passagemath-gap-pkg-normalizinterface 10.6.32__cp310-cp310-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-gap-pkg-normalizinterface might be problematic. Click here for more details.
- gap/pkg/normalizinterface/CHANGES +113 -0
- gap/pkg/normalizinterface/LICENSE +351 -0
- gap/pkg/normalizinterface/PackageInfo.g +121 -0
- gap/pkg/normalizinterface/README.md +96 -0
- gap/pkg/normalizinterface/bin/aarch64-unknown-linux-musl-default64-kv10/NormalizInterface.so +0 -0
- gap/pkg/normalizinterface/etc/download.sh +85 -0
- gap/pkg/normalizinterface/etc/generate_cone_property_wrappers.g +380 -0
- gap/pkg/normalizinterface/examples/5x5.g +22 -0
- gap/pkg/normalizinterface/examples/demo.g +53 -0
- gap/pkg/normalizinterface/examples/docs.g +43 -0
- gap/pkg/normalizinterface/examples/dual_mode.g +26 -0
- gap/pkg/normalizinterface/examples/magic_square.g +36 -0
- gap/pkg/normalizinterface/init.g +7 -0
- gap/pkg/normalizinterface/lib/cone_property_wrappers.gd +682 -0
- gap/pkg/normalizinterface/lib/cone_property_wrappers.gi +132 -0
- gap/pkg/normalizinterface/lib/normaliz.gd +130 -0
- gap/pkg/normalizinterface/lib/normaliz.gi +153 -0
- gap/pkg/normalizinterface/makedoc.g +13 -0
- gap/pkg/normalizinterface/read.g +3 -0
- gap/pkg/normalizinterface/tst/InhomIneq.tst +20 -0
- gap/pkg/normalizinterface/tst/bugfix.tst +37 -0
- gap/pkg/normalizinterface/tst/conversion.tst +87 -0
- gap/pkg/normalizinterface/tst/cube-incidence.tst +62 -0
- gap/pkg/normalizinterface/tst/descent.tst +173 -0
- gap/pkg/normalizinterface/tst/dual.tst +533 -0
- gap/pkg/normalizinterface/tst/fractions.tst +29 -0
- gap/pkg/normalizinterface/tst/gorenstein.tst +22 -0
- gap/pkg/normalizinterface/tst/normalizinterface01.tst +46 -0
- gap/pkg/normalizinterface/tst/normalizinterface02.tst +107 -0
- gap/pkg/normalizinterface/tst/project.tst +136 -0
- gap/pkg/normalizinterface/tst/rational.tst +151 -0
- gap/pkg/normalizinterface/tst/rees.tst +544 -0
- gap/pkg/normalizinterface/tst/rp2poly.tst +351 -0
- gap/pkg/normalizinterface/tst/rproj2.tst +548 -0
- gap/pkg/normalizinterface/tst/testall.g +3 -0
- gap/pkg/normalizinterface/tst/verticesfloat.tst +11 -0
- passagemath_gap_pkg_normalizinterface-10.6.32.dist-info/METADATA +93 -0
- passagemath_gap_pkg_normalizinterface-10.6.32.dist-info/METADATA.bak +94 -0
- passagemath_gap_pkg_normalizinterface-10.6.32.dist-info/RECORD +54 -0
- passagemath_gap_pkg_normalizinterface-10.6.32.dist-info/WHEEL +5 -0
- passagemath_gap_pkg_normalizinterface-10.6.32.dist-info/top_level.txt +1 -0
- passagemath_gap_pkg_normalizinterface.libs/libeantic-da90a096.so.3.1.0 +0 -0
- passagemath_gap_pkg_normalizinterface.libs/libeanticxx-bd9d5c67.so.3.1.0 +0 -0
