueError(f"{M} is not a finite dimensional module with a distinguished basis")
|
|
242
|
+
|
|
243
|
+
if side == "left":
|
|
244
|
+
def _invariant_map(g, x):
|
|
245
|
+
return action(g, x) - x
|
|
246
|
+
elif side == "right":
|
|
247
|
+
def _invariant_map(g, x):
|
|
248
|
+
return action(x, g) - x
|
|
249
|
+
else:
|
|
250
|
+
raise ValueError("side must either be 'left' or 'right'")
|
|
251
|
+
|
|
252
|
+
self._side = side
|
|
253
|
+
self._action = action
|
|
254
|
+
self._semigroup = S
|
|
255
|
+
|
|
256
|
+
category = kwargs.pop("category", M.category().Subobjects())
|
|
257
|
+
|
|
258
|
+
# Give the intersection of kernels of the map `s*x-x` to determine when
|
|
259
|
+
# `s*x = x` for all generators `s` of `S`
|
|
260
|
+
basis = M.annihilator_basis(S.gens(), action=_invariant_map, side='left')
|
|
261
|
+
|
|
262
|
+
super().__init__(Family(basis),
|
|
263
|
+
support_order=M._compute_support_order(basis),
|
|
264
|
+
ambient=M,
|
|
265
|
+
unitriangular=False,
|
|
266
|
+
category=category,
|
|
267
|
+
*args, **kwargs)
|
|
268
|
+
|
|
269
|
+
def construction(self):
|
|
270
|
+
r"""
|
|
271
|
+
Return the functorial construction of ``self``.
|
|
272
|
+
|
|
273
|
+
EXAMPLES::
|
|
274
|
+
|
|
275
|
+
sage: G = CyclicPermutationGroup(3)
|
|
276
|
+
sage: R = G.regular_representation(); R
|
|
277
|
+
Left Regular Representation of Cyclic group of order 3 as a permutation group over Integer Ring
|
|
278
|
+
sage: I = R.invariant_module()
|
|
279
|
+
sage: I.construction()
|
|
280
|
+
(EquivariantSubobjectConstructionFunctor,
|
|
281
|
+
Left Regular Representation of Cyclic group of order 3 as a permutation group over Integer Ring)
|
|
282
|
+
"""
|
|
283
|
+
from sage.categories.pushout import EquivariantSubobjectConstructionFunctor
|
|
284
|
+
return (EquivariantSubobjectConstructionFunctor(self._semigroup,
|
|
285
|
+
self._action,
|
|
286
|
+
self._side),
|
|
287
|
+
self.ambient())
|
|
288
|
+
|
|
289
|
+
def _repr_(self):
|
|
290
|
+
r"""
|
|
291
|
+
Return a string representation of ``self``.
|
|
292
|
+
|
|
293
|
+
EXAMPLES::
|
|
294
|
+
|
|
295
|
+
sage: G = CyclicPermutationGroup(3)
|
|
296
|
+
sage: R = G.trivial_representation()
|
|
297
|
+
sage: R.invariant_module()
|
|
298
|
+
(Cyclic group of order 3 as a permutation group)-invariant submodule of
|
|
299
|
+
Trivial representation of Cyclic group of order 3 as a permutation group over Integer Ring
|
|
300
|
+
|
|
301
|
+
sage: G = CyclicPermutationGroup(3)
|
|
302
|
+
sage: M = CombinatorialFreeModule(QQ, [1,2,3], prefix='M')
|
|
303
|
+
sage: action = lambda g, m: M.monomial(g(m)) # cyclically permute coordinates
|
|
304
|
+
sage: M.invariant_module(G, action_on_basis=action)
|
|
305
|
+
(Cyclic group of order 3 as a permutation group)-invariant submodule of
|
|
306
|
+
Free module generated by {1, 2, 3} over Rational Field
|
|
307
|
+
"""
|
|
308
|
+
M = self._ambient
|
|
309
|
+
if isinstance(self._ambient, Representation):
|
|
310
|
+
M = M._module
|
|
311
|
+
return f"({self._semigroup})-invariant submodule of {M}"
|
|
312
|
+
|
|
313
|
+
def _latex_(self) -> str:
|
|
314
|
+
r"""
|
|
315
|
+
Return a latex representation of ``self``.
|
|
316
|
+
|
|
317
|
+
EXAMPLES::
|
|
318
|
+
|
|
319
|
+
sage: G = CyclicPermutationGroup(3)
|
|
320
|
+
sage: R = G.algebra(QQ)
|
|
321
|
+
sage: latex(R.invariant_module(G))
|
|
322
|
+
\left( \Bold{Q}[\langle (1,2,3) \rangle] \right)^{\langle (1,2,3) \rangle}
|
|
323
|
+
"""
|
|
324
|
+
M = self._ambient
|
|
325
|
+
if isinstance(self._ambient, Representation):
|
|
326
|
+
M = M._module
|
|
327
|
+
from sage.misc.latex import latex
|
|
328
|
+
return "\\left( {} \\right)^{{{}}}".format(latex(M), latex(self._semigroup))
|
|
329
|
+
|
|
330
|
+
def _test_invariant(self, **options):
|
|
331
|
+
"""
|
|
332
|
+
Check (on some elements) that ``self`` is invariant.
|
|
333
|
+
|
|
334
|
+
EXAMPLES::
|
|
335
|
+
|
|
336
|
+
sage: G = SymmetricGroup(3)
|
|
337
|
+
sage: M = CombinatorialFreeModule(QQ, [1,2,3], prefix='M')
|
|
338
|
+
sage: def action(g, x): return M.monomial(g(x))
|
|
339
|
+
sage: I = M.invariant_module(G, action_on_basis=action)
|
|
340
|
+
sage: I._test_invariant()
|
|
341
|
+
|
|
342
|
+
sage: G = SymmetricGroup(10)
|
|
343
|
+
sage: M = CombinatorialFreeModule(QQ, list(range(1,11)), prefix='M')
|
|
344
|
+
sage: def action(g, x): return M.monomial(g(x))
|
|
345
|
+
sage: I = M.invariant_module(G, action_on_basis=action)
|
|
346
|
+
sage: I._test_invariant(max_runs=10)
|
|
347
|
+
"""
|
|
348
|
+
tester = self._tester(**options)
|
|
349
|
+
X = tester.some_elements()
|
|
350
|
+
L = []
|
|
351
|
+
max_len = tester._max_runs
|
|
352
|
+
|
|
353
|
+
# FIXME: This is max_len * dim number of runs!!!
|
|
354
|
+
for i, x in enumerate(self._semigroup):
|
|
355
|
+
L.append(x)
|
|
356
|
+
if i >= max_len:
|
|
357
|
+
break
|
|
358
|
+
|
|
359
|
+
for x in L:
|
|
360
|
+
for elt in X:
|
|
361
|
+
lifted = self.lift(elt)
|
|
362
|
+
if self._side == 'left':
|
|
363
|
+
tester.assertEqual(self._action(x, lifted), lifted)
|
|
364
|
+
else:
|
|
365
|
+
tester.assertEqual(self._action(lifted, x), lifted)
|
|
366
|
+
|
|
367
|
+
def semigroup(self):
|
|
368
|
+
r"""
|
|
369
|
+
Return the semigroup `S` whose action ``self`` is invariant under.
