passagemath-modules 10.6.31__cp314-cp314-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-modules might be problematic. Click here for more details.
- passagemath_modules-10.6.31.dist-info/METADATA +281 -0
- passagemath_modules-10.6.31.dist-info/RECORD +807 -0
- passagemath_modules-10.6.31.dist-info/WHEEL +6 -0
- passagemath_modules-10.6.31.dist-info/top_level.txt +2 -0
- passagemath_modules.dylibs/libgfortran.5.dylib +0 -0
- passagemath_modules.dylibs/libgmp.10.dylib +0 -0
- passagemath_modules.dylibs/libgsl.28.dylib +0 -0
- passagemath_modules.dylibs/libmpc.3.dylib +0 -0
- passagemath_modules.dylibs/libmpfr.6.dylib +0 -0
- passagemath_modules.dylibs/libopenblasp-r0.3.29.dylib +0 -0
- passagemath_modules.dylibs/libquadmath.0.dylib +0 -0
- sage/algebras/all__sagemath_modules.py +20 -0
- sage/algebras/catalog.py +148 -0
- sage/algebras/clifford_algebra.py +3107 -0
- sage/algebras/clifford_algebra_element.cpython-314-darwin.so +0 -0
- sage/algebras/clifford_algebra_element.pxd +16 -0
- sage/algebras/clifford_algebra_element.pyx +997 -0
- sage/algebras/commutative_dga.py +4252 -0
- sage/algebras/exterior_algebra_groebner.cpython-314-darwin.so +0 -0
- sage/algebras/exterior_algebra_groebner.pxd +55 -0
- sage/algebras/exterior_algebra_groebner.pyx +727 -0
- sage/algebras/finite_dimensional_algebras/all.py +2 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra.py +1029 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.cpython-314-darwin.so +0 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pxd +12 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pyx +706 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_ideal.py +196 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_morphism.py +255 -0
- sage/algebras/finite_gca.py +528 -0
- sage/algebras/group_algebra.py +232 -0
- sage/algebras/lie_algebras/abelian.py +197 -0
- sage/algebras/lie_algebras/affine_lie_algebra.py +1213 -0
- sage/algebras/lie_algebras/all.py +25 -0
- sage/algebras/lie_algebras/all__sagemath_modules.py +1 -0
- sage/algebras/lie_algebras/bch.py +177 -0
- sage/algebras/lie_algebras/bgg_dual_module.py +1184 -0
- sage/algebras/lie_algebras/bgg_resolution.py +232 -0
- sage/algebras/lie_algebras/center_uea.py +767 -0
- sage/algebras/lie_algebras/classical_lie_algebra.py +2516 -0
- sage/algebras/lie_algebras/examples.py +683 -0
- sage/algebras/lie_algebras/free_lie_algebra.py +973 -0
- sage/algebras/lie_algebras/heisenberg.py +820 -0
- sage/algebras/lie_algebras/lie_algebra.py +1562 -0
- sage/algebras/lie_algebras/lie_algebra_element.cpython-314-darwin.so +0 -0
- sage/algebras/lie_algebras/lie_algebra_element.pxd +68 -0
- sage/algebras/lie_algebras/lie_algebra_element.pyx +2122 -0
- sage/algebras/lie_algebras/morphism.py +661 -0
- sage/algebras/lie_algebras/nilpotent_lie_algebra.py +457 -0
- sage/algebras/lie_algebras/onsager.py +1324 -0
- sage/algebras/lie_algebras/poincare_birkhoff_witt.py +816 -0
- sage/algebras/lie_algebras/quotient.py +462 -0
- sage/algebras/lie_algebras/rank_two_heisenberg_virasoro.py +355 -0
- sage/algebras/lie_algebras/representation.py +1040 -0
- sage/algebras/lie_algebras/structure_coefficients.py +459 -0
- sage/algebras/lie_algebras/subalgebra.py +967 -0
- sage/algebras/lie_algebras/symplectic_derivation.py +289 -0
- sage/algebras/lie_algebras/verma_module.py +1630 -0
- sage/algebras/lie_algebras/virasoro.py +1186 -0
- sage/algebras/octonion_algebra.cpython-314-darwin.so +0 -0
- sage/algebras/octonion_algebra.pxd +20 -0
- sage/algebras/octonion_algebra.pyx +987 -0
- sage/algebras/orlik_solomon.py +907 -0
- sage/algebras/orlik_terao.py +779 -0
- sage/algebras/steenrod/all.py +7 -0
- sage/algebras/steenrod/steenrod_algebra.py +4258 -0
- sage/algebras/steenrod/steenrod_algebra_bases.py +1179 -0
- sage/algebras/steenrod/steenrod_algebra_misc.py +1167 -0
- sage/algebras/steenrod/steenrod_algebra_mult.py +954 -0
- sage/algebras/weyl_algebra.py +1126 -0
- sage/all__sagemath_modules.py +62 -0
- sage/calculus/all__sagemath_modules.py +19 -0
- sage/calculus/expr.py +205 -0
- sage/calculus/integration.cpython-314-darwin.so +0 -0
- sage/calculus/integration.pyx +698 -0
- sage/calculus/interpolation.cpython-314-darwin.so +0 -0
- sage/calculus/interpolation.pxd +13 -0
- sage/calculus/interpolation.pyx +387 -0
- sage/calculus/interpolators.cpython-314-darwin.so +0 -0
- sage/calculus/interpolators.pyx +326 -0
- sage/calculus/ode.cpython-314-darwin.so +0 -0
- sage/calculus/ode.pxd +5 -0
- sage/calculus/ode.pyx +610 -0
- sage/calculus/riemann.cpython-314-darwin.so +0 -0
- sage/calculus/riemann.pyx +1521 -0
- sage/calculus/test_sympy.py +201 -0
- sage/calculus/transforms/all.py +7 -0
- sage/calculus/transforms/dft.py +844 -0
- sage/calculus/transforms/dwt.cpython-314-darwin.so +0 -0
- sage/calculus/transforms/dwt.pxd +7 -0
- sage/calculus/transforms/dwt.pyx +160 -0
- sage/calculus/transforms/fft.cpython-314-darwin.so +0 -0
- sage/calculus/transforms/fft.pxd +12 -0
- sage/calculus/transforms/fft.pyx +487 -0
- sage/calculus/wester.py +662 -0
- sage/coding/abstract_code.py +1108 -0
- sage/coding/ag_code.py +868 -0
- sage/coding/ag_code_decoders.cpython-314-darwin.so +0 -0
- sage/coding/ag_code_decoders.pyx +2639 -0
- sage/coding/all.py +15 -0
- sage/coding/bch_code.py +494 -0
- sage/coding/binary_code.cpython-314-darwin.so +0 -0
- sage/coding/binary_code.pxd +124 -0
- sage/coding/binary_code.pyx +4139 -0
- sage/coding/bounds_catalog.py +43 -0
- sage/coding/channel.py +819 -0
- sage/coding/channels_catalog.py +29 -0
- sage/coding/code_bounds.py +755 -0
- sage/coding/code_constructions.py +804 -0
- sage/coding/codes_catalog.py +111 -0
- sage/coding/cyclic_code.py +1329 -0
- sage/coding/databases.py +316 -0
- sage/coding/decoder.py +373 -0
- sage/coding/decoders_catalog.py +88 -0
- sage/coding/delsarte_bounds.py +709 -0
- sage/coding/encoder.py +390 -0
- sage/coding/encoders_catalog.py +64 -0
- sage/coding/extended_code.py +468 -0
- sage/coding/gabidulin_code.py +1058 -0
- sage/coding/golay_code.py +404 -0
- sage/coding/goppa_code.py +441 -0
- sage/coding/grs_code.py +2371 -0
- sage/coding/guava.py +107 -0
- sage/coding/guruswami_sudan/all.py +1 -0
- sage/coding/guruswami_sudan/gs_decoder.py +897 -0
- sage/coding/guruswami_sudan/interpolation.py +409 -0
- sage/coding/guruswami_sudan/utils.py +176 -0
- sage/coding/hamming_code.py +176 -0
- sage/coding/information_set_decoder.py +1032 -0
- sage/coding/kasami_codes.cpython-314-darwin.so +0 -0
- sage/coding/kasami_codes.pyx +351 -0
- sage/coding/linear_code.py +3067 -0
- sage/coding/linear_code_no_metric.py +1354 -0
- sage/coding/linear_rank_metric.py +961 -0
- sage/coding/parity_check_code.py +353 -0
- sage/coding/punctured_code.py +719 -0
- sage/coding/reed_muller_code.py +999 -0
- sage/coding/self_dual_codes.py +942 -0
- sage/coding/source_coding/all.py +2 -0
- sage/coding/source_coding/huffman.py +553 -0
- sage/coding/subfield_subcode.py +423 -0
- sage/coding/two_weight_db.py +399 -0
- sage/combinat/all__sagemath_modules.py +7 -0
- sage/combinat/cartesian_product.py +347 -0
- sage/combinat/family.py +11 -0
- sage/combinat/free_module.py +1977 -0
- sage/combinat/root_system/all.py +147 -0
- sage/combinat/root_system/ambient_space.py +527 -0
- sage/combinat/root_system/associahedron.py +471 -0
- sage/combinat/root_system/braid_move_calculator.py +143 -0
- sage/combinat/root_system/braid_orbit.cpython-314-darwin.so +0 -0
- sage/combinat/root_system/braid_orbit.pyx +144 -0
- sage/combinat/root_system/branching_rules.py +2301 -0
- sage/combinat/root_system/cartan_matrix.py +1245 -0
- sage/combinat/root_system/cartan_type.py +3069 -0
- sage/combinat/root_system/coxeter_group.py +162 -0
- sage/combinat/root_system/coxeter_matrix.py +1261 -0
- sage/combinat/root_system/coxeter_type.py +681 -0
- sage/combinat/root_system/dynkin_diagram.py +900 -0
- sage/combinat/root_system/extended_affine_weyl_group.py +2993 -0
- sage/combinat/root_system/fundamental_group.py +795 -0
- sage/combinat/root_system/hecke_algebra_representation.py +1203 -0
- sage/combinat/root_system/integrable_representations.py +1227 -0
- sage/combinat/root_system/non_symmetric_macdonald_polynomials.py +1965 -0
- sage/combinat/root_system/pieri_factors.py +1147 -0
- sage/combinat/root_system/plot.py +1615 -0
- sage/combinat/root_system/root_lattice_realization_algebras.py +1214 -0
- sage/combinat/root_system/root_lattice_realizations.py +4628 -0
- sage/combinat/root_system/root_space.py +487 -0
- sage/combinat/root_system/root_system.py +882 -0
- sage/combinat/root_system/type_A.py +348 -0
- sage/combinat/root_system/type_A_affine.py +227 -0
- sage/combinat/root_system/type_A_infinity.py +241 -0
- sage/combinat/root_system/type_B.py +347 -0
- sage/combinat/root_system/type_BC_affine.py +287 -0
- sage/combinat/root_system/type_B_affine.py +216 -0
- sage/combinat/root_system/type_C.py +317 -0
- sage/combinat/root_system/type_C_affine.py +188 -0
- sage/combinat/root_system/type_D.py +357 -0
- sage/combinat/root_system/type_D_affine.py +208 -0
- sage/combinat/root_system/type_E.py +641 -0
- sage/combinat/root_system/type_E_affine.py +231 -0
- sage/combinat/root_system/type_F.py +387 -0
- sage/combinat/root_system/type_F_affine.py +137 -0
- sage/combinat/root_system/type_G.py +293 -0
- sage/combinat/root_system/type_G_affine.py +132 -0
- sage/combinat/root_system/type_H.py +105 -0
- sage/combinat/root_system/type_I.py +110 -0
- sage/combinat/root_system/type_Q.py +150 -0
- sage/combinat/root_system/type_affine.py +509 -0
- sage/combinat/root_system/type_dual.py +704 -0
- sage/combinat/root_system/type_folded.py +301 -0
- sage/combinat/root_system/type_marked.py +748 -0
- sage/combinat/root_system/type_reducible.py +601 -0
- sage/combinat/root_system/type_relabel.py +730 -0
- sage/combinat/root_system/type_super_A.py +837 -0
- sage/combinat/root_system/weight_lattice_realizations.py +1188 -0
- sage/combinat/root_system/weight_space.py +639 -0
- sage/combinat/root_system/weyl_characters.py +2238 -0
- sage/crypto/__init__.py +4 -0
- sage/crypto/all.py +28 -0
- sage/crypto/block_cipher/all.py +7 -0
- sage/crypto/block_cipher/des.py +1065 -0
- sage/crypto/block_cipher/miniaes.py +2171 -0
- sage/crypto/block_cipher/present.py +909 -0
- sage/crypto/block_cipher/sdes.py +1527 -0
- sage/crypto/boolean_function.cpython-314-darwin.so +0 -0
- sage/crypto/boolean_function.pxd +10 -0
- sage/crypto/boolean_function.pyx +1487 -0
- sage/crypto/cipher.py +78 -0