- passagemath_gap_pkg_normalizinterface.libs/libflint-8c82a98a.so.21.0.0 +0 -0
- passagemath_gap_pkg_normalizinterface.libs/libgcc_s-2d945d6c.so.1 +0 -0
- passagemath_gap_pkg_normalizinterface.libs/libgmp-28992bcb.so.10.5.0 +0 -0
- passagemath_gap_pkg_normalizinterface.libs/libgmpxx-fecb01a9.so.4.7.0 +0 -0
- passagemath_gap_pkg_normalizinterface.libs/libgomp-1ede7ee7.so.1.0.0 +0 -0
- passagemath_gap_pkg_normalizinterface.libs/libmpfr-e34bb864.so.6.2.1 +0 -0
- passagemath_gap_pkg_normalizinterface.libs/libnormaliz-40532fe8.so.3.11.0 +0 -0
- passagemath_gap_pkg_normalizinterface.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
- sage/all__sagemath_gap_pkg_normalizinterface.py +1 -0
- sage/libs/all__sagemath_gap_pkg_normalizinterface.py +1 -0
- sage/libs/gap_pkg_normalizinterface.cpython-310-aarch64-linux-gnu.so +0 -0
|
@@ -0,0 +1,544 @@
|
|
|
1
|
+
gap> START_TEST("rees.tst");
|
|
2
|
+
|
|
3
|
+
#
|
|
4
|
+
gap> M := [
|
|
5
|
+
> [ 1, 1, 1, 0, 0, 0 ],
|
|
6
|
+
> [ 1, 1, 0, 1, 0, 0 ],
|
|
7
|
+
> [ 1, 0, 1, 0, 1, 0 ],
|
|
8
|
+
> [ 1, 0, 0, 1, 0, 1 ],
|
|
9
|
+
> [ 1, 0, 0, 0, 1, 1 ],
|
|
10
|
+
> [ 0, 1, 1, 0, 0, 1 ],
|
|
11
|
+
> [ 0, 1, 0, 1, 1, 0 ],
|
|
12
|
+
> [ 0, 1, 0, 0, 1, 1 ],
|
|
13
|
+
> [ 0, 0, 1, 1, 1, 0 ],
|
|
14
|
+
> [ 0, 0, 1, 1, 0, 1 ],
|
|
15
|
+
> ];;
|
|
16
|
+
gap> cone := NmzCone(["rees_algebra", M]);;
|
|
17
|
+
gap> NmzCompute(cone);
|
|
18
|
+
true
|
|
19
|
+
gap> tmp := NmzKnownConeProperties(cone);;
|
|
20
|
+
gap> RemoveSet(tmp, "NumberLatticePoints");
|
|
21
|
+
gap> Perform(tmp, Display);
|
|
22
|
+
ClassGroup
|
|
23
|
+
Deg1Elements
|
|
24
|
+
EmbeddingDim
|
|
25
|
+
ExtremeRays
|
|
26
|
+
Generators
|
|
27
|
+
Grading
|
|
28
|
+
GradingDenom
|
|
29
|
+
HilbertBasis
|
|
30
|
+
HilbertQuasiPolynomial
|
|
31
|
+
HilbertSeries
|
|
32
|
+
InternalIndex
|
|
33
|
+
IsDeg1ExtremeRays
|
|
34
|
+
IsDeg1HilbertBasis
|
|
35
|
+
IsInhomogeneous
|
|
36
|
+
IsIntegrallyClosed
|
|
37
|
+
IsPointed
|
|
38
|
+
IsReesPrimary
|
|
39
|
+
IsTriangulationNested
|
|
40
|
+
IsTriangulationPartial
|
|
41
|
+
MaximalSubspace
|
|
42
|
+
Multiplicity
|
|
43
|
+
OriginalMonoidGenerators
|
|
44
|
+
Rank
|
|
45
|
+
Sublattice
|
|
46
|
+
SupportHyperplanes
|
|
47
|
+
TriangulationDetSum
|
|
48
|
+
TriangulationSize
|
|
49
|
+
UnitGroupIndex
|
|
50
|
+
gap> Display(NmzTriangulation(cone));
|
|
51
|
+
[ [ rec(
|
|
52
|
+
Excluded := [ ],
|
|
53
|
+
height := 0,
|
|
54
|
+
key := [ 0, 1, 2, 3, 4, 6, 10 ],
|
|
55
|
+
mult := 0,
|
|
56
|
+
vol := 1 ), rec(
|
|
57
|
+
Excluded := [ ],
|
|
58
|
+
height := 0,
|
|
59
|
+
key := [ 0, 1, 2, 4, 6, 7, 10 ],
|
|
60
|
+
mult := 0,
|
|
61
|
+
vol := 1 ), rec(
|
|
62
|
+
Excluded := [ ],
|
|
63
|
+
height := 0,
|
|
64
|
+
key := [ 0, 1, 2, 4, 7, 10, 11 ],