|
|
370
|
+
|
|
371
|
+
EXAMPLES::
|
|
372
|
+
|
|
373
|
+
sage: G = SymmetricGroup(3)
|
|
374
|
+
sage: M = CombinatorialFreeModule(QQ, [1,2,3], prefix='M')
|
|
375
|
+
sage: def action(g, x): return M.monomial(g(x))
|
|
376
|
+
sage: I = M.invariant_module(G, action_on_basis=action)
|
|
377
|
+
sage: I.semigroup()
|
|
378
|
+
Symmetric group of order 3! as a permutation group
|
|
379
|
+
"""
|
|
380
|
+
return self._semigroup
|
|
381
|
+
|
|
382
|
+
semigroup_representation = SubmoduleWithBasis.ambient
|
|
383
|
+
|
|
384
|
+
class Element(SubmoduleWithBasis.Element):
|
|
385
|
+
def _mul_(self, other):
|
|
386
|
+
r"""
|
|
387
|
+
Multiply ``self`` and ``other``.
|
|
388
|
+
|
|
389
|
+
EXAMPLES:
|
|
390
|
+
|
|
391
|
+
In general, there is not a well defined multiplication between
|
|
392
|
+
two elements of a given module, but there is a multiplication
|
|
393
|
+
with scalars::
|
|
394
|
+
|
|
395
|
+
sage: M = CombinatorialFreeModule(QQ, [1,2,3], prefix='M');
|
|
396
|
+
sage: G = CyclicPermutationGroup(3); G.rename('G')
|
|
397
|
+
sage: g = G.an_element(); g
|
|
398
|
+
(1,2,3)
|
|
399
|
+
sage: from sage.modules.with_basis.representation import Representation
|
|
400
|
+
sage: R = Representation(G,M,lambda g,x:M.monomial(g(x))); R.rename('R')
|
|
401
|
+
sage: I = R.invariant_module()
|
|
402
|
+
sage: B = I.basis()
|
|
403
|
+
sage: [I.lift(b) for b in B]
|
|
404
|
+
[M[1] + M[2] + M[3]]
|
|
405
|
+
sage: v = B[0]
|
|
406
|
+
sage: v*v
|
|
407
|
+
Traceback (most recent call last):
|
|
408
|
+
...
|
|
409
|
+
TypeError: unsupported operand parent(s) for *: 'R' and 'R'
|
|
410
|
+
sage: (1/2) * v
|
|
411
|
+
1/2*B[0]
|
|
412
|
+
sage: v * (1/2)
|
|
413
|
+
1/2*B[0]
|
|
414
|
+
sage: R.rename() # reset name
|
|
415
|
+
|
|
416
|
+
Sometimes, the module is also a ring. To ensure the multiplication
|
|
417
|
+
works as desired, we should be sure to pass the correct category to
|
|
418
|
+
the :class:`~sage.modules.with_basis.representation.Representation`.
|
|
419
|
+
In the following example, we use the exterior algebra over `\QQ`
|
|
420
|
+
with three generators, which is in the category of finite
|
|
421
|
+
dimensional `\QQ`-algebras with a basis::
|
|
422
|
+
|
|
423
|
+
sage: G = CyclicPermutationGroup(3); G.rename('G')
|
|
424
|
+
sage: M = algebras.Exterior(QQ, 'x', 3)
|
|
425
|
+
sage: def on_basis(g, m): return M.prod([M.monomial(FrozenBitset([g(j+1)-1])) for j in m]) # cyclically permute generators
|
|
426
|
+
sage: R = Representation(G, M, on_basis, category=Algebras(QQ).WithBasis().FiniteDimensional(), side='right')
|
|
427
|
+
sage: I = R.invariant_module(); I.rename('I')
|
|
428
|
+
sage: B = I.basis()
|
|
429
|
+
sage: v = B[0] + 2*B[1]; I.lift(v)
|
|
430
|
+
1 + 2*x0 + 2*x1 + 2*x2
|
|
431
|
+
sage: w = B[2]; I.lift(w)
|
|
432
|
+
x0*x1 - x0*x2 + x1*x2
|
|
433
|
+
sage: v * w
|
|
434
|
+
B[2] + 6*B[3]
|
|
435
|
+
sage: I.lift(v*w)
|
|
436
|
+
x0*x1 + 6*x0*x1*x2 - x0*x2 + x1*x2
|
|
437
|
+
sage: w * v
|
|
438
|
+
B[2] + 6*B[3]
|
|
439
|
+
sage: (1/2) * v
|
|
440
|
+
1/2*B[0] + B[1]
|
|
441
|
+
sage: w * (1/2)
|
|
442
|
+
1/2*B[2]
|
|
443
|
+
sage: g = G((1,3,2))
|
|
444
|
+
sage: v * g
|
|
445
|
+
B[0] + 2*B[1]
|
|
446
|
+
sage: w * g
|
|
447
|
+
B[2]
|
|
448
|
+
sage: g * v
|
|
449
|
+
Traceback (most recent call last):
|
|
450
|
+
...