- sage/crypto/classical.py +3668 -0
- sage/crypto/classical_cipher.py +569 -0
- sage/crypto/cryptosystem.py +387 -0
- sage/crypto/key_exchange/all.py +7 -0
- sage/crypto/key_exchange/catalog.py +24 -0
- sage/crypto/key_exchange/diffie_hellman.py +323 -0
- sage/crypto/key_exchange/key_exchange_scheme.py +107 -0
- sage/crypto/lattice.py +312 -0
- sage/crypto/lfsr.py +295 -0
- sage/crypto/lwe.py +840 -0
- sage/crypto/mq/__init__.py +4 -0
- sage/crypto/mq/mpolynomialsystemgenerator.py +204 -0
- sage/crypto/mq/rijndael_gf.py +2345 -0
- sage/crypto/mq/sbox.py +7 -0
- sage/crypto/mq/sr.py +3344 -0
- sage/crypto/public_key/all.py +5 -0
- sage/crypto/public_key/blum_goldwasser.py +776 -0
- sage/crypto/sbox.cpython-314-darwin.so +0 -0
- sage/crypto/sbox.pyx +2090 -0
- sage/crypto/sboxes.py +2090 -0
- sage/crypto/stream.py +390 -0
- sage/crypto/stream_cipher.py +297 -0
- sage/crypto/util.py +519 -0
- sage/ext/all__sagemath_modules.py +1 -0
- sage/ext/interpreters/__init__.py +1 -0
- sage/ext/interpreters/all__sagemath_modules.py +2 -0
- sage/ext/interpreters/wrapper_cc.cpython-314-darwin.so +0 -0
- sage/ext/interpreters/wrapper_cc.pxd +30 -0
- sage/ext/interpreters/wrapper_cc.pyx +252 -0
- sage/ext/interpreters/wrapper_cdf.cpython-314-darwin.so +0 -0
- sage/ext/interpreters/wrapper_cdf.pxd +26 -0
- sage/ext/interpreters/wrapper_cdf.pyx +245 -0
- sage/ext/interpreters/wrapper_rdf.cpython-314-darwin.so +0 -0
- sage/ext/interpreters/wrapper_rdf.pxd +23 -0
- sage/ext/interpreters/wrapper_rdf.pyx +221 -0
- sage/ext/interpreters/wrapper_rr.cpython-314-darwin.so +0 -0
- sage/ext/interpreters/wrapper_rr.pxd +28 -0
- sage/ext/interpreters/wrapper_rr.pyx +335 -0
- sage/geometry/all__sagemath_modules.py +5 -0
- sage/geometry/toric_lattice.py +1745 -0
- sage/geometry/toric_lattice_element.cpython-314-darwin.so +0 -0
- sage/geometry/toric_lattice_element.pyx +432 -0
- sage/groups/abelian_gps/abelian_group.py +1925 -0
- sage/groups/abelian_gps/abelian_group_element.py +164 -0
- sage/groups/abelian_gps/all__sagemath_modules.py +5 -0
- sage/groups/abelian_gps/dual_abelian_group.py +421 -0
- sage/groups/abelian_gps/dual_abelian_group_element.py +179 -0
- sage/groups/abelian_gps/element_base.py +341 -0
- sage/groups/abelian_gps/values.py +488 -0
- sage/groups/additive_abelian/additive_abelian_group.py +476 -0
- sage/groups/additive_abelian/additive_abelian_wrapper.py +857 -0
- sage/groups/additive_abelian/all.py +4 -0
- sage/groups/additive_abelian/qmodnz.py +231 -0
- sage/groups/additive_abelian/qmodnz_element.py +349 -0
- sage/groups/affine_gps/affine_group.py +535 -0
- sage/groups/affine_gps/all.py +1 -0
- sage/groups/affine_gps/catalog.py +17 -0
- sage/groups/affine_gps/euclidean_group.py +246 -0
- sage/groups/affine_gps/group_element.py +562 -0
- sage/groups/all__sagemath_modules.py +12 -0
- sage/groups/galois_group.py +479 -0
- sage/groups/matrix_gps/all.py +4 -0
- sage/groups/matrix_gps/all__sagemath_modules.py +13 -0
- sage/groups/matrix_gps/catalog.py +26 -0
- sage/groups/matrix_gps/coxeter_group.py +927 -0
- sage/groups/matrix_gps/finitely_generated.py +487 -0
- sage/groups/matrix_gps/group_element.cpython-314-darwin.so +0 -0
- sage/groups/matrix_gps/group_element.pxd +11 -0
- sage/groups/matrix_gps/group_element.pyx +431 -0
- sage/groups/matrix_gps/linear.py +440 -0
- sage/groups/matrix_gps/matrix_group.py +617 -0
- sage/groups/matrix_gps/named_group.py +296 -0
- sage/groups/matrix_gps/orthogonal.py +544 -0
- sage/groups/matrix_gps/symplectic.py +251 -0
- sage/groups/matrix_gps/unitary.py +436 -0
- sage/groups/misc_gps/all__sagemath_modules.py +1 -0
- sage/groups/misc_gps/argument_groups.py +1905 -0
- sage/groups/misc_gps/imaginary_groups.py +479 -0
- sage/groups/perm_gps/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.cpython-314-darwin.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pxd +41 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pyx +1167 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.cpython-314-darwin.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pxd +31 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pyx +385 -0
- sage/homology/algebraic_topological_model.py +595 -0
- sage/homology/all.py +2 -0
- sage/homology/all__sagemath_modules.py +8 -0
- sage/homology/chain_complex.py +2148 -0
- sage/homology/chain_complex_homspace.py +165 -0
- sage/homology/chain_complex_morphism.py +629 -0
- sage/homology/chain_homotopy.py +604 -0
- sage/homology/chains.py +653 -0
- sage/homology/free_resolution.py +923 -0
- sage/homology/graded_resolution.py +567 -0
- sage/homology/hochschild_complex.py +756 -0
- sage/homology/homology_group.py +188 -0
- sage/homology/homology_morphism.py +422 -0
- sage/homology/homology_vector_space_with_basis.py +1454 -0
- sage/homology/koszul_complex.py +169 -0
- sage/homology/matrix_utils.py +205 -0
- sage/libs/all__sagemath_modules.py +1 -0
- sage/libs/gsl/__init__.py +1 -0
- sage/libs/gsl/airy.pxd +56 -0
- sage/libs/gsl/all.pxd +66 -0
- sage/libs/gsl/array.cpython-314-darwin.so +0 -0
- sage/libs/gsl/array.pxd +5 -0
- sage/libs/gsl/array.pyx +102 -0
- sage/libs/gsl/bessel.pxd +208 -0
- sage/libs/gsl/blas.pxd +116 -0
- sage/libs/gsl/blas_types.pxd +34 -0
- sage/libs/gsl/block.pxd +52 -0
- sage/libs/gsl/chebyshev.pxd +37 -0
- sage/libs/gsl/clausen.pxd +12 -0
- sage/libs/gsl/combination.pxd +47 -0
- sage/libs/gsl/complex.pxd +151 -0
- sage/libs/gsl/coulomb.pxd +30 -0
- sage/libs/gsl/coupling.pxd +21 -0
- sage/libs/gsl/dawson.pxd +12 -0
- sage/libs/gsl/debye.pxd +24 -0
- sage/libs/gsl/dilog.pxd +14 -0
- sage/libs/gsl/eigen.pxd +46 -0
- sage/libs/gsl/elementary.pxd +12 -0
- sage/libs/gsl/ellint.pxd +48 -0
- sage/libs/gsl/elljac.pxd +8 -0
- sage/libs/gsl/erf.pxd +32 -0
- sage/libs/gsl/errno.pxd +26 -0
- sage/libs/gsl/exp.pxd +44 -0
- sage/libs/gsl/expint.pxd +44 -0
- sage/libs/gsl/fermi_dirac.pxd +44 -0
- sage/libs/gsl/fft.pxd +121 -0
- sage/libs/gsl/fit.pxd +50 -0
- sage/libs/gsl/gamma.pxd +94 -0
- sage/libs/gsl/gegenbauer.pxd +26 -0
- sage/libs/gsl/histogram.pxd +176 -0
- sage/libs/gsl/hyperg.pxd +52 -0
- sage/libs/gsl/integration.pxd +69 -0
- sage/libs/gsl/interp.pxd +109 -0
- sage/libs/gsl/laguerre.pxd +24 -0
- sage/libs/gsl/lambert.pxd +16 -0
- sage/libs/gsl/legendre.pxd +90 -0
- sage/libs/gsl/linalg.pxd +185 -0
- sage/libs/gsl/log.pxd +26 -0
- sage/libs/gsl/math.pxd +43 -0
- sage/libs/gsl/matrix.pxd +143 -0
- sage/libs/gsl/matrix_complex.pxd +130 -0
- sage/libs/gsl/min.pxd +67 -0
- sage/libs/gsl/monte.pxd +56 -0
- sage/libs/gsl/ntuple.pxd +32 -0
- sage/libs/gsl/odeiv.pxd +70 -0
- sage/libs/gsl/permutation.pxd +78 -0
- sage/libs/gsl/poly.pxd +40 -0
- sage/libs/gsl/pow_int.pxd +12 -0
- sage/libs/gsl/psi.pxd +28 -0
- sage/libs/gsl/qrng.pxd +29 -0
- sage/libs/gsl/random.pxd +257 -0
- sage/libs/gsl/rng.pxd +100 -0
- sage/libs/gsl/roots.pxd +72 -0
- sage/libs/gsl/sort.pxd +36 -0
- sage/libs/gsl/statistics.pxd +59 -0
- sage/libs/gsl/sum.pxd +55 -0
- sage/libs/gsl/synchrotron.pxd +16 -0
- sage/libs/gsl/transport.pxd +24 -0
- sage/libs/gsl/trig.pxd +58 -0
- sage/libs/gsl/types.pxd +137 -0
- sage/libs/gsl/vector.pxd +101 -0
- sage/libs/gsl/vector_complex.pxd +83 -0
- sage/libs/gsl/wavelet.pxd +49 -0
- sage/libs/gsl/zeta.pxd +28 -0
- sage/libs/mpc/__init__.pxd +114 -0
- sage/libs/mpc/types.pxd +28 -0
- sage/libs/mpfr/__init__.pxd +299 -0
- sage/libs/mpfr/types.pxd +26 -0
- sage/libs/mpmath/__init__.py +1 -0
- sage/libs/mpmath/all.py +27 -0
- sage/libs/mpmath/all__sagemath_modules.py +1 -0
- sage/libs/mpmath/utils.cpython-314-darwin.so +0 -0
- sage/libs/mpmath/utils.pxd +4 -0
- sage/libs/mpmath/utils.pyx +319 -0
- sage/matrix/action.cpython-314-darwin.so +0 -0
- sage/matrix/action.pxd +26 -0
- sage/matrix/action.pyx +596 -0
- sage/matrix/all.py +9 -0
- sage/matrix/args.cpython-314-darwin.so +0 -0
- sage/matrix/args.pxd +144 -0
- sage/matrix/args.pyx +1668 -0
- sage/matrix/benchmark.py +1258 -0
- sage/matrix/berlekamp_massey.py +95 -0
- sage/matrix/compute_J_ideal.py +926 -0
- sage/matrix/constructor.cpython-314-darwin.so +0 -0
- sage/matrix/constructor.pyx +750 -0
- sage/matrix/docs.py +430 -0
- sage/matrix/echelon_matrix.cpython-314-darwin.so +0 -0
- sage/matrix/echelon_matrix.pyx +155 -0
- sage/matrix/matrix.pxd +2 -0
- sage/matrix/matrix0.cpython-314-darwin.so +0 -0
- sage/matrix/matrix0.pxd +68 -0
- sage/matrix/matrix0.pyx +6324 -0
- sage/matrix/matrix1.cpython-314-darwin.so +0 -0
- sage/matrix/matrix1.pxd +8 -0
- sage/matrix/matrix1.pyx +2851 -0
- sage/matrix/matrix2.cpython-314-darwin.so +0 -0
- sage/matrix/matrix2.pxd +25 -0
- sage/matrix/matrix2.pyx +20181 -0
- sage/matrix/matrix_cdv.cpython-314-darwin.so +0 -0
- sage/matrix/matrix_cdv.pxd +4 -0
- sage/matrix/matrix_cdv.pyx +93 -0
- sage/matrix/matrix_complex_double_dense.cpython-314-darwin.so +0 -0
- sage/matrix/matrix_complex_double_dense.pxd +5 -0
- sage/matrix/matrix_complex_double_dense.pyx +98 -0
- sage/matrix/matrix_dense.cpython-314-darwin.so +0 -0
- sage/matrix/matrix_dense.pxd +5 -0
- sage/matrix/matrix_dense.pyx +343 -0
- sage/matrix/matrix_domain_dense.pxd +5 -0
- sage/matrix/matrix_domain_sparse.pxd +5 -0
- sage/matrix/matrix_double_dense.cpython-314-darwin.so +0 -0
- sage/matrix/matrix_double_dense.pxd +7 -0
- sage/matrix/matrix_double_dense.pyx +3906 -0
- sage/matrix/matrix_double_sparse.cpython-314-darwin.so +0 -0
- sage/matrix/matrix_double_sparse.pxd +6 -0
- sage/matrix/matrix_double_sparse.pyx +248 -0
- sage/matrix/matrix_generic_dense.cpython-314-darwin.so +0 -0
- sage/matrix/matrix_generic_dense.pxd +7 -0
- sage/matrix/matrix_generic_dense.pyx +354 -0
- sage/matrix/matrix_generic_sparse.cpython-314-darwin.so +0 -0
- sage/matrix/matrix_generic_sparse.pxd +7 -0
- sage/matrix/matrix_generic_sparse.pyx +461 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.cpython-314-darwin.so +0 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pxd +5 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pyx +115 -0
- sage/matrix/matrix_misc.py +313 -0
- sage/matrix/matrix_numpy_dense.cpython-314-darwin.so +0 -0
- sage/matrix/matrix_numpy_dense.pxd +14 -0
- sage/matrix/matrix_numpy_dense.pyx +450 -0
- sage/matrix/matrix_numpy_integer_dense.cpython-314-darwin.so +0 -0
- sage/matrix/matrix_numpy_integer_dense.pxd +7 -0
- sage/matrix/matrix_numpy_integer_dense.pyx +59 -0
- sage/matrix/matrix_polynomial_dense.cpython-314-darwin.so +0 -0
- sage/matrix/matrix_polynomial_dense.pxd +5 -0
- sage/matrix/matrix_polynomial_dense.pyx +5341 -0