|
|
65
|
+
mult := 0,
|
|
66
|
+
vol := 1 ), rec(
|
|
67
|
+
Excluded := [ ],
|
|
68
|
+
height := 0,
|
|
69
|
+
key := [ 0, 1, 3, 4, 6, 7, 10 ],
|
|
70
|
+
mult := 0,
|
|
71
|
+
vol := 1 ), rec(
|
|
72
|
+
Excluded := [ ],
|
|
73
|
+
height := 0,
|
|
74
|
+
key := [ 0, 1, 3, 4, 7, 10, 11 ],
|
|
75
|
+
mult := 0,
|
|
76
|
+
vol := 1 ), rec(
|
|
77
|
+
Excluded := [ ],
|
|
78
|
+
height := 0,
|
|
79
|
+
key := [ 0, 2, 4, 6, 7, 10, 12 ],
|
|
80
|
+
mult := 0,
|
|
81
|
+
vol := 1 ), rec(
|
|
82
|
+
Excluded := [ ],
|
|
83
|
+
height := 0,
|
|
84
|
+
key := [ 0, 2, 4, 7, 10, 11, 12 ],
|
|
85
|
+
mult := 0,
|
|
86
|
+
vol := 1 ), rec(
|
|
87
|
+
Excluded := [ ],
|
|
88
|
+
height := 0,
|
|
89
|
+
key := [ 0, 3, 4, 6, 7, 9, 10 ],
|
|
90
|
+
mult := 0,
|
|
91
|
+
vol := 1 ), rec(
|
|
92
|
+
Excluded := [ ],
|
|
93
|
+
height := 0,
|
|
94
|
+
key := [ 0, 3, 4, 7, 9, 10, 11 ],
|
|
95
|
+
mult := 0,
|
|
96
|
+
vol := 1 ), rec(
|
|
97
|
+
Excluded := [ ],
|
|
98
|
+
height := 0,
|
|
99
|
+
key := [ 0, 4, 6, 7, 9, 10, 12 ],
|
|
100
|
+
mult := 0,
|
|
101
|
+
vol := 1 ), rec(
|
|
102
|
+
Excluded := [ ],
|
|
103
|
+
height := 0,
|
|
104
|
+
key := [ 0, 4, 7, 9, 10, 11, 12 ],
|
|
105
|
+
mult := 0,
|
|
106
|
+
vol := 1 ), rec(
|
|
107
|
+
Excluded := [ ],
|
|
108
|
+
height := 0,
|
|
109
|
+
key := [ 1, 2, 3, 4, 5, 6, 10 ],
|
|
110
|
+
mult := 0,
|
|
111
|
+
vol := 1 ), rec(
|
|
112
|
+
Excluded := [ ],
|
|
113
|
+
height := 0,
|
|
114
|
+
key := [ 1, 2, 4, 5, 6, 7, 10 ],
|
|
115
|
+
mult := 0,
|
|
116
|
+
vol := 1 ), rec(
|
|
117
|
+
Excluded := [ ],
|
|
118
|
+
height := 0,
|
|
119
|
+
key := [ 1, 2, 4, 5, 7, 10, 11 ],
|
|
120
|
+
mult := 0,
|
|
121
|
+
vol := 1 ), rec(
|
|
122
|
+
Excluded := [ ],
|
|
123
|
+
height := 0,
|
|
124
|
+
key := [ 1, 2, 5, 6, 7, 8, 10 ],
|
|
125
|
+
mult := 0,
|
|
126
|
+
vol := 1 ), rec(
|
|
127
|
+
Excluded := [ ],
|
|
128
|
+
height := 0,
|
|
129
|
+
key := [ 1, 2, 5, 7, 8, 10, 11 ],
|
|
130
|
+
mult := 0,
|
|
131
|
+
vol := 1 ), rec(
|
|
132
|
+
Excluded := [ ],
|
|
133
|
+
height := 0,
|
|
134
|
+
key := [ 1, 3, 4, 5, 6, 7, 10 ],
|
|
135
|
+
mult := 0,
|
|
136
|
+
vol := 1 ), rec(
|
|
137
|
+
Excluded := [ ],
|
|
138
|
+
height := 0,
|
|
139
|
+
key := [ 1, 3, 4, 5, 7, 10, 11 ],
|
|
140
|
+
mult := 0,
|
|
141
|
+
vol := 1 ), rec(
|
|
142
|
+
Excluded := [ ],
|
|
143
|
+
height := 0,
|
|
144
|
+
key := [ 1, 3, 5, 6, 7, 10, 13 ],
|
|
145
|
+
mult := 0,
|
|
146
|
+
vol := 1 ), rec(
|
|
147
|
+
Excluded := [ ],
|
|
148
|
+
height := 0,
|
|
149
|
+
key := [ 1, 3, 5, 7, 10, 11, 13 ],
|
|
150
|
+
mult := 0,
|
|
151
|
+
vol := 1 ), rec(
|
|
152
|
+
Excluded := [ ],
|
|
153
|
+
height := 0,
|
|
154
|
+
key := [ 1, 5, 6, 7, 8, 10, 13 ],