|
|
451
|
+
TypeError: unsupported operand parent(s) for *: 'G' and 'I'
|
|
452
|
+
sage: I.rename() # reset name
|
|
453
|
+
|
|
454
|
+
sage: R = Representation(G, M, on_basis, category=Algebras(QQ).WithBasis().FiniteDimensional())
|
|
455
|
+
sage: I = R.invariant_module(); I.rename('I')
|
|
456
|
+
sage: B = I.basis()
|
|
457
|
+
sage: v = B[0] + 2*B[1]; I.lift(v)
|
|
458
|
+
1 + 2*x0 + 2*x1 + 2*x2
|
|
459
|
+
sage: w = B[2]; I.lift(w)
|
|
460
|
+
x0*x1 - x0*x2 + x1*x2
|
|
461
|
+
sage: v * w
|
|
462
|
+
B[2] + 6*B[3]
|
|
463
|
+
sage: I.lift(v*w)
|
|
464
|
+
x0*x1 + 6*x0*x1*x2 - x0*x2 + x1*x2
|
|
465
|
+
sage: w * v
|
|
466
|
+
B[2] + 6*B[3]
|
|
467
|
+
sage: (1/2) * v
|
|
468
|
+
1/2*B[0] + B[1]
|
|
469
|
+
sage: w * (1/2)
|
|
470
|
+
1/2*B[2]
|
|
471
|
+
sage: g = G((1,3,2))
|
|
472
|
+
sage: v * v
|
|
473
|
+
B[0] + 4*B[1]
|
|
474
|
+
sage: g * w
|
|
475
|
+
B[2]
|
|
476
|
+
sage: v * g
|
|
477
|
+
Traceback (most recent call last):
|
|
478
|
+
...
|
|
479
|
+
TypeError: unsupported operand parent(s) for *: 'I' and 'G'
|
|
480
|
+
sage: G.rename(); I.rename() # reset names
|
|
481
|
+
"""
|
|
482
|
+
P = self.parent()
|
|
483
|
+
return P.retract(P.lift(self) * P.lift(other))
|
|
484
|
+
|
|
485
|
+
def _acted_upon_(self, scalar, self_on_left=False):
|
|
486
|
+
"""
|
|
487
|
+
EXAMPLES::
|
|
488
|
+
|
|
489
|
+
sage: G = CyclicPermutationGroup(3)
|
|
490
|
+
sage: g = G.an_element(); g
|
|
491
|
+
(1,2,3)
|
|
492
|
+
sage: M = CombinatorialFreeModule(QQ, [1,2,3])
|
|
493
|
+
sage: from sage.modules.with_basis.representation import Representation
|
|
494
|
+
sage: R = Representation(G, M, lambda g,x: M.monomial(g(x)))
|
|
495
|
+
sage: I = R.invariant_module()
|
|
496
|
+
sage: [b._acted_upon_(G((1,3,2))) for b in I.basis()]
|
|
497
|
+
[B[0]]
|
|
498
|
+
sage: v = I.an_element(); v
|
|
499
|
+
2*B[0]
|
|
500
|
+
sage: g * v
|
|
501
|
+
2*B[0]
|
|
502
|
+
sage: [g * v for g in G.list()]
|
|
503
|
+
[2*B[0], 2*B[0], 2*B[0]]
|
|
504
|
+
|
|
505
|
+
|
|
506
|
+
sage: E = algebras.Exterior(QQ, 'x', 3)
|
|
507
|
+
sage: def on_basis(g, m): return E.prod([E.monomial(FrozenBitset([g(j+1)-1])) for j in m]) # cyclically permute generators
|
|
508
|
+
sage: R = Representation(G, E, on_basis, category=Algebras(QQ).WithBasis().FiniteDimensional())
|
|
509
|
+
sage: I = R.invariant_module()
|
|
510
|
+
sage: B = I.basis()
|
|
511
|
+
sage: [I.lift(b) for b in B]
|
|
512
|
+
[1, x0 + x1 + x2, x0*x1 - x0*x2 + x1*x2, x0*x1*x2]
|
|
513
|
+
sage: [[g*b for g in G] for b in B]
|
|
514
|
+
[[B[0], B[0], B[0]],
|
|
515
|
+
[B[1], B[1], B[1]],
|
|
516
|
+
[B[2], B[2], B[2]],
|
|
517
|
+
[B[3], B[3], B[3]]]
|
|
518
|
+
sage: 3 * I.basis()[0]
|
|
519
|
+
3*B[0]
|
|
520
|
+
sage: 3*B[0] + B[1]*2
|
|
521
|
+
3*B[0] + 2*B[1]
|
|
522
|
+
|
|
523
|
+
sage: R = G.regular_representation(QQ)
|
|
524
|
+
sage: I = R.invariant_module()
|
|
525
|
+
sage: B = I.basis()
|
|
526
|
+
sage: [I.lift(b) for b in B]
|
|
527
|
+
[() + (1,2,3) + (1,3,2)]
|
|
528
|
+
sage: B[0]._acted_upon_(G((1,3,2)))
|
|
529
|
+
B[0]
|
|
530
|
+
sage: B[0]._acted_upon_(G((1,3,2)), self_on_left=True) is None
|
|
531
|
+
True
|
|
532
|
+
|
|
533
|
+
sage: R = G.regular_representation(QQ, side='right')
|
|
534
|
+
sage: I = R.invariant_module()
|
|
535
|
+
sage: B = I.basis()
|
|
536
|
+
sage: [I.lift(b) for b in B]
|
|
537
|
+
[() + (1,2,3) + (1,3,2)]
|
|
538
|
+
sage: g = G((1,3,2))
|
|
539
|
+
sage: B[0]._acted_upon_(g, self_on_left=True)
|
|
540
|
+
B[0]
|
|
541
|
+
sage: B[0]._acted_upon_(g, self_on_left=False) is None
|
|
542
|
+
True
|
|
543
|
+
|
|
544
|
+
sage: R = Representation(G, M, lambda g,x: M.monomial(g(x)), side='right')
|
|
545
|
+
sage: I = R.invariant_module()
|
|
546
|
+
sage: v = I.an_element(); v
|
|
547
|
+
2*B[0]
|
|
548
|
+
sage: v * g
|
|
549
|
+
2*B[0]
|
|
550
|
+
sage: [v * g for g in G.list()]
|
|
551
|
+
[2*B[0], 2*B[0], 2*B[0]]
|
|
552
|
+
sage: [b._acted_upon_(G((1,3,2)), self_on_left=True) for b in I.basis()]
|
|
553
|
+
[B[0]]
|
|
554
|
+
|
|
555
|
+
sage: def on_basis(g, m): return E.prod([E.monomial(FrozenBitset([g(j+1)-1])) for j in m]) # cyclically permute generators
|
|
556
|
+
sage: R = Representation(G, E, on_basis, category=Algebras(QQ).WithBasis().FiniteDimensional(), side='right')
|
|
557
|
+
sage: I = R.invariant_module()
|
|
558
|
+
sage: B = I.basis()
|
|
559
|
+
sage: [I.lift(b) for b in B]
|
|
560
|
+
[1, x0 + x1 + x2, x0*x1 - x0*x2 + x1*x2, x0*x1*x2]
|
|
561
|
+
sage: [[b * g for g in G] for b in B]
|
|
562
|
+
[[B[0], B[0], B[0]],
|
|
563
|
+
[B[1], B[1], B[1]],
|
|
564
|
+
[B[2], B[2], B[2]],
|
|
565
|
+
[B[3], B[3], B[3]]]
|
|
566
|
+
sage: 3 * B[0] + B[1] * 2
|
|
567
|
+
3*B[0] + 2*B[1]
|
|
568
|
+
"""
|
|
569
|
+
if scalar in self.parent()._semigroup and self_on_left == (self.parent()._side == 'right'):
|
|
570
|
+
return self
|
|
571
|
+
return super()._acted_upon_(scalar, self_on_left)
|
|
572
|
+
|
|
573
|
+
|
|
574
|
+
class FiniteDimensionalTwistedInvariantModule(SubmoduleWithBasis):
|
|
575
|
+
r"""
|
|
576
|
+
Construct the `\chi`-twisted invariant submodule of `M`.