- sage/matrix/matrix_real_double_dense.cpython-314-darwin.so +0 -0
- sage/matrix/matrix_real_double_dense.pxd +7 -0
- sage/matrix/matrix_real_double_dense.pyx +122 -0
- sage/matrix/matrix_space.py +2848 -0
- sage/matrix/matrix_sparse.cpython-314-darwin.so +0 -0
- sage/matrix/matrix_sparse.pxd +5 -0
- sage/matrix/matrix_sparse.pyx +1222 -0
- sage/matrix/matrix_window.cpython-314-darwin.so +0 -0
- sage/matrix/matrix_window.pxd +37 -0
- sage/matrix/matrix_window.pyx +242 -0
- sage/matrix/misc_mpfr.cpython-314-darwin.so +0 -0
- sage/matrix/misc_mpfr.pyx +80 -0
- sage/matrix/operation_table.py +1182 -0
- sage/matrix/special.py +3666 -0
- sage/matrix/strassen.cpython-314-darwin.so +0 -0
- sage/matrix/strassen.pyx +851 -0
- sage/matrix/symplectic_basis.py +541 -0
- sage/matrix/template.pxd +6 -0
- sage/matrix/tests.py +71 -0
- sage/matroids/advanced.py +77 -0
- sage/matroids/all.py +13 -0
- sage/matroids/basis_exchange_matroid.cpython-314-darwin.so +0 -0
- sage/matroids/basis_exchange_matroid.pxd +96 -0
- sage/matroids/basis_exchange_matroid.pyx +2344 -0
- sage/matroids/basis_matroid.cpython-314-darwin.so +0 -0
- sage/matroids/basis_matroid.pxd +45 -0
- sage/matroids/basis_matroid.pyx +1217 -0
- sage/matroids/catalog.py +44 -0
- sage/matroids/chow_ring.py +473 -0
- sage/matroids/chow_ring_ideal.py +849 -0
- sage/matroids/circuit_closures_matroid.cpython-314-darwin.so +0 -0
- sage/matroids/circuit_closures_matroid.pxd +16 -0
- sage/matroids/circuit_closures_matroid.pyx +559 -0
- sage/matroids/circuits_matroid.cpython-314-darwin.so +0 -0
- sage/matroids/circuits_matroid.pxd +38 -0
- sage/matroids/circuits_matroid.pyx +947 -0
- sage/matroids/constructor.py +1086 -0
- sage/matroids/database_collections.py +365 -0
- sage/matroids/database_matroids.py +5338 -0
- sage/matroids/dual_matroid.py +583 -0
- sage/matroids/extension.cpython-314-darwin.so +0 -0
- sage/matroids/extension.pxd +34 -0
- sage/matroids/extension.pyx +519 -0
- sage/matroids/flats_matroid.cpython-314-darwin.so +0 -0
- sage/matroids/flats_matroid.pxd +28 -0
- sage/matroids/flats_matroid.pyx +715 -0
- sage/matroids/gammoid.py +600 -0
- sage/matroids/graphic_matroid.cpython-314-darwin.so +0 -0
- sage/matroids/graphic_matroid.pxd +39 -0
- sage/matroids/graphic_matroid.pyx +2024 -0
- sage/matroids/lean_matrix.cpython-314-darwin.so +0 -0
- sage/matroids/lean_matrix.pxd +126 -0
- sage/matroids/lean_matrix.pyx +3667 -0
- sage/matroids/linear_matroid.cpython-314-darwin.so +0 -0
- sage/matroids/linear_matroid.pxd +180 -0
- sage/matroids/linear_matroid.pyx +6649 -0
- sage/matroids/matroid.cpython-314-darwin.so +0 -0
- sage/matroids/matroid.pxd +243 -0
- sage/matroids/matroid.pyx +8759 -0
- sage/matroids/matroids_catalog.py +190 -0
- sage/matroids/matroids_plot_helpers.py +890 -0
- sage/matroids/minor_matroid.py +480 -0
- sage/matroids/minorfix.h +9 -0
- sage/matroids/named_matroids.py +5 -0
- sage/matroids/rank_matroid.py +268 -0
- sage/matroids/set_system.cpython-314-darwin.so +0 -0
- sage/matroids/set_system.pxd +38 -0
- sage/matroids/set_system.pyx +800 -0
- sage/matroids/transversal_matroid.cpython-314-darwin.so +0 -0
- sage/matroids/transversal_matroid.pxd +14 -0
- sage/matroids/transversal_matroid.pyx +893 -0
- sage/matroids/union_matroid.cpython-314-darwin.so +0 -0
- sage/matroids/union_matroid.pxd +20 -0
- sage/matroids/union_matroid.pyx +331 -0
- sage/matroids/unpickling.cpython-314-darwin.so +0 -0
- sage/matroids/unpickling.pyx +843 -0
- sage/matroids/utilities.py +809 -0
- sage/misc/all__sagemath_modules.py +20 -0
- sage/misc/c3.cpython-314-darwin.so +0 -0
- sage/misc/c3.pyx +238 -0
- sage/misc/compat.py +87 -0
- sage/misc/element_with_label.py +173 -0
- sage/misc/func_persist.py +79 -0
- sage/misc/pickle_old.cpython-314-darwin.so +0 -0
- sage/misc/pickle_old.pyx +19 -0
- sage/misc/proof.py +7 -0
- sage/misc/replace_dot_all.py +472 -0
- sage/misc/sagedoc_conf.py +168 -0
- sage/misc/sphinxify.py +167 -0
- sage/misc/test_class_pickling.py +85 -0
- sage/modules/all.py +42 -0
- sage/modules/complex_double_vector.py +25 -0
- sage/modules/diamond_cutting.py +380 -0
- sage/modules/fg_pid/all.py +1 -0
- sage/modules/fg_pid/fgp_element.py +456 -0
- sage/modules/fg_pid/fgp_module.py +2091 -0
- sage/modules/fg_pid/fgp_morphism.py +550 -0
- sage/modules/filtered_vector_space.py +1271 -0
- sage/modules/finite_submodule_iter.cpython-314-darwin.so +0 -0
- sage/modules/finite_submodule_iter.pxd +27 -0
- sage/modules/finite_submodule_iter.pyx +452 -0
- sage/modules/fp_graded/all.py +1 -0
- sage/modules/fp_graded/element.py +346 -0
- sage/modules/fp_graded/free_element.py +298 -0
- sage/modules/fp_graded/free_homspace.py +53 -0
- sage/modules/fp_graded/free_module.py +1060 -0
- sage/modules/fp_graded/free_morphism.py +217 -0
- sage/modules/fp_graded/homspace.py +563 -0
- sage/modules/fp_graded/module.py +1340 -0
- sage/modules/fp_graded/morphism.py +1990 -0
- sage/modules/fp_graded/steenrod/all.py +1 -0
- sage/modules/fp_graded/steenrod/homspace.py +65 -0
- sage/modules/fp_graded/steenrod/module.py +477 -0
- sage/modules/fp_graded/steenrod/morphism.py +404 -0
- sage/modules/fp_graded/steenrod/profile.py +241 -0
- sage/modules/free_module.py +8447 -0
- sage/modules/free_module_element.cpython-314-darwin.so +0 -0
- sage/modules/free_module_element.pxd +22 -0
- sage/modules/free_module_element.pyx +5445 -0
- sage/modules/free_module_homspace.py +369 -0
- sage/modules/free_module_integer.py +896 -0
- sage/modules/free_module_morphism.py +823 -0
- sage/modules/free_module_pseudohomspace.py +352 -0
- sage/modules/free_module_pseudomorphism.py +578 -0
- sage/modules/free_quadratic_module.py +1706 -0
- sage/modules/free_quadratic_module_integer_symmetric.py +1790 -0
- sage/modules/matrix_morphism.py +1745 -0
- sage/modules/misc.py +103 -0
- sage/modules/module_functors.py +192 -0
- sage/modules/multi_filtered_vector_space.py +719 -0
- sage/modules/ore_module.py +2208 -0
- sage/modules/ore_module_element.py +178 -0
- sage/modules/ore_module_homspace.py +147 -0
- sage/modules/ore_module_morphism.py +968 -0
- sage/modules/quotient_module.py +699 -0
- sage/modules/real_double_vector.py +22 -0
- sage/modules/submodule.py +255 -0
- sage/modules/tensor_operations.py +567 -0
- sage/modules/torsion_quadratic_module.py +1352 -0
- sage/modules/tutorial_free_modules.py +248 -0
- sage/modules/vector_complex_double_dense.cpython-314-darwin.so +0 -0
- sage/modules/vector_complex_double_dense.pxd +6 -0
- sage/modules/vector_complex_double_dense.pyx +117 -0
- sage/modules/vector_double_dense.cpython-314-darwin.so +0 -0
- sage/modules/vector_double_dense.pxd +6 -0
- sage/modules/vector_double_dense.pyx +604 -0
- sage/modules/vector_integer_dense.cpython-314-darwin.so +0 -0
- sage/modules/vector_integer_dense.pxd +15 -0
- sage/modules/vector_integer_dense.pyx +361 -0
- sage/modules/vector_integer_sparse.cpython-314-darwin.so +0 -0
- sage/modules/vector_integer_sparse.pxd +29 -0
- sage/modules/vector_integer_sparse.pyx +406 -0
- sage/modules/vector_modn_dense.cpython-314-darwin.so +0 -0
- sage/modules/vector_modn_dense.pxd +12 -0
- sage/modules/vector_modn_dense.pyx +394 -0
- sage/modules/vector_modn_sparse.cpython-314-darwin.so +0 -0
- sage/modules/vector_modn_sparse.pxd +21 -0
- sage/modules/vector_modn_sparse.pyx +298 -0
- sage/modules/vector_numpy_dense.cpython-314-darwin.so +0 -0
- sage/modules/vector_numpy_dense.pxd +15 -0
- sage/modules/vector_numpy_dense.pyx +304 -0
- sage/modules/vector_numpy_integer_dense.cpython-314-darwin.so +0 -0
- sage/modules/vector_numpy_integer_dense.pxd +7 -0
- sage/modules/vector_numpy_integer_dense.pyx +54 -0
- sage/modules/vector_rational_dense.cpython-314-darwin.so +0 -0
- sage/modules/vector_rational_dense.pxd +15 -0
- sage/modules/vector_rational_dense.pyx +387 -0
- sage/modules/vector_rational_sparse.cpython-314-darwin.so +0 -0
- sage/modules/vector_rational_sparse.pxd +30 -0
- sage/modules/vector_rational_sparse.pyx +413 -0
- sage/modules/vector_real_double_dense.cpython-314-darwin.so +0 -0
- sage/modules/vector_real_double_dense.pxd +6 -0
- sage/modules/vector_real_double_dense.pyx +126 -0
- sage/modules/vector_space_homspace.py +430 -0
- sage/modules/vector_space_morphism.py +989 -0
- sage/modules/with_basis/all.py +15 -0
- sage/modules/with_basis/cell_module.py +494 -0
- sage/modules/with_basis/indexed_element.cpython-314-darwin.so +0 -0
- sage/modules/with_basis/indexed_element.pxd +13 -0
- sage/modules/with_basis/indexed_element.pyx +1058 -0
- sage/modules/with_basis/invariant.py +1075 -0
- sage/modules/with_basis/morphism.py +1636 -0
- sage/modules/with_basis/representation.py +2939 -0
- sage/modules/with_basis/subquotient.py +685 -0
- sage/numerical/all__sagemath_modules.py +6 -0
- sage/numerical/gauss_legendre.cpython-314-darwin.so +0 -0
- sage/numerical/gauss_legendre.pyx +381 -0
- sage/numerical/optimize.py +910 -0
- sage/probability/all.py +10 -0
- sage/probability/probability_distribution.cpython-314-darwin.so +0 -0
- sage/probability/probability_distribution.pyx +1242 -0
- sage/probability/random_variable.py +411 -0
- sage/quadratic_forms/all.py +4 -0
- sage/quadratic_forms/all__sagemath_modules.py +15 -0
- sage/quadratic_forms/binary_qf.py +2042 -0
- sage/quadratic_forms/bqf_class_group.py +748 -0
- sage/quadratic_forms/constructions.py +93 -0
- sage/quadratic_forms/count_local_2.cpython-314-darwin.so +0 -0
- sage/quadratic_forms/count_local_2.pyx +365 -0
- sage/quadratic_forms/extras.py +195 -0
- sage/quadratic_forms/quadratic_form.py +1753 -0
- sage/quadratic_forms/quadratic_form__count_local_2.py +221 -0
- sage/quadratic_forms/quadratic_form__equivalence_testing.py +708 -0
- sage/quadratic_forms/quadratic_form__evaluate.cpython-314-darwin.so +0 -0
- sage/quadratic_forms/quadratic_form__evaluate.pyx +139 -0
- sage/quadratic_forms/quadratic_form__local_density_congruence.py +977 -0
- sage/quadratic_forms/quadratic_form__local_field_invariants.py +1072 -0
- sage/quadratic_forms/quadratic_form__neighbors.py +424 -0
- sage/quadratic_forms/quadratic_form__reduction_theory.py +488 -0
- sage/quadratic_forms/quadratic_form__split_local_covering.py +416 -0
- sage/quadratic_forms/quadratic_form__ternary_Tornaria.py +657 -0
- sage/quadratic_forms/quadratic_form__theta.py +352 -0
- sage/quadratic_forms/quadratic_form__variable_substitutions.py +370 -0
- sage/quadratic_forms/random_quadraticform.py +209 -0
- sage/quadratic_forms/ternary.cpython-314-darwin.so +0 -0
- sage/quadratic_forms/ternary.pyx +1154 -0