|
|
155
|
+
mult := 0,
|
|
156
|
+
vol := 1 ), rec(
|
|
157
|
+
Excluded := [ ],
|
|
158
|
+
height := 0,
|
|
159
|
+
key := [ 1, 5, 7, 8, 10, 11, 13 ],
|
|
160
|
+
mult := 0,
|
|
161
|
+
vol := 1 ), rec(
|
|
162
|
+
Excluded := [ ],
|
|
163
|
+
height := 0,
|
|
164
|
+
key := [ 2, 3, 4, 5, 6, 10, 14 ],
|
|
165
|
+
mult := 0,
|
|
166
|
+
vol := 1 ), rec(
|
|
167
|
+
Excluded := [ ],
|
|
168
|
+
height := 0,
|
|
169
|
+
key := [ 2, 4, 5, 6, 7, 8, 10 ],
|
|
170
|
+
mult := 0,
|
|
171
|
+
vol := 1 ), rec(
|
|
172
|
+
Excluded := [ ],
|
|
173
|
+
height := 0,
|
|
174
|
+
key := [ 2, 4, 5, 6, 8, 10, 14 ],
|
|
175
|
+
mult := 0,
|
|
176
|
+
vol := 1 ), rec(
|
|
177
|
+
Excluded := [ ],
|
|
178
|
+
height := 0,
|
|
179
|
+
key := [ 2, 4, 5, 7, 8, 10, 11 ],
|
|
180
|
+
mult := 0,
|
|
181
|
+
vol := 1 ), rec(
|
|
182
|
+
Excluded := [ ],
|
|
183
|
+
height := 0,
|
|
184
|
+
key := [ 2, 4, 5, 8, 10, 11, 12 ],
|
|
185
|
+
mult := 0,
|
|
186
|
+
vol := 1 ), rec(
|
|
187
|
+
Excluded := [ ],
|
|
188
|
+
height := 0,
|
|
189
|
+
key := [ 2, 4, 5, 8, 10, 12, 14 ],
|
|
190
|
+
mult := 0,
|
|
191
|
+
vol := 1 ), rec(
|
|
192
|
+
Excluded := [ ],
|
|
193
|
+
height := 0,
|
|
194
|
+
key := [ 2, 4, 6, 7, 8, 10, 12 ],
|
|
195
|
+
mult := 0,
|
|
196
|
+
vol := 1 ), rec(
|
|
197
|
+
Excluded := [ ],
|
|
198
|
+
height := 0,
|
|
199
|
+
key := [ 2, 4, 6, 8, 10, 12, 14 ],
|
|
200
|
+
mult := 0,
|
|
201
|
+
vol := 1 ), rec(
|
|
202
|
+
Excluded := [ ],
|
|
203
|
+
height := 0,
|
|
204
|
+
key := [ 2, 4, 7, 8, 10, 11, 12 ],
|
|
205
|
+
mult := 0,
|
|
206
|
+
vol := 1 ), rec(
|
|
207
|
+
Excluded := [ ],
|
|
208
|
+
height := 0,
|
|
209
|
+
key := [ 3, 4, 5, 6, 7, 9, 10 ],
|
|
210
|
+
mult := 0,
|
|
211
|
+
vol := 1 ), rec(
|
|
212
|
+
Excluded := [ ],
|
|
213
|
+
height := 0,
|
|
214
|
+
key := [ 3, 4, 5, 6, 9, 10, 14 ],
|
|
215
|
+
mult := 0,
|
|
216
|
+
vol := 1 ), rec(
|
|
217
|
+
Excluded := [ ],
|
|
218
|
+
height := 0,
|
|
219
|
+
key := [ 3, 4, 5, 7, 9, 10, 11 ],
|
|
220
|
+
mult := 0,
|
|
221
|
+
vol := 1 ), rec(
|
|
222
|
+
Excluded := [ ],
|
|
223
|
+
height := 0,
|
|
224
|
+
key := [ 3, 4, 5, 9, 10, 11, 13 ],
|
|
225
|
+
mult := 0,
|
|
226
|
+
vol := 1 ), rec(
|
|
227
|
+
Excluded := [ ],
|
|
228
|
+
height := 0,
|
|
229
|
+
key := [ 3, 4, 5, 9, 10, 13, 14 ],
|
|
230
|
+
mult := 0,
|
|
231
|
+
vol := 1 ), rec(
|
|
232
|
+
Excluded := [ ],
|
|
233
|
+
height := 0,
|
|
234
|
+
key := [ 3, 4, 5, 9, 13, 14, 15 ],
|
|
235
|
+
mult := 0,
|
|
236
|
+
vol := 1 ), rec(
|
|
237
|
+
Excluded := [ ],
|
|
238
|
+
height := 0,
|
|
239
|
+
key := [ 3, 4, 9, 10, 13, 14, 15 ],
|
|
240
|
+
mult := 0,
|
|
241
|
+
vol := 1 ), rec(
|
|
242
|
+
Excluded := [ ],
|
|
243
|
+
height := 0,