|
|
577
|
+
|
|
578
|
+
When a group `G` acts on a module `M`, the `\chi`-*twisted invariant
|
|
579
|
+
submodule* of `M` is the isotypic component of the representation `M`
|
|
580
|
+
corresponding to the irreducible character `\chi`.
|
|
581
|
+
|
|
582
|
+
For more information, see [Sta1979]_.
|
|
583
|
+
|
|
584
|
+
INPUT:
|
|
585
|
+
|
|
586
|
+
- ``M`` -- a module in the category of
|
|
587
|
+
:class:`~sage.categories.finite_dimensional_modules_with_basis.FiniteDimensionalModulesWithBasis`
|
|
588
|
+
and whose base ring contains all the values passed to ``chi`` and `1/|G|`
|
|
589
|
+
|
|
590
|
+
- ``G`` -- a finitely generated group
|
|
591
|
+
|
|
592
|
+
- ``chi`` -- list/tuple of the character values of the irreducible representation
|
|
593
|
+
onto which you want to project. The order of values of `chi` must
|
|
594
|
+
agree with the order of ``G.conjugacy_classes()``
|
|
595
|
+
|
|
596
|
+
- ``action`` -- (default: ``operator.mul``) the action of ``G`` on ``M``
|
|
597
|
+
|
|
598
|
+
- ``side`` -- (default: ``'left'``) the side on which ``G`` acts
|
|
599
|
+
|
|
600
|
+
.. WARNING::
|
|
601
|
+
|
|
602
|
+
The current implementation does not check if ``chi`` is irreducible.
|
|
603
|
+
Passing character values of non-irreducible representations may lead
|
|
604
|
+
to mathematically incorrect results.
|
|
605
|
+
|
|
606
|
+
EXAMPLES:
|
|
607
|
+
|
|
608
|
+
Suppose that the symmetric group `S_3` acts on a four dimensional
|
|
609
|
+
vector space by permuting the first three coordinates only::
|
|
610
|
+
|
|
611
|
+
sage: M = CombinatorialFreeModule(QQ, [1,2,3,4], prefix='M')
|
|
612
|
+
sage: G = SymmetricGroup(3)
|
|
613
|
+
sage: action = lambda g,x: M.term(g(x))
|
|
614
|
+
|
|
615
|
+
The trivial representation corresponds to the usual invariant module,
|
|
616
|
+
so trying to create the twisted invariant module when there is no twist
|
|
617
|
+
returns a :class:`~sage.modules.with_basis.invariant.FiniteDimensionalInvariantModule`::
|
|
618
|
+
|
|
619
|
+
sage: chi = ClassFunction(G, (1,1,1))
|
|
620
|
+
sage: T = M.twisted_invariant_module(G, chi, action_on_basis=action)
|
|
621
|
+
sage: type(T)
|
|
622
|
+
<class 'sage.modules.with_basis.invariant.FiniteDimensionalInvariantModule_with_category'>
|
|
623
|
+
|
|
624
|
+
In this case, there are two copies of the trivial representation, one
|
|
625
|
+
coming from the first three coordinates and the other coming from the
|
|
626
|
+
fact that `S_3` does not touch the fourth coordinate::
|
|
627
|
+
|
|
628
|
+
sage: T.basis()
|
|
629
|
+
Finite family {0: B[0], 1: B[1]}
|
|
630
|
+
sage: [T.lift(b) for b in T.basis()]
|
|
631
|
+
[M[1] + M[2] + M[3], M[4]]
|
|
632
|
+
|
|
633
|
+
The character values of the standard representation are `2,0,-1`::
|
|
634
|
+
|
|
635
|
+
sage: chi = ClassFunction(G, [2,0,-1])
|
|
636
|
+
sage: T = M.twisted_invariant_module(G, chi, action_on_basis=action)
|
|
637
|
+
sage: type(T)
|
|
638
|
+
<class 'sage.modules.with_basis.invariant.FiniteDimensionalTwistedInvariantModule_with_category'>
|
|
639
|
+
sage: T.basis()
|
|
640
|
+
Finite family {0: B[0], 1: B[1]}
|
|
641
|
+
sage: [T.lift(b) for b in T.basis()]
|
|
642
|
+
[M[1] - M[3], M[2] - M[3]]
|
|
643
|
+
|
|
644
|
+
The permutation representation is the direct sum of the standard
|
|
645
|
+
representation with the trivial representation, and the action on the
|
|
646
|
+
basis element ``B[4]`` is itself a copy of the trivial representation,
|
|
647
|
+
so the sign representation does not appear in the decomposition::
|
|
648
|
+
|
|
649
|
+
sage: T = M.twisted_invariant_module(G, [1,-1,1], action_on_basis=action)
|
|
650
|
+
sage: T.basis()
|
|
651
|
+
Finite family {}
|
|
652
|
+
|
|
653
|
+
We can also get two copies of the standard representation by looking at
|
|
654
|
+
two copies of the permutation representation, found by reduction modulo
|
|
655
|
+
three on the indices of a six-dimensional module::