- sage/quadratic_forms/ternary_qf.py +2027 -0
- sage/rings/all__sagemath_modules.py +28 -0
- sage/rings/asymptotic/all__sagemath_modules.py +1 -0
- sage/rings/asymptotic/misc.py +1252 -0
- sage/rings/cc.py +4 -0
- sage/rings/cfinite_sequence.py +1306 -0
- sage/rings/complex_conversion.cpython-314-darwin.so +0 -0
- sage/rings/complex_conversion.pxd +8 -0
- sage/rings/complex_conversion.pyx +23 -0
- sage/rings/complex_double.cpython-314-darwin.so +0 -0
- sage/rings/complex_double.pxd +21 -0
- sage/rings/complex_double.pyx +2654 -0
- sage/rings/complex_mpc.cpython-314-darwin.so +0 -0
- sage/rings/complex_mpc.pxd +21 -0
- sage/rings/complex_mpc.pyx +2576 -0
- sage/rings/complex_mpfr.cpython-314-darwin.so +0 -0
- sage/rings/complex_mpfr.pxd +18 -0
- sage/rings/complex_mpfr.pyx +3602 -0
- sage/rings/derivation.py +2334 -0
- sage/rings/finite_rings/all__sagemath_modules.py +1 -0
- sage/rings/finite_rings/maps_finite_field.py +191 -0
- sage/rings/function_field/all__sagemath_modules.py +8 -0
- sage/rings/function_field/derivations.py +102 -0
- sage/rings/function_field/derivations_rational.py +132 -0
- sage/rings/function_field/differential.py +853 -0
- sage/rings/function_field/divisor.py +1107 -0
- sage/rings/function_field/drinfeld_modules/action.py +199 -0
- sage/rings/function_field/drinfeld_modules/all.py +1 -0
- sage/rings/function_field/drinfeld_modules/charzero_drinfeld_module.py +673 -0
- sage/rings/function_field/drinfeld_modules/drinfeld_module.py +2087 -0
- sage/rings/function_field/drinfeld_modules/finite_drinfeld_module.py +1131 -0
- sage/rings/function_field/drinfeld_modules/homset.py +420 -0
- sage/rings/function_field/drinfeld_modules/morphism.py +820 -0
- sage/rings/function_field/hermite_form_polynomial.cpython-314-darwin.so +0 -0
- sage/rings/function_field/hermite_form_polynomial.pyx +188 -0
- sage/rings/function_field/khuri_makdisi.cpython-314-darwin.so +0 -0
- sage/rings/function_field/khuri_makdisi.pyx +935 -0
- sage/rings/invariants/all.py +4 -0
- sage/rings/invariants/invariant_theory.py +4597 -0
- sage/rings/invariants/reconstruction.py +395 -0
- sage/rings/polynomial/all__sagemath_modules.py +17 -0
- sage/rings/polynomial/integer_valued_polynomials.py +1230 -0
- sage/rings/polynomial/laurent_polynomial_mpair.cpython-314-darwin.so +0 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pxd +15 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pyx +2023 -0
- sage/rings/polynomial/ore_function_element.py +952 -0
- sage/rings/polynomial/ore_function_field.py +1028 -0
- sage/rings/polynomial/ore_polynomial_element.cpython-314-darwin.so +0 -0
- sage/rings/polynomial/ore_polynomial_element.pxd +48 -0
- sage/rings/polynomial/ore_polynomial_element.pyx +3145 -0
- sage/rings/polynomial/ore_polynomial_ring.py +1334 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.cpython-314-darwin.so +0 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.pyx +788 -0
- sage/rings/polynomial/q_integer_valued_polynomials.py +1264 -0
- sage/rings/polynomial/skew_polynomial_element.cpython-314-darwin.so +0 -0
- sage/rings/polynomial/skew_polynomial_element.pxd +9 -0
- sage/rings/polynomial/skew_polynomial_element.pyx +684 -0
- sage/rings/polynomial/skew_polynomial_finite_field.cpython-314-darwin.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pxd +19 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pyx +1093 -0
- sage/rings/polynomial/skew_polynomial_finite_order.cpython-314-darwin.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pxd +10 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pyx +567 -0
- sage/rings/polynomial/skew_polynomial_ring.py +908 -0
- sage/rings/real_double_element_gsl.cpython-314-darwin.so +0 -0
- sage/rings/real_double_element_gsl.pxd +8 -0
- sage/rings/real_double_element_gsl.pyx +794 -0
- sage/rings/real_field.py +58 -0
- sage/rings/real_mpfr.cpython-314-darwin.so +0 -0
- sage/rings/real_mpfr.pxd +29 -0
- sage/rings/real_mpfr.pyx +6122 -0
- sage/rings/ring_extension.cpython-314-darwin.so +0 -0
- sage/rings/ring_extension.pxd +42 -0
- sage/rings/ring_extension.pyx +2779 -0
- sage/rings/ring_extension_conversion.cpython-314-darwin.so +0 -0
- sage/rings/ring_extension_conversion.pxd +16 -0
- sage/rings/ring_extension_conversion.pyx +462 -0
- sage/rings/ring_extension_element.cpython-314-darwin.so +0 -0
- sage/rings/ring_extension_element.pxd +21 -0
- sage/rings/ring_extension_element.pyx +1635 -0
- sage/rings/ring_extension_homset.py +64 -0
- sage/rings/ring_extension_morphism.cpython-314-darwin.so +0 -0
- sage/rings/ring_extension_morphism.pxd +35 -0
- sage/rings/ring_extension_morphism.pyx +920 -0
- sage/schemes/all__sagemath_modules.py +1 -0
- sage/schemes/projective/all__sagemath_modules.py +1 -0
- sage/schemes/projective/coherent_sheaf.py +300 -0
- sage/schemes/projective/cohomology.py +510 -0
- sage/stats/all.py +15 -0
- sage/stats/basic_stats.py +489 -0
- sage/stats/distributions/all.py +7 -0
- sage/stats/distributions/catalog.py +34 -0
- sage/stats/distributions/dgs.h +50 -0
- sage/stats/distributions/dgs.pxd +111 -0
- sage/stats/distributions/dgs_bern.h +400 -0
- sage/stats/distributions/dgs_gauss.h +614 -0
- sage/stats/distributions/dgs_misc.h +104 -0
- sage/stats/distributions/discrete_gaussian_integer.cpython-314-darwin.so +0 -0
- sage/stats/distributions/discrete_gaussian_integer.pxd +14 -0
- sage/stats/distributions/discrete_gaussian_integer.pyx +498 -0
- sage/stats/distributions/discrete_gaussian_lattice.py +908 -0
- sage/stats/distributions/discrete_gaussian_polynomial.py +141 -0
- sage/stats/hmm/all.py +15 -0
- sage/stats/hmm/chmm.cpython-314-darwin.so +0 -0
- sage/stats/hmm/chmm.pyx +1595 -0
- sage/stats/hmm/distributions.cpython-314-darwin.so +0 -0
- sage/stats/hmm/distributions.pxd +29 -0
- sage/stats/hmm/distributions.pyx +531 -0
- sage/stats/hmm/hmm.cpython-314-darwin.so +0 -0
- sage/stats/hmm/hmm.pxd +17 -0
- sage/stats/hmm/hmm.pyx +1388 -0
- sage/stats/hmm/util.cpython-314-darwin.so +0 -0
- sage/stats/hmm/util.pxd +7 -0
- sage/stats/hmm/util.pyx +165 -0
- sage/stats/intlist.cpython-314-darwin.so +0 -0
- sage/stats/intlist.pxd +14 -0
- sage/stats/intlist.pyx +588 -0
- sage/stats/r.py +49 -0
- sage/stats/time_series.cpython-314-darwin.so +0 -0
- sage/stats/time_series.pxd +6 -0
- sage/stats/time_series.pyx +2546 -0
- sage/tensor/all.py +2 -0
- sage/tensor/modules/all.py +8 -0
- sage/tensor/modules/alternating_contr_tensor.py +761 -0
- sage/tensor/modules/comp.py +5598 -0
- sage/tensor/modules/ext_pow_free_module.py +824 -0
- sage/tensor/modules/finite_rank_free_module.py +3589 -0
- sage/tensor/modules/format_utilities.py +333 -0
- sage/tensor/modules/free_module_alt_form.py +858 -0
- sage/tensor/modules/free_module_automorphism.py +1207 -0
- sage/tensor/modules/free_module_basis.py +1074 -0
- sage/tensor/modules/free_module_element.py +284 -0
- sage/tensor/modules/free_module_homset.py +652 -0
- sage/tensor/modules/free_module_linear_group.py +564 -0
- sage/tensor/modules/free_module_morphism.py +1581 -0
- sage/tensor/modules/free_module_tensor.py +3289 -0
- sage/tensor/modules/reflexive_module.py +386 -0
- sage/tensor/modules/tensor_free_module.py +780 -0
- sage/tensor/modules/tensor_free_submodule.py +538 -0
- sage/tensor/modules/tensor_free_submodule_basis.py +140 -0
- sage/tensor/modules/tensor_with_indices.py +1043 -0
|
@@ -0,0 +1,907 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-modules
|
|
2
|
+
# sage.doctest: needs sage.modules
|
|
3
|
+
r"""
|
|
4
|
+
Orlik-Solomon Algebras
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
# ****************************************************************************
|
|
8
|
+
# Copyright (C) 2015 William Slofstra
|
|
9
|
+
# Travis Scrimshaw <tscrimsh at umn.edu>
|
|
10
|
+
#
|
|
11
|
+
# This program is free software: you can redistribute it and/or modify
|
|
12
|
+
# it under the terms of the GNU General Public License as published by
|
|
13
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
14
|
+
# (at your option) any later version.
|
|
15
|
+
# https://www.gnu.org/licenses/
|
|
16
|
+
# ****************************************************************************
|
|
17
|
+
|
|
18
|
+
from sage.misc.cachefunc import cached_method
|
|
19
|
+
from sage.combinat.free_module import CombinatorialFreeModule
|
|
20
|
+
from sage.categories.algebras import Algebras
|
|
21
|
+
from sage.sets.family import Family
|
|
22
|
+
from sage.modules.with_basis.invariant import FiniteDimensionalInvariantModule
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class OrlikSolomonAlgebra(CombinatorialFreeModule):
|
|
26
|
+
r"""
|
|
27
|
+
An Orlik-Solomon algebra.
|
|
28
|
+
|
|
29
|
+
Let `R` be a commutative ring. Let `M` be a matroid with groundset
|
|
30
|
+
`X`. Let `C(M)` denote the set of circuits of `M`. Let `E` denote
|
|
31
|
+
the exterior algebra over `R` generated by `\{ e_x \mid x \in X \}`.
|
|
32
|
+
The *Orlik-Solomon ideal* `J(M)` is the ideal of `E` generated by
|
|
33
|
+
|
|
34
|
+
.. MATH::
|
|
35
|
+
|
|
36
|
+
\partial e_S := \sum_{i=1}^t (-1)^{i-1} e_{j_1} \wedge e_{j_2}
|
|
37
|
+
\wedge \cdots \wedge \widehat{e}_{j_i} \wedge \cdots \wedge e_{j_t}
|
|
38
|
+
|
|
39
|
+
for all `S = \left\{ j_1 < j_2 < \cdots < j_t \right\} \in C(M)`,
|
|
40
|
+
where `\widehat{e}_{j_i}` means that the term `e_{j_i}` is being
|
|
41
|
+
omitted. The notation `\partial e_S` is not a coincidence, as
|
|
42
|
+
`\partial e_S` is actually the image of
|
|
43
|
+
`e_S := e_{j_1} \wedge e_{j_2} \wedge \cdots \wedge e_{j_t}` under the
|
|
44
|
+
unique derivation `\partial` of `E` which sends all `e_x` to `1`.
|
|
45
|
+
|
|
46
|
+
It is easy to see that `\partial e_S \in J(M)` not only for circuits
|
|
47
|
+
`S`, but also for any dependent set `S` of `M`. Moreover, every
|
|
48
|
+
dependent set `S` of `M` satisfies `e_S \in J(M)`.
|
|
49
|
+
|
|
50
|
+
The *Orlik-Solomon algebra* `A(M)` is the quotient `E / J(M)`. This is
|
|
51
|
+
a graded finite-dimensional skew-commutative `R`-algebra. Fix
|
|
52
|
+
some ordering on `X`; then, the NBC sets of `M` (that is, the subsets
|
|
53
|
+
of `X` containing no broken circuit of `M`) form a basis of `A(M)`.
|
|
54
|
+
(Here, a *broken circuit* of `M` is defined to be the result of
|
|
55
|
+
removing the smallest element from a circuit of `M`.)
|
|
56
|
+
|
|
57
|
+
In the current implementation, the basis of `A(M)` is indexed by the
|
|
58
|
+
NBC sets, which are implemented as frozensets.