|
|
244
|
+
key := [ 3, 5, 6, 7, 9, 10, 13 ],
|
|
245
|
+
mult := 0,
|
|
246
|
+
vol := 1 ), rec(
|
|
247
|
+
Excluded := [ ],
|
|
248
|
+
height := 0,
|
|
249
|
+
key := [ 3, 5, 6, 9, 10, 13, 14 ],
|
|
250
|
+
mult := 0,
|
|
251
|
+
vol := 1 ), rec(
|
|
252
|
+
Excluded := [ ],
|
|
253
|
+
height := 0,
|
|
254
|
+
key := [ 3, 5, 6, 9, 13, 14, 15 ],
|
|
255
|
+
mult := 0,
|
|
256
|
+
vol := 1 ), rec(
|
|
257
|
+
Excluded := [ ],
|
|
258
|
+
height := 0,
|
|
259
|
+
key := [ 3, 5, 7, 9, 10, 11, 13 ],
|
|
260
|
+
mult := 0,
|
|
261
|
+
vol := 1 ), rec(
|
|
262
|
+
Excluded := [ ],
|
|
263
|
+
height := 0,
|
|
264
|
+
key := [ 3, 6, 9, 10, 13, 14, 15 ],
|
|
265
|
+
mult := 0,
|
|
266
|
+
vol := 1 ), rec(
|
|
267
|
+
Excluded := [ ],
|
|
268
|
+
height := 0,
|
|
269
|
+
key := [ 4, 5, 6, 7, 8, 9, 10 ],
|
|
270
|
+
mult := 0,
|
|
271
|
+
vol := 1 ), rec(
|
|
272
|
+
Excluded := [ ],
|
|
273
|
+
height := 0,
|
|
274
|
+
key := [ 4, 5, 6, 8, 9, 10, 14 ],
|
|
275
|
+
mult := 0,
|
|
276
|
+
vol := 1 ), rec(
|
|
277
|
+
Excluded := [ ],
|
|
278
|
+
height := 0,
|
|
279
|
+
key := [ 4, 5, 7, 8, 9, 10, 11 ],
|
|
280
|
+
mult := 0,
|
|
281
|
+
vol := 1 ), rec(
|
|
282
|
+
Excluded := [ ],
|
|
283
|
+
height := 0,
|
|
284
|
+
key := [ 4, 5, 8, 9, 10, 11, 12 ],
|
|
285
|
+
mult := 0,
|
|
286
|
+
vol := 1 ), rec(
|
|
287
|
+
Excluded := [ ],
|
|
288
|
+
height := 0,
|
|
289
|
+
key := [ 4, 5, 8, 9, 10, 12, 14 ],
|
|
290
|
+
mult := 0,
|
|
291
|
+
vol := 1 ), rec(
|
|
292
|
+
Excluded := [ ],
|
|
293
|
+
height := 0,
|
|
294
|
+
key := [ 4, 5, 9, 10, 11, 12, 13 ],
|
|
295
|
+
mult := 0,
|
|
296
|
+
vol := 1 ), rec(
|
|
297
|
+
Excluded := [ ],
|
|
298
|
+
height := 0,
|
|
299
|
+
key := [ 4, 5, 9, 10, 12, 13, 14 ],
|
|
300
|
+
mult := 0,
|
|
301
|
+
vol := 1 ), rec(
|
|
302
|
+
Excluded := [ ],
|
|
303
|
+
height := 0,
|
|
304
|
+
key := [ 4, 6, 7, 8, 9, 10, 12 ],
|
|
305
|
+
mult := 0,
|
|
306
|
+
vol := 1 ), rec(
|
|
307
|
+
Excluded := [ ],
|
|
308
|
+
height := 0,
|
|
309
|
+
key := [ 4, 6, 8, 9, 10, 12, 14 ],
|
|
310
|
+
mult := 0,
|
|
311
|
+
vol := 1 ), rec(
|
|
312
|
+
Excluded := [ ],
|
|
313
|
+
height := 0,
|
|
314
|
+
key := [ 4, 7, 8, 9, 10, 11, 12 ],
|
|
315
|
+
mult := 0,
|
|
316
|
+
vol := 1 ), rec(
|
|
317
|
+
Excluded := [ ],
|
|
318
|
+
height := 0,
|
|
319
|
+
key := [ 4, 9, 10, 12, 13, 14, 15 ],
|
|
320
|
+
mult := 0,
|
|
321
|
+
vol := 1 ), rec(
|
|
322
|
+
Excluded := [ ],
|
|
323
|
+
height := 0,
|
|
324
|
+
key := [ 5, 6, 7, 8, 9, 10, 13 ],
|
|
325
|
+
mult := 0,
|
|
326
|
+
vol := 1 ), rec(
|
|
327
|
+
Excluded := [ ],
|
|
328
|
+
height := 0,
|
|
329
|
+
key := [ 5, 6, 8, 9, 10, 13, 14 ],
|
|
330
|
+
mult := 0,
|
|
331
|
+
vol := 1 ), rec(