|
|
656
|
+
|
|
657
|
+
sage: M = CombinatorialFreeModule(QQ, [0,1,2,3,4,5], prefix='M')
|
|
658
|
+
sage: action = lambda g,x: M.term(g(x%3 + 1)-1 + (x>=3)*3)
|
|
659
|
+
sage: T = M.twisted_invariant_module(G, [2,0,-1], action_on_basis=action)
|
|
660
|
+
sage: T.basis()
|
|
661
|
+
Finite family {0: B[0], 1: B[1], 2: B[2], 3: B[3]}
|
|
662
|
+
sage: [T.lift(b) for b in T.basis()]
|
|
663
|
+
[M[0] - M[2], M[1] - M[2], M[3] - M[5], M[4] - M[5]]
|
|
664
|
+
|
|
665
|
+
sage: T = M.twisted_invariant_module(G, [1,1,1], action_on_basis=action)
|
|
666
|
+
sage: T.basis()
|
|
667
|
+
Finite family {0: B[0], 1: B[1]}
|
|
668
|
+
sage: [T.lift(b) for b in T.basis()]
|
|
669
|
+
[M[0] + M[1] + M[2], M[3] + M[4] + M[5]]
|
|
670
|
+
|
|
671
|
+
There are still no copies of the sign representation::
|
|
672
|
+
|
|
673
|
+
sage: T = M.twisted_invariant_module(G, [1,-1,1], action_on_basis=action)
|
|
674
|
+
sage: T.basis()
|
|
675
|
+
Finite family {}
|
|
676
|
+
|
|
677
|
+
The trivial representation also contains no copies of the sign
|
|
678
|
+
representation::
|
|
679
|
+
|
|
680
|
+
sage: R = G.trivial_representation(QQ)
|
|
681
|
+
sage: T = R.twisted_invariant_module([1,-1,1])
|
|
682
|
+
sage: T.basis()
|
|
683
|
+
Finite family {}
|
|
684
|
+
|
|
685
|
+
The regular representation contains two copies of the standard
|
|
686
|
+
representation and one copy each of the trivial and the sign::
|
|
687
|
+
|
|
688
|
+
sage: R = G.regular_representation(QQ)
|
|
689
|
+
sage: std = R.twisted_invariant_module([2,0,-1])
|
|
690
|
+
sage: std.basis()
|
|
691
|
+
Finite family {0: B[0], 1: B[1], 2: B[2], 3: B[3]}
|
|
692
|
+
sage: [std.lift(b) for b in std.basis()]
|
|
693
|
+
[() - (1,2,3), -(1,2,3) + (1,3,2), (2,3) - (1,2), -(1,2) + (1,3)]
|
|
694
|
+
|
|
695
|
+
sage: triv = R.twisted_invariant_module([1,1,1])
|
|
696
|
+
sage: triv.basis()
|
|
697
|
+
Finite family {0: B[0]}
|
|
698
|
+
sage: [triv.lift(b) for b in triv.basis()]
|
|
699
|
+
[() + (2,3) + (1,2) + (1,2,3) + (1,3,2) + (1,3)]
|
|
700
|
+
|
|
701
|
+
sage: sgn = R.twisted_invariant_module([1,-1,1])
|
|
702
|
+
sage: sgn.basis()
|
|
703
|
+
Finite family {0: B[0]}
|
|
704
|
+
sage: [sgn.lift(b) for b in sgn.basis()]
|
|
705
|
+
[() - (2,3) - (1,2) + (1,2,3) + (1,3,2) - (1,3)]
|
|
706
|
+
|
|
707
|
+
For the next example, we construct a twisted invariant by the character
|
|
708
|
+
for the 2 dimensional representation of `S_3` on the natural action on
|
|
709
|
+
the exterior algebra. While `S_3` acts by automorphisms, the twisted
|
|
710
|
+
invariants do not form an algebra in this case::
|
|
711
|
+
|
|
712
|
+
sage: G = SymmetricGroup(3); G.rename('S3')
|
|
713
|
+
sage: E = algebras.Exterior(QQ, 'x', 3); E.rename('E')
|
|
714
|
+
sage: def action(g, m): return E.prod([E.monomial(FrozenBitset([g(j+1)-1])) for j in m])
|
|
715
|
+
sage: from sage.modules.with_basis.representation import Representation
|
|
716
|
+
sage: EA = Representation(G, E, action, category=Algebras(QQ).WithBasis().FiniteDimensional())
|
|
717
|
+
sage: T = EA.twisted_invariant_module([2,0,-1])
|
|
718
|
+
sage: t = T.an_element(); t
|
|
719
|
+
2*B[0] + 2*B[1] + 3*B[2]
|
|
720
|
+
|
|
721
|
+
We can still get meaningful information about the product
|
|
722
|
+
by taking the product in the ambient space::
|
|
723
|
+
|
|
724
|
+
sage: T.lift(t) * T.lift(t)
|
|
725
|
+
-36*x0*x1*x2
|
|
726
|
+
|
|
727
|
+
We can see this does not lie in this twisted invariant algebra::
|
|
728
|
+
|
|
729
|
+
sage: T.retract(T.lift(t) * T.lift(t))
|
|
730
|
+
Traceback (most recent call last):
|
|
731
|
+
...
|
|
732
|
+
ValueError: -36*x0*x1*x2 is not in the image
|
|
733
|
+
|
|
734
|
+
sage: [T.lift(b) for b in T.basis()]
|
|
735
|
+
[x0 - x2, x1 - x2, x0*x1 - x1*x2, x0*x2 + x1*x2]
|
|
736
|
+
|
|
737
|
+
It happens to be in the trivial isotypic component (equivalently in
|
|
738
|
+
the usual invariant algebra) but Sage does not know this.