|
|
59
|
+
|
|
60
|
+
INPUT:
|
|
61
|
+
|
|
62
|
+
- ``R`` -- the base ring
|
|
63
|
+
- ``M`` -- the defining matroid
|
|
64
|
+
- ``ordering`` -- (optional) an ordering of the groundset
|
|
65
|
+
|
|
66
|
+
EXAMPLES:
|
|
67
|
+
|
|
68
|
+
We create the Orlik-Solomon algebra of the uniform matroid `U(3, 4)`
|
|
69
|
+
and do some basic computations::
|
|
70
|
+
|
|
71
|
+
sage: M = matroids.Uniform(3, 4)
|
|
72
|
+
sage: OS = M.orlik_solomon_algebra(QQ)
|
|
73
|
+
sage: OS.dimension()
|
|
74
|
+
14
|
|
75
|
+
sage: G = OS.algebra_generators()
|
|
76
|
+
sage: M.broken_circuits()
|
|
77
|
+
SetSystem of 1 sets over 4 elements
|
|
78
|
+
sage: M.broken_circuits()[0]
|
|
79
|
+
frozenset({1, 2, 3})
|
|
80
|
+
sage: G[1] * G[2] * G[3]
|
|
81
|
+
OS{0, 1, 2} - OS{0, 1, 3} + OS{0, 2, 3}
|
|
82
|
+
|
|
83
|
+
REFERENCES:
|
|
84
|
+
|
|
85
|
+
- :wikipedia:`Arrangement_of_hyperplanes#The_Orlik-Solomon_algebra`
|
|
86
|
+
|
|
87
|
+
- [CE2001]_
|
|
88
|
+
"""
|
|
89
|
+
@staticmethod
|
|
90
|
+
def __classcall_private__(cls, R, M, ordering=None):
|
|
91
|
+
"""
|
|
92
|
+
Normalize input to ensure a unique representation.
|
|
93
|
+
|
|
94
|
+
EXAMPLES::
|
|
95
|
+
|
|
96
|
+
sage: M = matroids.Wheel(3)
|
|
97
|
+
sage: from sage.algebras.orlik_solomon import OrlikSolomonAlgebra
|
|
98
|
+
sage: OS1 = OrlikSolomonAlgebra(QQ, M)
|
|
99
|
+
sage: OS2 = OrlikSolomonAlgebra(QQ, M, ordering=(0,1,2,3,4,5))
|
|
100
|
+
sage: OS3 = OrlikSolomonAlgebra(QQ, M, ordering=[0,1,2,3,4,5])
|
|
101
|
+
sage: OS1 is OS2 and OS2 is OS3
|
|
102
|
+
True
|
|
103
|
+
"""
|
|
104
|
+
if ordering is None:
|
|
105
|
+
ordering = sorted(M.groundset())
|
|
106
|
+
return super().__classcall__(cls, R, M, tuple(ordering))
|
|
107
|
+
|
|
108
|
+
def __init__(self, R, M, ordering=None):
|
|
109
|
+
"""
|
|
110
|
+
Initialize ``self``.
|
|
111
|
+
|
|
112
|
+
EXAMPLES::
|
|
113
|
+
|
|
114
|
+
sage: M = matroids.Wheel(3)
|
|
115
|
+
sage: OS = M.orlik_solomon_algebra(QQ)
|
|
116
|
+
sage: TestSuite(OS).run()
|
|
117
|
+
|
|
118
|
+
We check on the matroid associated to the graph with 3 vertices and
|
|
119
|
+
2 edges between each vertex::
|
|
120
|
+
|
|
121
|
+
sage: # needs sage.graphs
|
|
122
|
+
sage: G = Graph([[1,2],[1,2],[2,3],[2,3],[1,3],[1,3]], multiedges=True)
|
|
123
|
+
sage: MG = Matroid(G)
|
|
124
|
+
sage: OS = MG.orlik_solomon_algebra(QQ)
|
|
125
|
+
sage: elts = OS.some_elements() + list(OS.algebra_generators())
|
|
126
|
+
sage: TestSuite(OS).run(elements=elts)
|
|
127
|
+
"""
|
|
128
|
+
self._M = M
|
|
129
|
+
self._sorting = {x:i for i,x in enumerate(ordering)}
|
|
130
|
+
|
|
131
|
+
# set up the dictionary of broken circuits
|
|
132
|
+
self._broken_circuits = {}
|
|
133
|
+
for c in self._M.circuits():
|
|
134
|
+
L = sorted(c, key=lambda x: self._sorting[x])
|
|
135
|
+
self._broken_circuits[frozenset(L[1:])] = L[0]
|
|
136
|
+
|
|
137
|
+
cat = Algebras(R).FiniteDimensional().WithBasis().Graded()
|
|
138
|
+
CombinatorialFreeModule.__init__(self, R, list(M.no_broken_circuits_sets(ordering)),
|
|
139
|
+
prefix='OS', bracket='{',
|
|
140
|
+
sorting_key=self._sort_key,
|
|
141
|
+
category=cat)
|
|
142
|
+
|
|
143
|
+
def _sort_key(self, x):
|
|
144
|
+
"""
|
|
145
|
+
Return the key used to sort the terms.
|
|
146
|
+
|
|
147
|
+
EXAMPLES::
|
|
148
|
+
|
|
149
|
+
sage: M = matroids.Wheel(3)
|
|
150
|
+
sage: OS = M.orlik_solomon_algebra(QQ)
|
|
151
|
+
sage: OS._sort_key(frozenset({1, 2}))
|
|
152
|
+
(-2, [1, 2])
|
|
153
|
+
sage: OS._sort_key(frozenset({0, 1, 2}))
|
|
154
|
+
(-3, [0, 1, 2])
|
|
155
|
+
sage: OS._sort_key(frozenset({}))
|
|
156
|
+
(0, [])
|
|
157
|
+
"""
|
|
158
|
+
return (-len(x), sorted(x))
|
|
159
|
+
|
|
160
|
+
def _repr_term(self, m):
|
|
161
|
+
"""
|
|
162
|
+
Return a string representation of the basis element indexed by `m`.
|
|
163
|
+
|
|
164
|
+
EXAMPLES::
|
|
165
|
+
|
|
166
|
+
sage: M = matroids.Uniform(3, 4)
|
|
167
|
+
sage: OS = M.orlik_solomon_algebra(QQ)
|
|
168
|
+
sage: OS._repr_term(frozenset([0]))
|
|
169
|
+
'OS{0}'
|
|
170
|
+
"""
|
|
171
|
+
return "OS{{{}}}".format(', '.join(str(t) for t in sorted(m)))
|
|
172
|
+
|
|
173
|
+
def _repr_(self):
|
|
174
|
+
"""
|
|
175
|
+
Return a string representation of ``self``.
|
|
176
|
+
|
|
177
|
+
EXAMPLES::
|
|
178
|
+
|
|
179
|
+
sage: M = matroids.Wheel(3)
|
|
180
|
+
sage: M.orlik_solomon_algebra(QQ)
|
|
181
|
+
Orlik-Solomon algebra of Wheel(3): Regular matroid of rank 3
|
|
182
|
+
on 6 elements with 16 bases
|
|
183
|
+
"""
|
|
184
|
+
return "Orlik-Solomon algebra of {}".format(self._M)
|
|
185
|
+
|
|
186
|
+
@cached_method
|
|
187
|
+
def one_basis(self):
|
|
188
|
+
"""
|
|
189
|
+
Return the index of the basis element corresponding to `1`
|
|
190
|
+
in ``self``.
|
|
191
|
+
|
|
192
|
+
EXAMPLES::
|
|
193
|
+
|
|
194
|
+
sage: M = matroids.Wheel(3)
|
|
195
|
+
sage: OS = M.orlik_solomon_algebra(QQ)
|
|
196
|
+
sage: OS.one_basis() == frozenset()
|
|
197
|
+
True
|
|
198
|
+
"""
|
|
199
|
+
return frozenset({})
|
|
200
|
+
|
|
201
|
+
@cached_method
|
|
202
|
+
def algebra_generators(self):
|
|
203
|
+
r"""
|
|
204
|
+
Return the algebra generators of ``self``.
|
|
205
|
+
|
|
206
|
+
These form a family indexed by the groundset `X` of `M`. For
|
|
207
|
+
each `x \in X`, the `x`-th element is `e_x`.
|
|
208
|
+
|
|
209
|
+
EXAMPLES::
|
|
210
|
+
|
|
211
|
+
sage: M = matroids.Uniform(2, 2)
|
|
212
|
+
sage: OS = M.orlik_solomon_algebra(QQ)
|
|
213
|
+
sage: OS.algebra_generators()
|
|
214
|
+
Finite family {0: OS{0}, 1: OS{1}}
|
|
215
|
+
|
|
216
|
+
sage: M = matroids.Uniform(1, 2)
|
|
217
|
+
sage: OS = M.orlik_solomon_algebra(QQ)
|
|
218
|
+
sage: OS.algebra_generators()
|
|
219
|
+
Finite family {0: OS{0}, 1: OS{0}}
|
|
220
|
+
|
|
221
|
+
sage: M = matroids.Uniform(1, 3)
|
|
222
|
+
sage: OS = M.orlik_solomon_algebra(QQ)
|
|
223
|
+
sage: OS.algebra_generators()
|
|
224
|
+
Finite family {0: OS{0}, 1: OS{0}, 2: OS{0}}
|
|
225
|
+
"""
|
|
226
|
+
return Family(sorted(self._M.groundset()),
|
|
227
|
+
lambda i: self.subset_image(frozenset([i])))
|
|
228
|
+
|
|
229
|
+
@cached_method
|
|
230
|
+
def product_on_basis(self, a, b):
|
|
231
|
+
r"""
|
|
232
|
+
Return the product in ``self`` of the basis elements
|
|
233
|
+
indexed by ``a`` and ``b``.
|
|
234
|
+
|
|
235
|
+
EXAMPLES::
|
|
236
|
+
|
|
237
|
+
sage: M = matroids.Wheel(3)
|
|
238
|
+
sage: OS = M.orlik_solomon_algebra(QQ)
|
|
239
|
+
sage: OS.product_on_basis(frozenset([2]), frozenset([3,4]))
|
|
240
|
+
OS{0, 1, 2} - OS{0, 1, 4} + OS{0, 2, 3} + OS{0, 3, 4}
|
|
241
|
+
|
|
242
|
+
::
|
|
243
|
+
|
|
244
|
+
sage: G = OS.algebra_generators()
|
|
245
|
+
sage: prod(G)
|
|
246
|
+
0
|
|
247
|
+
sage: G[2] * G[4]
|
|
248
|
+
-OS{1, 2} + OS{1, 4}
|
|
249
|
+
sage: G[3] * G[4] * G[2]
|
|
250
|
+
OS{0, 1, 2} - OS{0, 1, 4} + OS{0, 2, 3} + OS{0, 3, 4}
|
|
251
|
+
sage: G[2] * G[3] * G[4]
|
|
252
|
+
OS{0, 1, 2} - OS{0, 1, 4} + OS{0, 2, 3} + OS{0, 3, 4}
|
|
253
|
+
sage: G[3] * G[2] * G[4]
|
|
254
|
+
-OS{0, 1, 2} + OS{0, 1, 4} - OS{0, 2, 3} - OS{0, 3, 4}
|
|
255
|
+
|
|
256
|
+
TESTS:
|
|
257
|
+
|
|
258
|
+
Let us check that `e_{s_1} e_{s_2} \cdots e_{s_k} = e_S` for any
|
|
259
|
+
subset `S = \{ s_1 < s_2 < \cdots < s_k \}` of the groundset::
|
|
260
|
+
|
|
261
|
+
sage: # needs sage.graphs
|
|
262
|
+
sage: G = Graph([[1,2],[1,2],[2,3],[3,4],[4,2]], multiedges=True)
|
|
263
|
+
sage: MG = Matroid(G).regular_matroid()
|
|
264
|
+
sage: E = MG.groundset_list()
|
|
265
|
+
sage: OS = MG.orlik_solomon_algebra(ZZ)
|
|
266
|
+
sage: G = OS.algebra_generators()
|
|
267
|
+
sage: import itertools
|
|
268
|
+
sage: def test_prod(F):
|
|
269
|
+
....: LHS = OS.subset_image(frozenset(F))
|
|
270
|
+
....: RHS = OS.prod([G[i] for i in sorted(F)])
|
|
271
|
+
....: return LHS == RHS
|
|
272
|
+
sage: all( test_prod(F) for k in range(len(E)+1)
|
|
273
|
+
....: for F in itertools.combinations(E, k) )
|
|
274
|
+
True
|
|
275
|
+
"""
|
|
276
|
+
if not a:
|
|
277
|
+
return self.basis()[b]
|
|
278
|
+
if not b:
|
|
279
|
+
return self.basis()[a]
|
|
280
|
+
|
|
281
|
+
if not a.isdisjoint(b):
|
|
282
|
+
return self.zero()
|
|
283
|
+
|
|
284
|
+
R = self.base_ring()
|
|
285
|
+
# since a is disjoint from b, we can just multiply the generator
|
|
286
|
+
if len(a) == 1:
|
|
287
|
+
i = list(a)[0]
|
|
288
|
+
# insert i into nbc, keeping track of sign in coeff
|
|
289
|
+
ns = b.union({i})
|
|
290
|
+
ns_sorted = sorted(ns, key=lambda x: self._sorting[x])
|
|
291
|
+
coeff = (-1)**ns_sorted.index(i)
|
|
292
|
+
|
|
293
|
+
return R(coeff) * self.subset_image(ns)
|
|
294
|
+
|
|
295
|
+
# r is the accumulator
|
|
296
|
+
# we reverse a in the product, so add a sign
|
|
297
|
+
# note that l>=2 here
|
|
298
|
+
if len(a) % 4 < 2:
|
|
299
|
+
sign = R.one()
|
|
300
|
+
else:
|
|
301
|
+
sign = - R.one()
|
|
302
|
+
r = self._from_dict({b: sign}, remove_zeros=False)
|
|
303
|
+
|
|
304
|
+
# now do the multiplication generator by generator
|
|
305
|
+
G = self.algebra_generators()
|
|
306
|
+
for i in sorted(a, key=lambda x: self._sorting[x]):
|
|
307
|
+
r = G[i] * r
|
|
308
|
+
|
|
309
|
+
return r
|
|
310
|
+
|
|
311
|
+
@cached_method
|
|
312
|
+
def subset_image(self, S):
|
|
313
|
+
"""
|
|
314
|
+
Return the element `e_S` of `A(M)` (``== self``) corresponding to
|
|
315
|
+
a subset `S` of the groundset of `M`.