|
|
332
|
+
Excluded := [ ],
|
|
333
|
+
height := 0,
|
|
334
|
+
key := [ 5, 6, 8, 9, 13, 14, 15 ],
|
|
335
|
+
mult := 0,
|
|
336
|
+
vol := 1 ), rec(
|
|
337
|
+
Excluded := [ ],
|
|
338
|
+
height := 0,
|
|
339
|
+
key := [ 5, 7, 8, 9, 10, 11, 13 ],
|
|
340
|
+
mult := 0,
|
|
341
|
+
vol := 1 ), rec(
|
|
342
|
+
Excluded := [ ],
|
|
343
|
+
height := 0,
|
|
344
|
+
key := [ 5, 8, 9, 10, 11, 12, 13 ],
|
|
345
|
+
mult := 0,
|
|
346
|
+
vol := 2 ), rec(
|
|
347
|
+
Excluded := [ ],
|
|
348
|
+
height := 0,
|
|
349
|
+
key := [ 5, 8, 9, 10, 12, 13, 14 ],
|
|
350
|
+
mult := 0,
|
|
351
|
+
vol := 2 ), rec(
|
|
352
|
+
Excluded := [ ],
|
|
353
|
+
height := 0,
|
|
354
|
+
key := [ 6, 7, 8, 9, 10, 12, 14 ],
|
|
355
|
+
mult := 0,
|
|
356
|
+
vol := 1 ), rec(
|
|
357
|
+
Excluded := [ ],
|
|
358
|
+
height := 0,
|
|
359
|
+
key := [ 6, 7, 8, 9, 10, 13, 14 ],
|
|
360
|
+
mult := 0,
|
|
361
|
+
vol := 1 ), rec(
|
|
362
|
+
Excluded := [ ],
|
|
363
|
+
height := 0,
|
|
364
|
+
key := [ 6, 7, 8, 9, 13, 14, 15 ],
|
|
365
|
+
mult := 0,
|
|
366
|
+
vol := 1 ), rec(
|
|
367
|
+
Excluded := [ ],
|
|
368
|
+
height := 0,
|
|
369
|
+
key := [ 6, 7, 9, 10, 13, 14, 15 ],
|
|
370
|
+
mult := 0,
|
|
371
|
+
vol := 1 ), rec(
|
|
372
|
+
Excluded := [ ],
|
|
373
|
+
height := 0,
|
|
374
|
+
key := [ 7, 8, 9, 10, 11, 12, 14 ],
|
|
375
|
+
mult := 0,
|
|
376
|
+
vol := 1 ), rec(
|
|
377
|
+
Excluded := [ ],
|
|
378
|
+
height := 0,
|
|
379
|
+
key := [ 7, 8, 9, 10, 11, 13, 14 ],
|
|
380
|
+
mult := 0,
|
|
381
|
+
vol := 1 ), rec(
|
|
382
|
+
Excluded := [ ],
|
|
383
|
+
height := 0,
|
|
384
|
+
key := [ 7, 9, 10, 11, 13, 14, 15 ],
|
|
385
|
+
mult := 0,
|
|
386
|
+
vol := 1 ), rec(
|
|
387
|
+
Excluded := [ ],
|
|
388
|
+
height := 0,
|
|
389
|
+
key := [ 8, 9, 10, 11, 12, 13, 14 ],
|
|
390
|
+
mult := 0,
|
|
391
|
+
vol := 2 ), rec(
|
|
392
|
+
Excluded := [ ],
|
|
393
|
+
height := 0,
|
|
394
|
+
key := [ 9, 10, 11, 12, 13, 14, 15 ],
|
|
395
|
+
mult := 0,
|
|
396
|
+
vol := 1 ) ],
|
|
397
|
+
[ [ 0, 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1, 0, 0 ], [ 0, 0, 0, 1, 0, 0, 0 ],
|
|
398
|
+
[ 0, 0, 1, 0, 0, 0, 0 ], [ 0, 0, 1, 1, 0, 1, 1 ],
|
|
399
|
+
[ 0, 0, 1, 1, 1, 0, 1 ], [ 0, 1, 0, 0, 0, 0, 0 ],
|
|
400
|
+
[ 0, 1, 0, 0, 1, 1, 1 ], [ 0, 1, 0, 1, 1, 0, 1 ],
|
|
401
|
+
[ 0, 1, 1, 0, 0, 1, 1 ], [ 1, 0, 0, 0, 0, 0, 0 ],
|
|
402
|
+
[ 1, 0, 0, 0, 1, 1, 1 ], [ 1, 0, 0, 1, 0, 1, 1 ],
|
|
403
|
+
[ 1, 0, 1, 0, 1, 0, 1 ], [ 1, 1, 0, 1, 0, 0, 1 ],
|
|
404
|
+
[ 1, 1, 1, 0, 0, 0, 1 ] ] ]
|
|
405
|
+
gap> Display(NmzExtremeRays(cone));
|
|
406
|
+
[ [ 0, 0, 0, 0, 0, 1, 0 ],
|
|
407
|
+
[ 0, 0, 0, 0, 1, 0, 0 ],
|
|
408
|
+
[ 0, 0, 0, 1, 0, 0, 0 ],
|
|
409
|
+