|
|
739
|
+
|
|
740
|
+
::
|
|
741
|
+
|
|
742
|
+
sage: G.rename(); E.rename() # reset the names
|
|
743
|
+
|
|
744
|
+
.. TODO::
|
|
745
|
+
|
|
746
|
+
- Replace ``G`` by ``S`` in :class:`~sage.categories.finitely_generated_semigroups.FinitelyGeneratedSemigroups`
|
|
747
|
+
- Allow for ``chi`` to be a :class:`~sage.modules.with_basis.representation.Representation`
|
|
748
|
+
- Add check for irreducibility of ``chi``
|
|
749
|
+
"""
|
|
750
|
+
|
|
751
|
+
@staticmethod
|
|
752
|
+
def __classcall_private__(cls, M, G, chi,
|
|
753
|
+
action=operator.mul, side='left', **kwargs):
|
|
754
|
+
r"""
|
|
755
|
+
TESTS:
|
|
756
|
+
|
|
757
|
+
Check that it works for lists::
|
|
758
|
+
|
|
759
|
+
sage: M = CombinatorialFreeModule(QQ, [1,2,3])
|
|
760
|
+
sage: G = SymmetricGroup(3)
|
|
761
|
+
sage: def action(g, x): return M.term(g(x))
|
|
762
|
+
sage: T = M.twisted_invariant_module(G, [2,0,-1], action_on_basis=action)
|
|
763
|
+
|
|
764
|
+
Check that it works for tuples::
|
|
765
|
+
|
|
766
|
+
sage: T2 = M.twisted_invariant_module(G, (2,0,-1), action_on_basis=action)
|
|
767
|
+
sage: T is T2
|
|
768
|
+
True
|
|
769
|
+
|
|
770
|
+
Check that it works for class functions::
|
|
771
|
+
|
|
772
|
+
sage: chi = ClassFunction(G, [2,0,-1])
|
|
773
|
+
sage: T3 = M.twisted_invariant_module(G, chi, action_on_basis=action)
|
|
774
|
+
sage: T is T3
|
|
775
|
+
True
|
|
776
|
+
|
|
777
|
+
Check that it works when the character values are not an instance of
|
|
778
|
+
:class:`~sage.rings.integer.Integer`::
|
|
779
|
+
|
|
780
|
+
sage: chi = [QQ(2), QQ(0), QQ(-1)]
|
|
781
|
+
sage: T4 = M.twisted_invariant_module(G, chi, action_on_basis=action)
|
|
782
|
+
sage: T is T4
|
|
783
|
+
True
|
|
784
|
+
|
|
785
|
+
Check that the trivial character returns an instance of
|
|
786
|
+
:class:`~sage.modules.with_basis.invariant.FiniteDimensionalInvariantModule`::
|
|
787
|
+
|
|
788
|
+
sage: chi = [1, 1, 1] # check for list
|
|
789
|
+
sage: T = M.twisted_invariant_module(G, chi, action_on_basis=action)
|
|
790
|
+
sage: type(T)
|
|
791
|
+
<class 'sage.modules.with_basis.invariant.FiniteDimensionalInvariantModule_with_category'>
|
|
792
|
+
|
|
793
|
+
sage: chi = (1, 1, 1) # check for tuple
|
|
794
|
+
sage: T = M.twisted_invariant_module(G, chi, action_on_basis=action)
|
|
795
|
+
sage: type(T)
|
|
796
|
+
<class 'sage.modules.with_basis.invariant.FiniteDimensionalInvariantModule_with_category'>
|
|
797
|
+
|
|
798
|
+
sage: chi = ClassFunction(G, [1,1,1]) # check for class function
|
|
799
|
+
sage: T = M.twisted_invariant_module(G, chi, action_on_basis=action)
|
|
800
|
+
sage: type(T)
|
|
801
|
+
<class 'sage.modules.with_basis.invariant.FiniteDimensionalInvariantModule_with_category'>
|
|
802
|
+
|
|
803
|
+
Check the :exc:`ValueError`::
|
|
804
|
+
|
|
805
|
+
sage: T = M.twisted_invariant_module(G, "ichigo", action_on_basis=action)
|
|
806
|
+
Traceback (most recent call last):
|
|
807
|
+
...
|
|
808
|
+
ValueError: chi must be a list/tuple or a class function of the group G
|
|
809
|
+
"""
|
|
810
|
+
from sage.groups.class_function import ClassFunction, ClassFunction_libgap
|
|
811
|
+
from sage.libs.gap.libgap import libgap
|
|
812
|
+
|
|
813
|
+
if isinstance(chi, (list, tuple)):
|
|
814
|
+
chi = ClassFunction(G, libgap(chi))
|
|
815
|
+
elif not isinstance(chi, ClassFunction_libgap):
|
|
816
|
+
raise ValueError("chi must be a list/tuple or a class function of the group G")
|
|
817
|
+
|
|
818
|
+
try:
|
|
819
|
+
is_trivial = all(chi(next(iter(conj))) == 1 for conj in G.conjugacy_classes())
|
|
820
|
+
except AttributeError: # to handle ReflectionGroups
|
|
821
|
+
is_trivial = all(chi(G(next(iter(conj)))) == 1 for conj in G.conjugacy_classes())
|
|
822
|
+
|
|
823
|
+
if is_trivial:
|
|
824
|
+
action_on_basis = kwargs.pop('action_on_basis', None)
|
|
825
|
+
if action_on_basis is not None:
|
|
826
|
+
return M.invariant_module(G, action_on_basis=action_on_basis)
|
|
827
|
+
return M.invariant_module(G, action=action)
|
|
828
|
+
|
|
829
|
+
return super().__classcall__(cls, M, G, chi, action=operator.mul,
|
|
830
|
+
side='left', **kwargs)
|
|
831
|
+
|
|
832
|
+
def __init__(self, M, G, chi, action=operator.mul, side='left', **kwargs):
|
|
833
|
+
r"""
|
|
834
|
+
Initialize ``self``.
|
|
835
|
+
|
|
836
|
+
EXAMPLES:
|
|
837
|
+
|
|
838
|
+
As a first example we will consider the permutation representation
|
|
839
|
+
of `S_3`::
|
|
840
|
+
|
|
841
|
+
sage: M = CombinatorialFreeModule(QQ, [1,2,3], prefix='M');
|
|
842
|
+
sage: G = SymmetricGroup(3); G.conjugacy_classes()
|
|
843
|
+
[Conjugacy class of cycle type [1, 1, 1] in Symmetric group of order 3! as a permutation group,
|
|
844
|
+
Conjugacy class of cycle type [2, 1] in Symmetric group of order 3! as a permutation group,
|
|
845
|
+
Conjugacy class of cycle type [3] in Symmetric group of order 3! as a permutation group]
|
|
846
|
+
sage: from sage.groups.class_function import ClassFunction
|
|
847
|
+
sage: chi = ClassFunction(G, [2,0,-1]) # the standard representation character values
|
|
848
|
+
sage: def action(g, x): return M.term(g(x))
|
|
849
|
+
sage: import __main__
|
|
850
|
+
sage: __main__.action = action
|
|
851
|
+
sage: T = M.twisted_invariant_module(G, chi, action_on_basis=action)
|
|
852
|
+
sage: TestSuite(T).run()
|
|
853
|
+
|
|
854
|
+
We know that the permutation representation decomposes as a direct
|
|
855
|
+
sum of one copy of the standard representation which is two-dimensional
|
|
856
|
+
and one copy of the trivial representation::
|
|
857
|
+
|
|
858
|
+
sage: T.basis()
|
|
859
|
+
Finite family {0: B[0], 1: B[1]}
|
|
860
|
+
sage: [T.lift(b) for b in T.basis()]
|
|
861
|
+
[M[1] - M[3], M[2] - M[3]]
|
|
862
|
+
"""
|
|
863
|
+
|
|
864
|
+
if G not in FinitelyGeneratedSemigroups():
|
|
865
|
+
raise ValueError(f"{G} is not finitely generated")
|
|
866
|
+
if M not in FiniteDimensionalModulesWithBasis:
|
|
867
|
+
raise ValueError(f"{M} is not a finite dimensional module with a distinguished basis")