|
|
316
|
+
|
|
317
|
+
INPUT:
|
|
318
|
+
|
|
319
|
+
- ``S`` -- frozenset which is a subset of the groundset of `M`
|
|
320
|
+
|
|
321
|
+
EXAMPLES::
|
|
322
|
+
|
|
323
|
+
sage: M = matroids.Wheel(3)
|
|
324
|
+
sage: OS = M.orlik_solomon_algebra(QQ)
|
|
325
|
+
sage: BC = sorted(M.broken_circuits(), key=sorted)
|
|
326
|
+
sage: for bc in BC: (sorted(bc), OS.subset_image(bc))
|
|
327
|
+
([1, 3], -OS{0, 1} + OS{0, 3})
|
|
328
|
+
([1, 4, 5], OS{0, 1, 4} - OS{0, 1, 5} - OS{0, 3, 4} + OS{0, 3, 5})
|
|
329
|
+
([2, 3, 4], OS{0, 1, 2} - OS{0, 1, 4} + OS{0, 2, 3} + OS{0, 3, 4})
|
|
330
|
+
([2, 3, 5], OS{0, 2, 3} + OS{0, 3, 5})
|
|
331
|
+
([2, 4], -OS{1, 2} + OS{1, 4})
|
|
332
|
+
([2, 5], -OS{0, 2} + OS{0, 5})
|
|
333
|
+
([4, 5], -OS{3, 4} + OS{3, 5})
|
|
334
|
+
|
|
335
|
+
sage: # needs sage.graphs
|
|
336
|
+
sage: M4 = matroids.CompleteGraphic(4)
|
|
337
|
+
sage: OSM4 = M4.orlik_solomon_algebra(QQ)
|
|
338
|
+
sage: OSM4.subset_image(frozenset({2,3,4}))
|
|
339
|
+
OS{0, 2, 3} + OS{0, 3, 4}
|
|
340
|
+
|
|
341
|
+
An example of a custom ordering::
|
|
342
|
+
|
|
343
|
+
sage: # needs sage.graphs
|
|
344
|
+
sage: G = Graph([[3, 4], [4, 1], [1, 2], [2, 3], [3, 5], [5, 6], [6, 3]])
|
|
345
|
+
sage: MG = Matroid(G)
|
|
346
|
+
sage: s = [(5, 6), (1, 2), (3, 5), (2, 3), (1, 4), (3, 6), (3, 4)]
|
|
347
|
+
sage: sorted([sorted(c) for c in MG.circuits()])
|
|
348
|
+
[[(1, 2), (1, 4), (2, 3), (3, 4)],
|
|
349
|
+
[(3, 5), (3, 6), (5, 6)]]
|
|
350
|
+
sage: OSMG = MG.orlik_solomon_algebra(QQ, ordering=s)
|
|
351
|
+
sage: OSMG.subset_image(frozenset())
|
|
352
|
+
OS{}
|
|
353
|
+
sage: OSMG.subset_image(frozenset([(1,2),(3,4),(1,4),(2,3)]))
|
|
354
|
+
0
|
|
355
|
+
sage: OSMG.subset_image(frozenset([(2,3),(1,2),(3,4)]))
|
|
356
|
+
OS{(1, 2), (2, 3), (3, 4)}
|
|
357
|
+
sage: OSMG.subset_image(frozenset([(1,4),(3,4),(2,3),(3,6),(5,6)]))
|
|
358
|
+
-OS{(1, 2), (1, 4), (2, 3), (3, 6), (5, 6)}
|
|
359
|
+
+ OS{(1, 2), (1, 4), (3, 4), (3, 6), (5, 6)}
|
|
360
|
+
- OS{(1, 2), (2, 3), (3, 4), (3, 6), (5, 6)}
|
|
361
|
+
sage: OSMG.subset_image(frozenset([(1,4),(3,4),(2,3),(3,6),(3,5)]))
|
|
362
|
+
OS{(1, 2), (1, 4), (2, 3), (3, 5), (5, 6)}
|
|
363
|
+
- OS{(1, 2), (1, 4), (2, 3), (3, 6), (5, 6)}
|
|
364
|
+
+ OS{(1, 2), (1, 4), (3, 4), (3, 5), (5, 6)}
|
|
365
|
+
+ OS{(1, 2), (1, 4), (3, 4), (3, 6), (5, 6)}
|
|
366
|
+
- OS{(1, 2), (2, 3), (3, 4), (3, 5), (5, 6)}
|
|
367
|
+
- OS{(1, 2), (2, 3), (3, 4), (3, 6), (5, 6)}
|
|
368
|
+
|
|
369
|
+
TESTS::
|
|
370
|
+
|
|
371
|
+
sage: # needs sage.graphs
|
|
372
|
+
sage: G = Graph([[1,2],[1,2],[2,3],[2,3],[1,3],[1,3]], multiedges=True)
|
|
373
|
+
sage: MG = Matroid(G)
|
|
374
|
+
sage: sorted([sorted(c) for c in MG.circuits()])
|
|
375
|
+
[[0, 1], [0, 2, 4], [0, 2, 5], [0, 3, 4],
|
|
376
|
+
[0, 3, 5], [1, 2, 4], [1, 2, 5], [1, 3, 4],
|
|
377
|
+
[1, 3, 5], [2, 3], [4, 5]]
|
|
378
|
+
sage: OSMG = MG.orlik_solomon_algebra(QQ)
|
|
379
|
+
sage: OSMG.subset_image(frozenset())
|
|
380
|
+
OS{}
|
|
381
|
+
sage: OSMG.subset_image(frozenset([1, 2, 3]))
|
|
382
|
+
0
|
|
383
|
+
sage: OSMG.subset_image(frozenset([1, 3, 5]))
|
|
384
|
+
0
|
|
385
|
+
sage: OSMG.subset_image(frozenset([1, 2]))
|
|
386
|
+
OS{0, 2}
|
|
387
|
+
sage: OSMG.subset_image(frozenset([3, 4]))
|
|
388
|
+
-OS{0, 2} + OS{0, 4}
|
|
389
|
+
sage: OSMG.subset_image(frozenset([1, 5]))
|
|
390
|
+
OS{0, 4}
|
|
391
|
+
|
|
392
|
+
sage: # needs sage.graphs
|
|
393
|
+
sage: G = Graph([[1,2],[1,2],[2,3],[3,4],[4,2]], multiedges=True)
|
|
394
|
+
sage: MG = Matroid(G)
|
|
395
|
+
sage: sorted([sorted(c) for c in MG.circuits()])
|
|
396
|
+
[[0, 1], [2, 3, 4]]
|
|
397
|
+
sage: OSMG = MG.orlik_solomon_algebra(QQ)
|
|
398
|
+
sage: OSMG.subset_image(frozenset())
|
|
399
|
+
OS{}
|
|
400
|
+
sage: OSMG.subset_image(frozenset([1, 3, 4]))
|
|
401
|
+
-OS{0, 2, 3} + OS{0, 2, 4}
|
|
402
|
+
|
|
403
|
+
We check on a non-standard ordering::
|
|
404
|
+
|
|
405
|
+
sage: M = matroids.Wheel(3)
|
|
406
|
+
sage: o = [5,4,3,2,1,0]
|
|
407
|
+
sage: OS = M.orlik_solomon_algebra(QQ, ordering=o)
|
|
408
|
+
sage: BC = sorted(M.broken_circuits(ordering=o), key=sorted)
|
|
409
|
+
sage: for bc in BC: (sorted(bc), OS.subset_image(bc))
|
|
410
|
+
([0, 1], OS{0, 3} - OS{1, 3})
|
|
411
|
+
([0, 1, 4], OS{0, 3, 5} - OS{0, 4, 5} - OS{1, 3, 5} + OS{1, 4, 5})
|
|
412
|
+
([0, 2], OS{0, 5} - OS{2, 5})
|
|
413
|
+
([0, 2, 3], -OS{0, 3, 5} + OS{2, 3, 5})
|
|
414
|
+
([1, 2], OS{1, 4} - OS{2, 4})
|
|
415
|
+
([1, 2, 3], -OS{1, 3, 5} + OS{1, 4, 5} + OS{2, 3, 5} - OS{2, 4, 5})
|
|
416
|
+
([3, 4], OS{3, 5} - OS{4, 5})
|
|
417
|
+
"""
|
|
418
|
+
if not isinstance(S, frozenset):
|
|
419
|
+
raise ValueError("S needs to be a frozenset")
|
|
420
|
+
for bc in self._broken_circuits:
|
|
421
|
+
if bc.issubset(S):
|
|
422
|
+
i = self._broken_circuits[bc]
|
|
423
|
+
if i in S:
|
|
424
|
+
# ``S`` contains not just a broken circuit, but an
|
|
425
|
+
# actual circuit; then `e_S = 0`.
|
|
426
|
+
return self.zero()
|
|
427
|
+
coeff = self.base_ring().one()
|
|
428
|
+
# Now, reduce ``S``, and build the result ``r``:
|
|
429
|
+
r = self.zero()
|
|
430
|
+
switch = False
|
|
431
|
+
Si = S.union({i})
|
|
432
|
+
Ss = sorted(Si, key=lambda x: self._sorting[x])
|
|
433
|
+
for j in Ss:
|
|
434
|
+
if j in bc:
|
|
435
|
+
r += coeff * self.subset_image(Si.difference({j}))
|
|
436
|
+
if switch:
|
|
437
|
+
coeff *= -1
|
|
438
|
+
if j == i:
|
|
439
|
+
switch = True
|
|
440
|
+
return r
|
|
441
|
+
# So ``S`` is an NBC set.
|
|
442
|
+
return self.monomial(S)
|
|
443
|
+
|
|
444
|
+
def degree_on_basis(self, m):
|
|
445
|
+
"""
|
|
446
|
+
Return the degree of the basis element indexed by ``m``.
|
|
447
|
+
|
|
448
|
+
EXAMPLES::
|
|
449
|
+
|
|
450
|
+
sage: M = matroids.Wheel(3)
|
|
451
|
+
sage: OS = M.orlik_solomon_algebra(QQ)
|
|
452
|
+
sage: OS.degree_on_basis(frozenset([1]))
|
|
453
|
+
1
|
|
454
|
+
sage: OS.degree_on_basis(frozenset([0, 2, 3]))
|
|
455
|
+
3
|
|
456
|
+
"""
|
|
457
|
+
return len(m)
|
|
458
|
+
|
|
459
|
+
def as_gca(self):
|
|
460
|
+
r"""
|
|
461
|
+
Return the graded commutative algebra corresponding to ``self``.