[ 0, 0, 1, 0, 0, 0, 0 ],
|
|
410
|
+
[ 0, 0, 1, 1, 0, 1, 1 ],
|
|
411
|
+
[ 0, 0, 1, 1, 1, 0, 1 ],
|
|
412
|
+
[ 0, 1, 0, 0, 0, 0, 0 ],
|
|
413
|
+
[ 0, 1, 0, 0, 1, 1, 1 ],
|
|
414
|
+
[ 0, 1, 0, 1, 1, 0, 1 ],
|
|
415
|
+
[ 0, 1, 1, 0, 0, 1, 1 ],
|
|
416
|
+
[ 1, 0, 0, 0, 0, 0, 0 ],
|
|
417
|
+
[ 1, 0, 0, 0, 1, 1, 1 ],
|
|
418
|
+
[ 1, 0, 0, 1, 0, 1, 1 ],
|
|
419
|
+
[ 1, 0, 1, 0, 1, 0, 1 ],
|
|
420
|
+
[ 1, 1, 0, 1, 0, 0, 1 ],
|
|
421
|
+
[ 1, 1, 1, 0, 0, 0, 1 ] ]
|
|
422
|
+
gap> Display(NmzSupportHyperplanes(cone));
|
|
423
|
+
[ [ 0, 0, 0, 0, 0, 0, 1 ],
|
|
424
|
+
[ 0, 0, 0, 0, 0, 1, 0 ],
|
|
425
|
+
[ 0, 0, 0, 0, 1, 0, 0 ],
|
|
426
|
+
[ 0, 0, 0, 1, 0, 0, 0 ],
|
|
427
|
+
[ 0, 0, 1, 0, 0, 0, 0 ],
|
|
428
|
+
[ 0, 0, 1, 1, 0, 1, -1 ],
|
|
429
|
+
[ 0, 0, 1, 1, 1, 0, -1 ],
|
|
430
|
+
[ 0, 1, 0, 0, 0, 0, 0 ],
|
|
431
|
+
[ 0, 1, 0, 0, 1, 1, -1 ],
|
|
432
|
+
[ 0, 1, 0, 1, 1, 0, -1 ],
|
|
433
|
+
[ 0, 1, 1, 0, 0, 1, -1 ],
|
|
434
|
+
[ 0, 1, 1, 1, 1, 1, -2 ],
|
|
435
|
+
[ 1, 0, 0, 0, 0, 0, 0 ],
|
|
436
|
+
[ 1, 0, 0, 0, 1, 1, -1 ],
|
|
437
|
+
[ 1, 0, 0, 1, 0, 1, -1 ],
|
|
438
|
+
[ 1, 0, 1, 0, 1, 0, -1 ],
|
|
439
|
+
[ 1, 0, 1, 1, 1, 1, -2 ],
|
|
440
|
+
[ 1, 1, 0, 1, 0, 0, -1 ],
|
|
441
|
+
[ 1, 1, 0, 1, 1, 1, -2 ],
|
|
442
|
+
[ 1, 1, 1, 0, 0, 0, -1 ],
|
|
443
|
+
[ 1, 1, 1, 0, 1, 1, -2 ],
|
|
444
|
+
[ 1, 1, 1, 1, 0, 1, -2 ],
|
|
445
|
+
[ 1, 1, 1, 1, 1, 0, -2 ],
|
|
446
|
+
[ 1, 1, 1, 1, 1, 1, -3 ] ]
|
|
447
|
+
gap> Display(NmzHilbertBasis(cone));
|
|
448
|
+
[ [ 0, 0, 0, 0, 0, 1, 0 ],
|
|
449
|
+
[ 0, 0, 0, 0, 1, 0, 0 ],
|
|
450
|
+
[ 0, 0, 0, 1, 0, 0, 0 ],
|
|
451
|
+
[ 0, 0, 1, 0, 0, 0, 0 ],
|
|
452
|
+
[ 0, 0, 1, 1, 0, 1, 1 ],
|
|
453
|
+
[ 0, 0, 1, 1, 1, 0, 1 ],
|
|
454
|
+
[ 0, 1, 0, 0, 0, 0, 0 ],
|
|
455
|
+
[ 0, 1, 0, 0, 1, 1, 1 ],
|
|
456
|
+
[ 0, 1, 0, 1, 1, 0, 1 ],
|
|
457
|
+
[ 0, 1, 1, 0, 0, 1, 1 ],
|
|
458
|
+
[ 1, 0, 0, 0, 0, 0, 0 ],
|
|
459
|
+
[ 1, 0, 0, 0, 1, 1, 1 ],
|
|
460
|
+
[ 1, 0, 0, 1, 0, 1, 1 ],
|
|
461
|
+
[ 1, 0, 1, 0, 1, 0, 1 ],
|
|
462
|
+
[ 1, 1, 0, 1, 0, 0, 1 ],
|
|
463
|
+
[ 1, 1, 1, 0, 0, 0, 1 ],
|
|
464
|
+
[ 1, 1, 1, 1, 1, 1, 2 ] ]
|
|
465
|
+
gap> Display(NmzDeg1Elements(cone));
|
|
466
|
+
[ [ 0, 0, 0, 0, 0, 1, 0 ],
|
|
467
|
+
[ 0, 0, 0, 0, 1, 0, 0 ],
|
|
468
|
+
[ 0, 0, 0, 1, 0, 0, 0 ],
|
|
469
|
+
[ 0, 0, 1, 0, 0, 0, 0 ],
|
|
470
|
+
[ 0, 0, 1, 1, 0, 1, 1 ],
|
|
471
|
+
[ 0, 0, 1, 1, 1, 0, 1 ],
|
|
472
|
+
[ 0, 1, 0, 0, 0, 0, 0 ],
|
|
473
|
+
[ 0, 1, 0, 0, 1, 1, 1 ],
|
|
474
|
+
[ 0, 1, 0, 1, 1, 0, 1 ],
|
|
475
|
+
[ 0, 1, 1, 0, 0, 1, 1 ],
|
|
476
|
+
[ 1, 0, 0, 0, 0, 0, 0 ],
|
|
477
|
+
[ 1, 0, 0, 0, 1, 1, 1 ],
|
|
478
|
+
[ 1, 0, 0, 1, 0, 1, 1 ],
|
|
479
|
+
[ 1, 0, 1, 0, 1, 0, 1 ],
|
|
480
|
+
[ 1, 1, 0, 1, 0, 0, 1 ],