|
|
868
|
+
|
|
869
|
+
self._chi = chi
|
|
870
|
+
self._group = G
|
|
871
|
+
self._action = action
|
|
872
|
+
self._side = side
|
|
873
|
+
|
|
874
|
+
# define a private action to deal
|
|
875
|
+
# with sidedness issues in the action.
|
|
876
|
+
if side == 'left':
|
|
877
|
+
self.__sided_action__ = action
|
|
878
|
+
elif side == 'right':
|
|
879
|
+
# flip the sides since the second argument
|
|
880
|
+
# to action should be the group element
|
|
881
|
+
def __sided_action__(g, x):
|
|
882
|
+
return action(x, g)
|
|
883
|
+
self.__sided_action__ = __sided_action__
|
|
884
|
+
else:
|
|
885
|
+
raise ValueError("side must either be 'left' or 'right'")
|
|
886
|
+
|
|
887
|
+
proj_matrix = Matrix(M.dimension()) # initialize the zero-matrix
|
|
888
|
+
for g in self._group:
|
|
889
|
+
proj_matrix += self._chi(g)*Matrix((self.__sided_action__(g, b)).to_vector() for b in M.basis())
|
|
890
|
+
|
|
891
|
+
n = self._chi(self._group.identity()) # chi(1) is the dimension
|
|
892
|
+
g = self._group.order()
|
|
893
|
+
|
|
894
|
+
self._projection_matrix = (n/g)*proj_matrix
|
|
895
|
+
|
|
896
|
+
self._project_ambient = M.module_morphism(matrix=self._projection_matrix,
|
|
897
|
+
codomain=M)
|
|
898
|
+
|
|
899
|
+
category = kwargs.pop("category", M.category().Subobjects())
|
|
900
|
+
|
|
901
|
+
# Give the kernel of the map `\pi(x)-x` to determine when `x` lies
|
|
902
|
+
# within the isotypic component of `R`.
|
|
903
|
+
|
|
904
|
+
def proj_difference(g, x):
|
|
905
|
+
return self._project_ambient(x) - x
|
|
906
|
+
|
|
907
|
+
basis = M.annihilator_basis(M.basis(),
|
|
908
|
+
action=proj_difference,
|
|
909
|
+
side='left')
|
|
910
|
+
|
|
911
|
+
super().__init__(Family(basis),
|
|
912
|
+
support_order=M._compute_support_order(basis),
|
|
913
|
+
ambient=M,
|
|
914
|
+
unitriangular=False,
|
|
915
|
+
category=category,
|
|
916
|
+
**kwargs)
|
|
917
|
+
|
|
918
|
+
def _repr_(self):
|
|
919
|
+
r"""
|
|
920
|
+
Return a string representation of ``self``.
|
|
921
|
+
|
|
922
|
+
EXAMPLES::
|
|
923
|
+
|
|
924
|
+
sage: G = CyclicPermutationGroup(3)
|
|
925
|
+
sage: M = CombinatorialFreeModule(QQ, [1,2,3], prefix='M')
|
|
926
|
+
sage: action = lambda g, m: M.monomial(g(m)) # cyclically permute coordinates
|
|
927
|
+
sage: M.twisted_invariant_module(G, [2,0,-1], action_on_basis=action)
|
|
928
|
+
Twist of (Cyclic group of order 3 as a permutation group)-invariant submodule of
|
|
929
|
+
Free module generated by {1, 2, 3} over Rational Field by character [2, 0, -1]
|
|
930
|
+
"""
|
|
931
|
+
M = self._ambient
|
|
932
|
+
if isinstance(self._ambient, Representation):
|
|
933
|
+
M = M._module
|
|
934
|
+
return f"Twist of ({self._group})-invariant submodule of {M} by character {self._chi.values()}"
|
|
935
|
+
|
|
936
|
+
def project(self, x):
|
|
937
|
+
r"""
|
|
938
|
+
Project ``x`` in the ambient module onto ``self``.
|
|
939
|
+
|
|
940
|
+
EXAMPLES:
|
|
941
|
+
|
|
942
|
+
The standard representation is the orthogonal complement
|
|
943
|
+
of the trivial representation inside of the permutation
|
|
944
|
+
representation, so the basis for the trivial representation
|
|
945
|
+
projects to `0`::
|
|
946
|
+
|
|
947
|
+
sage: M = CombinatorialFreeModule(QQ, [1,2,3]); M.rename('M')
|
|
948
|
+
sage: B = M.basis()
|
|
949
|
+
sage: G = SymmetricGroup(3); G.rename('S3')
|
|
950
|
+
sage: def action(g, x): return M.term(g(x))
|
|
951
|
+
sage: T = M.twisted_invariant_module(G, [2,0,-1], action_on_basis=action)
|
|
952
|
+
sage: m = B[1] + B[2] + B[3]
|
|
953
|
+
sage: parent(m)
|
|
954
|
+
M
|
|
955
|
+
sage: t = T.project(m); t
|
|
956
|
+
0
|
|
957
|
+
sage: parent(t)
|
|
958
|
+
Twist of (S3)-invariant submodule of M by character [2, 0, -1]
|
|
959
|
+
|
|
960
|
+
sage: G.rename(); M.rename() # reset names
|
|
961
|
+
"""
|
|
962
|
+
return self.retract(self.project_ambient(x))
|
|
963
|
+
|
|
964
|
+
def project_ambient(self, x):
|
|
965
|
+
r"""
|
|
966
|
+
Project ``x`` in the ambient representation onto the submodule of the
|
|
967
|
+
ambient representation to which ``self`` is isomorphic as a module.
|
|
968
|
+
|
|
969
|
+
.. NOTE::
|
|
970
|
+
|
|
971
|
+
The image of ``self.project_ambient`` is not in ``self`` but
|
|
972
|
+
rather is in ``self.ambient()``.