|
|
462
|
+
|
|
463
|
+
EXAMPLES::
|
|
464
|
+
|
|
465
|
+
sage: # needs sage.combinat sage.geometry.polyhedron sage.graphs
|
|
466
|
+
sage: H = hyperplane_arrangements.braid(3)
|
|
467
|
+
sage: O = H.orlik_solomon_algebra(QQ)
|
|
468
|
+
sage: O.as_gca()
|
|
469
|
+
Graded Commutative Algebra with generators ('e0', 'e1', 'e2') in degrees (1, 1, 1)
|
|
470
|
+
with relations [e0*e1 - e0*e2 + e1*e2] over Rational Field
|
|
471
|
+
|
|
472
|
+
::
|
|
473
|
+
|
|
474
|
+
sage: N = matroids.catalog.Fano()
|
|
475
|
+
sage: O = N.orlik_solomon_algebra(QQ)
|
|
476
|
+
sage: O.as_gca() # needs sage.combinat sage.libs.singular
|
|
477
|
+
Graded Commutative Algebra with generators ('e0', 'e1', 'e2', 'e3', 'e4', 'e5', 'e6')
|
|
478
|
+
in degrees (1, 1, 1, 1, 1, 1, 1) with relations
|
|
479
|
+
[e1*e2 - e1*e3 + e2*e3, e0*e1*e3 - e0*e1*e4 + e0*e3*e4 - e1*e3*e4,
|
|
480
|
+
e0*e2 - e0*e4 + e2*e4, e3*e4 - e3*e5 + e4*e5,
|
|
481
|
+
e1*e2*e4 - e1*e2*e5 + e1*e4*e5 - e2*e4*e5,
|
|
482
|
+
e0*e2*e3 - e0*e2*e5 + e0*e3*e5 - e2*e3*e5, e0*e1 - e0*e5 + e1*e5,
|
|
483
|
+
e2*e5 - e2*e6 + e5*e6, e1*e3*e5 - e1*e3*e6 + e1*e5*e6 - e3*e5*e6,
|
|
484
|
+
e0*e4*e5 - e0*e4*e6 + e0*e5*e6 - e4*e5*e6, e1*e4 - e1*e6 + e4*e6,
|
|
485
|
+
e2*e3*e4 - e2*e3*e6 + e2*e4*e6 - e3*e4*e6, e0*e3 - e0*e6 + e3*e6,
|
|
486
|
+
e0*e1*e2 - e0*e1*e6 + e0*e2*e6 - e1*e2*e6] over Rational Field
|
|
487
|
+
|
|
488
|
+
TESTS::
|
|
489
|
+
|
|
490
|
+
sage: # needs sage.geometry.polyhedron
|
|
491
|
+
sage: H = hyperplane_arrangements.Catalan(3,QQ).cone()
|
|
492
|
+
sage: O = H.orlik_solomon_algebra(QQ)
|
|
493
|
+
sage: A = O.as_gca() # needs sage.combinat
|
|
494
|
+
sage: H.poincare_polynomial()
|
|
495
|
+
20*x^3 + 29*x^2 + 10*x + 1
|
|
496
|
+
sage: [len(A.basis(i)) for i in range(5)] # needs sage.combinat
|
|
497
|
+
[1, 10, 29, 20, 0]
|
|
498
|
+
"""
|
|
499
|
+
from sage.algebras.commutative_dga import GradedCommutativeAlgebra
|
|
500
|
+
gens = self.algebra_generators()
|
|
501
|
+
gkeys = gens.keys()
|
|
502
|
+
names = ['e{}'.format(i) for i in range(len(gens))]
|
|
503
|
+
A = GradedCommutativeAlgebra(self.base_ring(), names)
|
|
504
|
+
rels = []
|
|
505
|
+
for bc in self._broken_circuits.items():
|
|
506
|
+
bclist = [bc[1]] + list(bc[0])
|
|
507
|
+
indices = [gkeys.index(el) for el in bclist]
|
|
508
|
+
indices.sort()
|
|
509
|
+
rel = A.zero()
|
|
510
|
+
sign = -(-1)**len(indices)
|
|
511
|
+
for i in indices:
|
|
512
|
+
mon = A.one()
|
|
513
|
+
for j in indices:
|
|
514
|
+
if j != i:
|
|
515
|
+
mon *= A.gen(j)
|
|
516
|
+
rel += sign * mon
|
|
517
|
+
sign = -sign
|
|
518
|
+
rels.append(rel)
|
|
519
|
+
I = A.ideal(rels)
|
|
520
|
+
return A.quotient(I)
|
|
521
|
+
|
|
522
|
+
def as_cdga(self):
|
|
523
|
+
r"""
|
|
524
|
+
Return the commutative differential graded algebra corresponding
|
|
525
|
+
to ``self`` with the trivial differential.
|
|
526
|
+
|
|
527
|
+
EXAMPLES::
|
|
528
|
+
|
|
529
|
+
sage: # needs sage.combinat sage.geometry.polyhedron sage.graphs
|
|
530
|
+
sage: H = hyperplane_arrangements.braid(3)
|
|
531
|
+
sage: O = H.orlik_solomon_algebra(QQ)
|
|
532
|
+
sage: O.as_cdga()
|
|
533
|
+
Commutative Differential Graded Algebra with generators ('e0', 'e1', 'e2')
|
|
534
|
+
in degrees (1, 1, 1) with relations [e0*e1 - e0*e2 + e1*e2] over Rational Field
|
|
535
|
+
with differential:
|
|
536
|
+
e0 --> 0
|
|
537
|
+
e1 --> 0
|
|
538
|
+
e2 --> 0
|
|
539
|
+
"""
|
|
540
|
+
return self.as_gca().cdg_algebra({})
|
|
541
|
+
|
|
542
|
+
def aomoto_complex(self, omega):
|
|
543
|
+
r"""
|
|
544
|
+
Return the Aomoto complex of ``self`` defined by ``omega``.
|
|
545
|
+
|
|
546
|
+
Let `A(M)` be an Orlik-Solomon algebra of a matroid `M`. Let
|
|
547
|
+
`\omega \in A(M)_1` be an element of (homogeneous) degree 1.
|
|
548
|
+
The Aomoto complete is the chain complex defined on `A(M)`
|
|
549
|
+
with the differential defined by `\omega \wedge`.
|
|
550
|
+
|
|
551
|
+
EXAMPLES::
|
|
552
|
+
|
|
553
|
+
sage: # needs sage.geometry.polyhedron sage.graphs
|
|
554
|
+
sage: OS = hyperplane_arrangements.braid(3).orlik_solomon_algebra(QQ)
|
|
555
|
+
sage: gens = OS.algebra_generators()
|
|
556
|
+
sage: AC = OS.aomoto_complex(gens[0])
|
|
557
|
+
sage: ascii_art(AC)
|
|
558
|
+
[0]
|
|
559
|
+
[1 0 0] [0]
|
|
560
|
+
[0 1 0] [1]
|
|
561
|
+
0 <-- C_2 <-------- C_1 <---- C_0 <-- 0
|
|
562
|
+
sage: AC.homology()
|
|
563
|
+
{0: Vector space of dimension 0 over Rational Field,
|
|
564
|
+
1: Vector space of dimension 0 over Rational Field,
|
|
565
|
+
2: Vector space of dimension 0 over Rational Field}
|
|
566
|
+
sage: AC = OS.aomoto_complex(-2*gens[0] + gens[1] + gens[2]); ascii_art(AC)
|
|
567
|
+
[ 1]
|
|
568
|
+
[-1 -1 -1] [ 1]
|
|
569
|
+
[-1 -1 -1] [-2]
|
|
570
|
+
0 <-- C_2 <----------- C_1 <----- C_0 <-- 0
|
|
571
|
+
sage: AC.homology()
|
|
572
|
+
{0: Vector space of dimension 0 over Rational Field,
|
|
573
|
+
1: Vector space of dimension 1 over Rational Field,
|
|
574
|
+
2: Vector space of dimension 1 over Rational Field}
|
|
575
|
+
|
|
576
|
+
TESTS::
|
|
577
|
+
|
|
578
|
+
sage: # needs sage.geometry.polyhedron sage.graphs
|
|
579
|
+
sage: OS = hyperplane_arrangements.braid(4).orlik_solomon_algebra(QQ)
|
|
580
|
+
sage: gens = OS.algebra_generators()
|
|
581
|
+
sage: OS.aomoto_complex(gens[0] * gens[1] * gens[3])
|
|
582
|
+
Traceback (most recent call last):
|
|
583
|
+
...
|
|
584
|
+
ValueError: omega must be a homogeneous element of degree 1
|
|
585
|
+
|
|
586
|
+
REFERENCES:
|
|
587
|
+
|
|
588
|
+
- [BY2016]_
|
|
589
|
+
"""
|
|
590
|
+
if not omega.is_homogeneous() or omega.degree() != 1:
|
|
591
|
+
raise ValueError("omega must be a homogeneous element of degree 1")
|
|
592
|
+
from sage.homology.chain_complex import ChainComplex
|
|
593
|
+
R = self.base_ring()
|
|
594
|
+
from collections import defaultdict
|
|
595
|
+
from sage.matrix.constructor import matrix
|
|
596
|
+
graded_basis = defaultdict(list)
|
|
597
|
+
B = self.basis()
|
|
598
|
+
for k in B.keys():
|
|
599
|
+
graded_basis[len(k)].append(k)
|
|
600
|
+
degrees = list(graded_basis)
|
|
601
|
+
data = {i: matrix.zero(R, len(graded_basis[i+1]), len(graded_basis[i]))
|
|
602
|
+
for i in degrees}
|
|
603
|
+
for i in degrees:
|
|
604
|
+
mat = data[i]
|
|
605
|
+
for j, key in enumerate(graded_basis[i]):
|
|
606
|
+
ret = (omega * B[key]).monomial_coefficients(copy=False)
|
|
607
|
+
for k, imkey in enumerate(graded_basis[i+1]):
|
|
608
|
+
if imkey in ret:
|
|
609
|
+
mat[k,j] = ret[imkey]
|
|
610
|
+
mat.set_immutable()
|
|
611
|
+
return ChainComplex(data, R)
|
|
612
|
+
|
|
613
|
+
|
|
614
|
+
class OrlikSolomonInvariantAlgebra(FiniteDimensionalInvariantModule):
|
|
615
|
+
r"""
|
|
616
|
+
The invariant algebra of the Orlik-Solomon algebra from the
|
|
617
|
+
action on `A(M)` induced from the ``action_on_groundset``.
|
|
618
|
+
|
|
619
|
+
INPUT:
|
|
620
|
+
|
|
621
|
+
- ``R`` -- the ring of coefficients
|
|
622
|
+
- ``M`` -- a matroid
|
|
623
|
+
- ``G`` -- a semigroup
|
|
624
|
+
- ``action_on_groundset`` -- (optional) a function defining the action
|
|
625
|
+
of ``G`` on the elements of the groundset of ``M``; default is ``g(x)``
|
|
626
|
+
|
|
627
|
+
EXAMPLES:
|
|
628
|
+
|
|
629
|
+
Lets start with the action of `S_3` on the rank `2` braid matroid::
|
|
630
|
+
|
|
631
|
+
sage: # needs sage.graphs
|
|
632
|
+
sage: M = matroids.CompleteGraphic(3)
|
|
633
|
+
sage: M.groundset()
|
|
634
|
+
frozenset({0, 1, 2})
|
|
635
|
+
sage: G = SymmetricGroup(3) # needs sage.groups
|
|
636
|
+
|
|
637
|
+
Calling elements ``g`` of ``G`` on an element `i` of `\{1, 2, 3\}`
|
|
638
|
+
defines the action we want, but since the groundset is `\{0, 1, 2\}`
|
|
639
|
+
we first add `1` and then subtract `1`::
|
|
640
|
+
|
|
641
|
+
sage: def on_groundset(g, x):
|
|
642
|
+
....: return g(x+1) - 1
|
|
643
|
+
|
|
644
|
+
Now that we have defined an action we can create the invariant, and
|
|
645
|
+
get its basis::
|
|
646
|
+
|
|
647
|
+
sage: # needs sage.graphs sage.groups
|
|
648
|
+
sage: OSG = M.orlik_solomon_algebra(QQ, invariant=(G, on_groundset))
|
|
649
|
+
sage: OSG.basis()
|
|
650
|
+
Finite family {0: B[0], 1: B[1]}
|
|
651
|
+
sage: [OSG.lift(b) for b in OSG.basis()]
|
|
652
|
+
[OS{}, OS{0} + OS{1} + OS{2}]
|
|
653
|
+
|
|
654
|
+
Since it is invariant, the action of any ``g`` in ``G`` is trivial::
|
|
655
|
+
|
|
656
|
+
sage: # needs sage.graphs sage.groups
|
|
657
|
+
sage: x = OSG.an_element(); x
|
|
658
|
+
2*B[0] + 2*B[1]
|
|
659
|
+
sage: g = G.an_element(); g
|
|
660
|
+
(2,3)
|
|
661
|
+
sage: g * x
|
|
662
|
+
2*B[0] + 2*B[1]
|
|
663
|
+
|
|
664
|
+
sage: # needs sage.graphs sage.groups
|
|
665
|
+
sage: x = OSG.random_element()
|
|
666
|
+
sage: g = G.random_element()
|
|
667
|
+
sage: g * x == x
|
|
668
|
+
True
|
|
669
|
+
|
|
670
|
+
The underlying ambient module is the Orlik-Solomon algebra,
|
|
671
|
+
which is accessible via :meth:`ambient()`::
|
|
672
|
+
|
|
673
|
+
sage: M.orlik_solomon_algebra(QQ) is OSG.ambient() # needs sage.graphs sage.groups
|
|
674
|
+
True
|
|
675
|
+
|
|
676
|
+
There is not much structure here, so lets look at a bigger example.