|
|
481
|
+
[ 1, 1, 1, 0, 0, 0, 1 ] ]
|
|
482
|
+
gap> Display(NmzSublattice(cone));
|
|
483
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0 ], [ 0, 0, 1, 0, 0, 0, 0 ],
|
|
484
|
+
[ 0, 0, 0, 1, 0, 0, 0 ], [ 0, 0, 0, 0, 1, 0, 0 ],
|
|
485
|
+
[ 0, 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 0, 0, 1 ] ],
|
|
486
|
+
[ [ 1, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0 ], [ 0, 0, 1, 0, 0, 0, 0 ],
|
|
487
|
+
[ 0, 0, 0, 1, 0, 0, 0 ], [ 0, 0, 0, 0, 1, 0, 0 ],
|
|
488
|
+
[ 0, 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 0, 0, 1 ] ], 1 ]
|
|
489
|
+
gap> Display(NmzOriginalMonoidGenerators(cone));
|
|
490
|
+
[ [ 1, 0, 0, 0, 0, 0, 0 ],
|
|
491
|
+
[ 0, 1, 0, 0, 0, 0, 0 ],
|
|
492
|
+
[ 0, 0, 1, 0, 0, 0, 0 ],
|
|
493
|
+
[ 0, 0, 0, 1, 0, 0, 0 ],
|
|
494
|
+
[ 0, 0, 0, 0, 1, 0, 0 ],
|
|
495
|
+
[ 0, 0, 0, 0, 0, 1, 0 ],
|
|
496
|
+
[ 1, 1, 1, 0, 0, 0, 1 ],
|
|
497
|
+
[ 1, 1, 0, 1, 0, 0, 1 ],
|
|
498
|
+
[ 1, 0, 1, 0, 1, 0, 1 ],
|
|
499
|
+
[ 1, 0, 0, 1, 0, 1, 1 ],
|
|
500
|
+
[ 1, 0, 0, 0, 1, 1, 1 ],
|
|
501
|
+
[ 0, 1, 1, 0, 0, 1, 1 ],
|
|
502
|
+
[ 0, 1, 0, 1, 1, 0, 1 ],
|
|
503
|
+
[ 0, 1, 0, 0, 1, 1, 1 ],
|
|
504
|
+
[ 0, 0, 1, 1, 1, 0, 1 ],
|
|
505
|
+
[ 0, 0, 1, 1, 0, 1, 1 ] ]
|
|
506
|
+
gap> _NmzPrintSomeConeProperties(cone, [
|
|
507
|
+
> "Generators",
|
|
508
|
+
> "ExtremeRays",
|
|
509
|
+
> "SupportHyperplanes",
|
|
510
|
+
> "HilbertBasis",
|
|
511
|
+
> "Deg1Elements",
|
|
512
|
+
> "Sublattice",
|
|
513
|
+
> "NumberLatticePoints",
|
|
514
|
+
> "OriginalMonoidGenerators",
|
|
515
|
+
> ]);
|
|
516
|
+
BasicTriangulation = fail
|
|
517
|
+
ClassGroup = [ 17 ]
|
|
518
|
+
EhrhartQuasiPolynomial = [ [ 60, 194, 284, 245, 130, 41, 6 ], 60 ]
|
|
519
|
+
EmbeddingDim = 7
|
|
520
|
+
Grading = [ 1, 1, 1, 1, 1, 1, -2 ]
|
|
521
|
+
GradingDenom = 1
|
|
522
|
+
HilbertQuasiPolynomial =
|
|
523
|
+
[ 1/10*t^6+41/60*t^5+13/6*t^4+49/12*t^3+71/15*t^2+97/30*t+1 ]
|
|
524
|
+
HilbertQuasiPolynomial =
|
|
525
|
+
[ 1/10*t^6+41/60*t^5+13/6*t^4+49/12*t^3+71/15*t^2+97/30*t+1 ]
|
|
526
|
+
HilbertSeries = [ 6*t^4+25*t^3+31*t^2+9*t+1, [ [ 1, 7 ] ] ]
|
|
527
|
+
InternalIndex = 1
|
|
528
|
+
IsDeg1ExtremeRays = true
|
|
529
|
+
IsDeg1HilbertBasis = false
|
|
530
|
+
IsInhomogeneous = false
|
|
531
|
+
IsIntegrallyClosed = false
|
|
532
|
+
IsPointed = true
|
|
533
|
+
IsReesPrimary = false
|
|
534
|
+
IsTriangulationNested = false
|
|
535
|
+
IsTriangulationPartial = false
|
|
536
|
+
MaximalSubspace = [ ]
|
|
537
|
+
Multiplicity = 72
|
|
538
|
+
Rank = 7
|
|
539
|
+
TriangulationDetSum = 72
|
|
540
|
+
TriangulationSize = 69
|
|
541
|
+
UnitGroupIndex = 1
|
|
542
|
+
|
|
543
|
+
#
|
|
544
|
+
gap> STOP_TEST("rees.tst", 0);
|