|
|
973
|
+
|
|
974
|
+
EXAMPLES::
|
|
975
|
+
|
|
976
|
+
sage: M = CombinatorialFreeModule(QQ, [1,2,3]); M.rename('M')
|
|
977
|
+
sage: B = M.basis()
|
|
978
|
+
sage: G = SymmetricGroup(3); G.rename('S3')
|
|
979
|
+
sage: def action(g, x): return M.term(g(x))
|
|
980
|
+
sage: T = M.twisted_invariant_module(G, [2,0,-1], action_on_basis=action)
|
|
981
|
+
|
|
982
|
+
To compare with ``self.project``, we can inspect the parents.
|
|
983
|
+
The image of ``self.project`` is in ``self``, while the image
|
|
984
|
+
of ``self.project_ambient`` is in ``self._ambient``::
|
|
985
|
+
|
|
986
|
+
sage: t = T.project(B[1] + B[2] + B[3]); t
|
|
987
|
+
0
|
|
988
|
+
sage: parent(t)
|
|
989
|
+
Twist of (S3)-invariant submodule of M by character [2, 0, -1]
|
|
990
|
+
sage: s = T.project_ambient(B[1] + B[2] + B[3]); s
|
|
991
|
+
0
|
|
992
|
+
sage: parent(s)
|
|
993
|
+
Representation of S3 indexed by {1, 2, 3} over Rational Field
|
|
994
|
+
|
|
995
|
+
Note that because of the construction of ``T``, ``self._ambient``
|
|
996
|
+
is an instance of
|
|
997
|
+
:class:`~sage.modules.with_basis.representation.Representation`,
|
|
998
|
+
but you still may pass elements of ``M``, which is an instance of
|
|
999
|
+
:class:`~sage.combinat.free_module.CombinatorialFreeModule`,
|
|
1000
|
+
because the underlying ``Representation`` is built off of ``M``
|
|
1001
|
+
and we can canonically construct elements of the ``Representation``
|
|
1002
|
+
from elements of ``M``.
|
|
1003
|
+
|
|
1004
|
+
::
|
|
1005
|
+
|
|
1006
|
+
sage: G.rename(); M.rename() # reset names
|
|
1007
|
+
"""
|
|
1008
|
+
if (isinstance(self._ambient, Representation)
|
|
1009
|
+
and x.parent() is self._ambient._module):
|
|
1010
|
+
x = self._ambient._element_constructor_(x)
|
|
1011
|
+
return self._project_ambient(x)
|
|
1012
|
+
|
|
1013
|
+
def projection_matrix(self):
|
|
1014
|
+
r"""
|
|
1015
|
+
Return the matrix defining the projection map from
|
|
1016
|
+
the ambient representation onto ``self``.
|
|
1017
|
+
|
|
1018
|
+
EXAMPLES::
|
|
1019
|
+
|
|
1020
|
+
sage: M = CombinatorialFreeModule(QQ, [1,2,3])
|
|
1021
|
+
sage: def action(g, x): return(M.term(g(x)))
|
|
1022
|
+
sage: G = SymmetricGroup(3)
|
|
1023
|
+
|
|
1024
|
+
If the matrix `A` has columns form a basis for
|
|
1025
|
+
the subspace onto which we are trying to project,
|
|
1026
|
+
then we can find the projection matrix via the
|
|
1027
|
+
formula `P = A (A^T A)^{-1} A^T`. Recall that the
|
|
1028
|
+
standard representation twisted invariant has basis
|
|
1029
|
+
``(B[1] - B[3], B[2] - B[3])``, hence::
|
|
1030
|
+
|
|
1031
|
+
sage: A = Matrix([[1,0],[0,1],[-1,-1]])
|
|
1032
|
+
sage: P = A*(A.transpose()*A).inverse()*A.transpose()
|
|
1033
|
+
sage: T = M.twisted_invariant_module(G, [2,0,-1], action_on_basis=action)
|
|
1034
|
+
sage: P == T.projection_matrix()
|
|
1035
|
+
True
|
|
1036
|
+
|
|
1037
|
+
Moreover, since there is no component of the sign
|
|
1038
|
+
representation in this representation, the projection
|
|
1039
|
+
matrix is just the zero matrix::
|
|
1040
|
+
|
|
1041
|
+
sage: T = M.twisted_invariant_module(G, [1,-1,1], action_on_basis=action)
|
|
1042
|
+
sage: T.projection_matrix()
|
|
1043
|
+
[0 0 0]
|
|
1044
|
+
[0 0 0]
|
|
1045
|
+
[0 0 0]
|
|
1046
|
+
"""
|
|
1047
|
+
return self._projection_matrix
|
|
1048
|
+
|
|
1049
|
+
class Element(SubmoduleWithBasis.Element):
|
|
1050
|
+
def _acted_upon_(self, scalar, self_on_left=False):
|
|
1051
|
+
r"""
|
|
1052
|
+
Return the action of ``scalar`` on ``self``.
|
|
1053
|
+
|
|
1054
|
+
EXAMPLES::
|
|
1055
|
+
|
|
1056
|
+
sage: G = SymmetricGroup(3)
|
|
1057
|
+
sage: R = G.regular_representation(QQ)
|
|
1058
|
+
sage: T = R.twisted_invariant_module([2,0,-1])
|
|
1059
|
+
sage: t = T.an_element()
|
|
1060
|
+
sage: 5 * t
|
|
1061
|
+
10*B[0] + 10*B[1] + 15*B[2]
|
|
1062
|
+
sage: t * -2/3
|
|
1063
|
+
-4/3*B[0] - 4/3*B[1] - 2*B[2]
|
|
1064
|
+
sage: [g * t for g in G]
|
|
1065
|
+
[2*B[0] + 2*B[1] + 3*B[2],
|
|
1066
|
+
-4*B[0] + 2*B[1] - 3*B[3],
|
|
1067
|
+
2*B[0] - 4*B[1] - 3*B[2] + 3*B[3],
|
|
1068
|
+
3*B[0] + 2*B[2] + 2*B[3],
|
|
1069
|
+
-3*B[1] - 4*B[2] + 2*B[3],
|
|
1070
|
+
-3*B[0] + 3*B[1] + 2*B[2] - 4*B[3]]
|
|
1071
|
+
"""
|
|
1072
|
+
P = self.parent()
|
|
1073
|
+
if scalar in P._group and self_on_left == (P._side == 'right'):
|
|
1074
|
+
return P.retract(scalar * P.lift(self))
|
|
1075
|
+
return super()._acted_upon_(scalar, self_on_left)
|