|
|
677
|
+
Here we will look at the rank `3` braid matroid, and to make things
|
|
678
|
+
easier, we'll start the indexing at `1` so that the `S_6` action
|
|
679
|
+
on the groundset is simply calling `g`::
|
|
680
|
+
|
|
681
|
+
sage: # needs sage.graphs sage.groups
|
|
682
|
+
sage: M = matroids.CompleteGraphic(4); M.groundset()
|
|
683
|
+
frozenset({0, 1, 2, 3, 4, 5})
|
|
684
|
+
sage: new_bases = [frozenset(i+1 for i in j) for j in M.bases()]
|
|
685
|
+
sage: M = Matroid(bases=new_bases); M.groundset()
|
|
686
|
+
frozenset({1, 2, 3, 4, 5, 6})
|
|
687
|
+
sage: G = SymmetricGroup(6)
|
|
688
|
+
sage: OSG = M.orlik_solomon_algebra(QQ, invariant=G)
|
|
689
|
+
sage: OSG.basis()
|
|
690
|
+
Finite family {0: B[0], 1: B[1]}
|
|
691
|
+
sage: [OSG.lift(b) for b in OSG.basis()]
|
|
692
|
+
[OS{}, OS{1} + OS{2} + OS{3} + OS{4} + OS{5} + OS{6}]
|
|
693
|
+
sage: (OSG.basis()[1])^2
|
|
694
|
+
0
|
|
695
|
+
sage: 5 * OSG.basis()[1]
|
|
696
|
+
5*B[1]
|
|
697
|
+
|
|
698
|
+
Next, we look at the same matroid but with an `S_3 \times S_3` action
|
|
699
|
+
(here realized as a Young subgroup of `S_6`)::
|
|
700
|
+
|
|
701
|
+
sage: # needs sage.graphs sage.groups
|
|
702
|
+
sage: H = G.young_subgroup([3, 3])
|
|
703
|
+
sage: OSH = M.orlik_solomon_algebra(QQ, invariant=H)
|
|
704
|
+
sage: OSH.basis()
|
|
705
|
+
Finite family {0: B[0], 1: B[1], 2: B[2]}
|
|
706
|
+
sage: [OSH.lift(b) for b in OSH.basis()]
|
|
707
|
+
[OS{}, OS{4} + OS{5} + OS{6}, OS{1} + OS{2} + OS{3}]
|
|
708
|
+
|
|
709
|
+
We implement an `S_4` action on the vertices::
|
|
710
|
+
|
|
711
|
+
sage: # needs sage.graphs sage.groups
|
|
712
|
+
sage: M = matroids.CompleteGraphic(4)
|
|
713
|
+
sage: G = SymmetricGroup(4)
|
|
714
|
+
sage: edge_map = {i: M.groundset_to_edges([i])[0][:2]
|
|
715
|
+
....: for i in M.groundset()}
|
|
716
|
+
sage: inv_map = {v: k for k, v in edge_map.items()}
|
|
717
|
+
sage: def vert_action(g, x):
|
|
718
|
+
....: a, b = edge_map[x]
|
|
719
|
+
....: return inv_map[tuple(sorted([g(a+1)-1, g(b+1)-1]))]
|
|
720
|
+
sage: OSG = M.orlik_solomon_algebra(QQ, invariant=(G, vert_action))
|
|
721
|
+
sage: B = OSG.basis()
|
|
722
|
+
sage: [OSG.lift(b) for b in B]
|
|
723
|
+
[OS{}, OS{0} + OS{1} + OS{2} + OS{3} + OS{4} + OS{5}]
|
|
724
|
+
|
|
725
|
+
We use this to describe the Young subgroup `S_2 \times S_2` action::
|
|
726
|
+
|
|
727
|
+
sage: # needs sage.graphs sage.groups
|
|
728
|
+
sage: H = G.young_subgroup([2,2])
|
|
729
|
+
sage: OSH = M.orlik_solomon_algebra(QQ, invariant=(H, vert_action))
|
|
730
|
+
sage: B = OSH.basis()
|
|
731
|
+
sage: [OSH.lift(b) for b in B]
|
|
732
|
+
[OS{}, OS{5}, OS{1} + OS{2} + OS{3} + OS{4}, OS{0},
|
|
733
|
+
-1/2*OS{1, 2} + OS{1, 5} - 1/2*OS{3, 4} + OS{3, 5},
|
|
734
|
+
OS{0, 5}, OS{0, 1} + OS{0, 2} + OS{0, 3} + OS{0, 4},
|
|
735
|
+
-1/2*OS{0, 1, 2} + OS{0, 1, 5} - 1/2*OS{0, 3, 4} + OS{0, 3, 5}]
|
|
736
|
+
|
|
737
|
+
We demonstrate the algebra structure::
|
|
738
|
+
|
|
739
|
+
sage: matrix([[b*bp for b in B] for bp in B]) # needs sage.graphs sage.groups
|
|
740
|
+
[ B[0] B[1] B[2] B[3] B[4] B[5] B[6] B[7]]
|
|
741
|
+
[ B[1] 0 2*B[4] B[5] 0 0 2*B[7] 0]
|
|
742
|
+
[ B[2] -2*B[4] 0 B[6] 0 -2*B[7] 0 0]
|
|
743
|
+
[ B[3] -B[5] -B[6] 0 B[7] 0 0 0]
|
|
744
|
+
[ B[4] 0 0 B[7] 0 0 0 0]
|
|
745
|
+
[ B[5] 0 -2*B[7] 0 0 0 0 0]
|
|
746
|
+
[ B[6] 2*B[7] 0 0 0 0 0 0]
|
|
747
|
+
[ B[7] 0 0 0 0 0 0 0]
|
|
748
|
+
|
|
749
|
+
.. NOTE::
|
|
750
|
+
|
|
751
|
+
The algebra structure only exists when the action on the
|
|
752
|
+
groundset yields an equivariant matroid, in the sense that
|
|
753
|
+
`g \cdot I \in \mathcal{I}` for every `g \in G` and for
|
|
754
|
+
every `I \in \mathcal{I}`.
|
|
755
|
+
"""
|
|
756
|
+
def __init__(self, R, M, G, action_on_groundset=None, *args, **kwargs):
|
|
757
|
+
r"""
|
|
758
|
+
Initialize ``self``.
|
|
759
|
+
|
|
760
|
+
EXAMPLES::
|
|
761
|
+
|
|
762
|
+
sage: # needs sage.graphs sage.groups
|
|
763
|
+
sage: M = matroids.CompleteGraphic(4)
|
|
764
|
+
sage: new_bases = [frozenset(i+1 for i in j) for j in M.bases()]
|
|
765
|
+
sage: M = Matroid(bases=new_bases)
|
|
766
|
+
sage: G = SymmetricGroup(6)
|
|
767
|
+
sage: OSG = M.orlik_solomon_algebra(QQ, invariant=G)
|
|
768
|
+
sage: TestSuite(OSG).run()
|
|
769
|
+
"""
|
|
770
|
+
ordering = kwargs.pop('ordering', None)
|
|
771
|
+
OS = OrlikSolomonAlgebra(R, M, ordering)
|
|
772
|
+
self._ambient = OS
|
|
773
|
+
|
|
774
|
+
if action_on_groundset is None:
|
|
775
|
+
# if sage knows the action, we don't need to provide it
|
|
776
|
+
|
|
777
|
+
def action_on_groundset(g, x):
|
|
778
|
+
return g(x)
|
|
779
|
+
|
|
780
|
+
self._groundset_action = action_on_groundset
|
|
781
|
+
|
|
782
|
+
self._side = kwargs.pop('side', 'left')
|
|
783
|
+
category = kwargs.pop('category', OS.category().Subobjects())
|
|
784
|
+
|
|
785
|
+
def action(g, m):
|
|
786
|
+
return OS.sum(c * self._basis_action(g, x)
|
|
787
|
+
for x, c in m._monomial_coefficients.items())
|
|
788
|
+
|
|
789
|
+
self._action = action
|
|
790
|
+
|
|
791
|
+
# Since an equivariant matroid yields a degree-preserving action
|
|
792
|
+
# on the basis of OS, the matrix which computes the action when
|
|
793
|
+
# computing the invariant will be a block matrix. To avoid dealing
|
|
794
|
+
# with huge matrices, we can split it up into graded pieces.
|
|
795
|
+
|
|
796
|
+
max_deg = max(b.degree() for b in OS.basis())
|
|
797
|
+
B = [] # initialize the basis
|
|
798
|
+
for d in range(max_deg + 1):
|
|
799
|
+
OS_d = OS.homogeneous_component(d)
|
|
800
|
+
OSG_d = OS_d.invariant_module(G, action=action, category=category)
|
|
801
|
+
B += [OS_d.lift(OSG_d.lift(b)) for b in OSG_d.basis()]
|
|
802
|
+
|
|
803
|
+
# `FiniteDimensionalInvariantModule.__init__` is already called
|
|
804
|
+
# by `OS_d.invariant_module`, and so we pass to the superclass
|
|
805
|
+
# of `FiniteDimensionalInvariantModule`, which is `SubmoduleWithBasis`.
|
|
806
|
+
from sage.modules.with_basis.subquotient import SubmoduleWithBasis
|
|
807
|
+
SubmoduleWithBasis.__init__(self, Family(B),
|
|
808
|
+
support_order=OS._compute_support_order(B),
|
|
809
|
+
ambient=OS,
|
|
810
|
+
unitriangular=False,
|
|
811
|
+
category=category,
|
|
812
|
+
*args, **kwargs)
|
|
813
|
+
|
|
814
|
+
# To subclass FiniteDimensionalInvariant module, we also need a
|
|
815
|
+
# self._semigroup attribute.
|
|
816
|
+
self._semigroup = G
|
|
817
|
+
|
|
818
|
+
def construction(self):
|
|
819
|
+
r"""
|
|
820
|
+
Return the functorial construction of ``self``.
|
|
821
|
+
|
|
822
|
+
This implementation of the method only returns ``None``.
|
|
823
|
+
|
|
824
|
+
TESTS::
|
|
825
|
+
|
|
826
|
+
sage: M = matroids.Wheel(3)
|
|
827
|
+
sage: from sage.algebras.orlik_solomon import OrlikSolomonAlgebra
|
|
828
|
+
sage: OS1 = OrlikSolomonAlgebra(QQ, M)
|
|
829
|
+
sage: OS1.construction() is None
|
|
830
|
+
True
|
|
831
|
+
"""
|
|
832
|
+
return None
|
|
833
|
+
|
|
834
|
+
def _basis_action(self, g, f):
|
|
835
|
+
r"""
|
|
836
|
+
Return the action of the group element ``g`` on the n.b.c. set ``f``
|
|
837
|
+
in the ambient Orlik-Solomon algebra.
|
|
838
|
+
|
|
839
|
+
INPUT:
|
|
840
|
+
|
|
841
|
+
- ``g`` -- a group element
|
|
842
|
+
- ``f`` -- ``frozenset`` for an n.b.c. set
|
|
843
|
+
|
|
844
|
+
OUTPUT:
|
|
845
|
+
|
|
846
|
+
- the result of the action of ``g`` on ``f`` inside
|
|
847
|
+
of the Orlik-Solomon algebra
|
|
848
|
+
|
|
849
|
+
EXAMPLES::
|
|
850
|
+
|
|
851
|
+
sage: # needs sage.graphs sage.groups
|
|
852
|
+
sage: M = matroids.CompleteGraphic(3)
|
|
853
|
+
sage: M.groundset()
|
|
854
|
+
frozenset({0, 1, 2})
|
|
855
|
+
sage: G = SymmetricGroup(3)
|
|
856
|
+
sage: def on_groundset(g, x):
|
|
857
|
+
....: return g(x+1)-1
|
|
858
|
+
sage: OSG = M.orlik_solomon_algebra(QQ, invariant=(G,on_groundset))
|
|
859
|
+
sage: act = lambda g: (OSG._basis_action(g,frozenset({0,1})),
|
|
860
|
+
....: OSG._basis_action(g,frozenset({0,2})))
|
|
861
|
+
sage: [act(g) for g in G]
|
|
862
|
+
[(OS{0, 1}, OS{0, 2}),
|
|
863
|
+
(-OS{0, 2}, OS{0, 1} - OS{0, 2}),
|
|
864
|
+
(-OS{0, 1} + OS{0, 2}, -OS{0, 1}),
|
|
865
|
+
(OS{0, 2}, OS{0, 1}),
|
|
866
|
+
(OS{0, 1} - OS{0, 2}, -OS{0, 2}),
|
|
867
|
+
(-OS{0, 1}, -OS{0, 1} + OS{0, 2})]
|
|
868
|
+
|
|
869
|
+
We also check that the ordering is respected::
|
|
870
|
+
|
|
871
|
+
sage: # needs sage.graphs sage.groups
|
|
872
|
+
sage: fset = frozenset({1,2})
|
|
873
|
+
sage: OS1 = M.orlik_solomon_algebra(QQ)
|
|
874
|
+
sage: OS1.subset_image(fset)
|
|
875
|
+
-OS{0, 1} + OS{0, 2}
|
|
876
|
+
sage: OS2 = M.orlik_solomon_algebra(QQ, range(2,-1,-1))
|
|
877
|
+
sage: OS2.subset_image(fset)
|
|
878
|
+
OS{1, 2}
|
|
879
|
+
sage: OSG2 = M.orlik_solomon_algebra(QQ,
|
|
880
|
+
....: invariant=(G,on_groundset),
|
|
881
|
+
....: ordering=range(2,-1,-1))
|
|
882
|
+
sage: g = G.an_element(); g
|
|
883
|
+
(2,3)
|
|
884
|
+
|
|
885
|
+
This choice of ``g`` acting on this choice of ``fset`` reverses
|
|
886
|
+
the sign::
|
|
887
|
+
|
|
888
|
+
sage: OSG._basis_action(g, fset) # needs sage.graphs sage.groups
|
|
889
|
+
OS{0, 1} - OS{0, 2}
|
|
890
|
+
sage: OSG2._basis_action(g, fset) # needs sage.graphs sage.groups
|
|
891
|
+
-OS{1, 2}
|
|
892
|
+
"""
|
|
893
|
+
OS = self._ambient
|
|
894
|
+
if not f:
|
|
895
|
+
return OS.one()
|
|
896
|
+
|
|
897
|
+
# basis_elt is an n.b.c. set, but it should be
|
|
898
|
+
# in a standardized order to deal with sign issues
|
|
899
|
+
basis_elt = sorted(f, key=OS._sorting.__getitem__)
|
|
900
|
+
|
|
901
|
+
gx = OS.one()
|
|
902
|
+
|
|
903
|
+
for e in basis_elt:
|
|
904
|
+
fset = frozenset([self._groundset_action(g, e)])
|
|
905
|
+
gx = gx * OS.subset_image(fset)
|
|
906
|
+
|
|
907
|
+
return gx
|