passagemath-gap-pkg-normalizinterface 10.6.32__cp310-cp310-musllinux_1_2_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-gap-pkg-normalizinterface might be problematic. Click here for more details.

Files changed (54) hide show
  1. gap/pkg/normalizinterface/CHANGES +113 -0
  2. gap/pkg/normalizinterface/LICENSE +351 -0
  3. gap/pkg/normalizinterface/PackageInfo.g +121 -0
  4. gap/pkg/normalizinterface/README.md +96 -0
  5. gap/pkg/normalizinterface/bin/aarch64-unknown-linux-musl-default64-kv10/NormalizInterface.so +0 -0
  6. gap/pkg/normalizinterface/etc/download.sh +85 -0
  7. gap/pkg/normalizinterface/etc/generate_cone_property_wrappers.g +380 -0
  8. gap/pkg/normalizinterface/examples/5x5.g +22 -0
  9. gap/pkg/normalizinterface/examples/demo.g +53 -0
  10. gap/pkg/normalizinterface/examples/docs.g +43 -0
  11. gap/pkg/normalizinterface/examples/dual_mode.g +26 -0
  12. gap/pkg/normalizinterface/examples/magic_square.g +36 -0
  13. gap/pkg/normalizinterface/init.g +7 -0
  14. gap/pkg/normalizinterface/lib/cone_property_wrappers.gd +682 -0
  15. gap/pkg/normalizinterface/lib/cone_property_wrappers.gi +132 -0
  16. gap/pkg/normalizinterface/lib/normaliz.gd +130 -0
  17. gap/pkg/normalizinterface/lib/normaliz.gi +153 -0
  18. gap/pkg/normalizinterface/makedoc.g +13 -0
  19. gap/pkg/normalizinterface/read.g +3 -0
  20. gap/pkg/normalizinterface/tst/InhomIneq.tst +20 -0
  21. gap/pkg/normalizinterface/tst/bugfix.tst +37 -0
  22. gap/pkg/normalizinterface/tst/conversion.tst +87 -0
  23. gap/pkg/normalizinterface/tst/cube-incidence.tst +62 -0
  24. gap/pkg/normalizinterface/tst/descent.tst +173 -0
  25. gap/pkg/normalizinterface/tst/dual.tst +533 -0
  26. gap/pkg/normalizinterface/tst/fractions.tst +29 -0
  27. gap/pkg/normalizinterface/tst/gorenstein.tst +22 -0
  28. gap/pkg/normalizinterface/tst/normalizinterface01.tst +46 -0
  29. gap/pkg/normalizinterface/tst/normalizinterface02.tst +107 -0
  30. gap/pkg/normalizinterface/tst/project.tst +136 -0
  31. gap/pkg/normalizinterface/tst/rational.tst +151 -0
  32. gap/pkg/normalizinterface/tst/rees.tst +544 -0
  33. gap/pkg/normalizinterface/tst/rp2poly.tst +351 -0
  34. gap/pkg/normalizinterface/tst/rproj2.tst +548 -0
  35. gap/pkg/normalizinterface/tst/testall.g +3 -0
  36. gap/pkg/normalizinterface/tst/verticesfloat.tst +11 -0
  37. passagemath_gap_pkg_normalizinterface-10.6.32.dist-info/METADATA +93 -0
  38. passagemath_gap_pkg_normalizinterface-10.6.32.dist-info/METADATA.bak +94 -0
  39. passagemath_gap_pkg_normalizinterface-10.6.32.dist-info/RECORD +54 -0
  40. passagemath_gap_pkg_normalizinterface-10.6.32.dist-info/WHEEL +5 -0
  41. passagemath_gap_pkg_normalizinterface-10.6.32.dist-info/top_level.txt +1 -0
  42. passagemath_gap_pkg_normalizinterface.libs/libeantic-da90a096.so.3.1.0 +0 -0
  43. passagemath_gap_pkg_normalizinterface.libs/libeanticxx-bd9d5c67.so.3.1.0 +0 -0
  44. passagemath_gap_pkg_normalizinterface.libs/libflint-8c82a98a.so.21.0.0 +0 -0
  45. passagemath_gap_pkg_normalizinterface.libs/libgcc_s-2d945d6c.so.1 +0 -0
  46. passagemath_gap_pkg_normalizinterface.libs/libgmp-28992bcb.so.10.5.0 +0 -0
  47. passagemath_gap_pkg_normalizinterface.libs/libgmpxx-fecb01a9.so.4.7.0 +0 -0
  48. passagemath_gap_pkg_normalizinterface.libs/libgomp-1ede7ee7.so.1.0.0 +0 -0
  49. passagemath_gap_pkg_normalizinterface.libs/libmpfr-e34bb864.so.6.2.1 +0 -0
  50. passagemath_gap_pkg_normalizinterface.libs/libnormaliz-40532fe8.so.3.11.0 +0 -0
  51. passagemath_gap_pkg_normalizinterface.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
  52. sage/all__sagemath_gap_pkg_normalizinterface.py +1 -0
  53. sage/libs/all__sagemath_gap_pkg_normalizinterface.py +1 -0
  54. sage/libs/gap_pkg_normalizinterface.cpython-310-aarch64-linux-gnu.so +0 -0
@@ -0,0 +1,173 @@
1
+ gap> START_TEST("descent.tst");
2
+
3
+ #
4
+ gap> # Based on dual.in
5
+ gap> M := [
6
+ > [ 0, 0, 0, 1, 0, 0, 0 ],
7
+ > [ 0, 0, 0, 0, 1, 0, 0 ],
8
+ > [ 0, 0, 0, 0, 0, 1, 0 ],
9
+ > [ 0, 0, 0, 0, 0, 0, 1 ],
10
+ > [ 0, 0, 1, 0, 0, 0, 0 ],
11
+ > [ 0, 1, 0, 0, 0, 0, 0 ],
12
+ > [ 0, 1, 0, 1, 1, 0, -1 ],
13
+ > [ 0, 1, 0, 0, 1, 1, -1 ],
14
+ > [ 0, 1, 1, 0, 0, 1, -1 ],
15
+ > [ 0, 0, 1, 1, 1, 0, -1 ],
16
+ > [ 0, 0, 1, 1, 0, 1, -1 ],
17
+ > [ 0, 1, 1, 1, 1, 1, -2 ],
18
+ > [ 1, 0, 0, 0, 0, 0, 0 ],
19
+ > [ 1, 1, 1, 1, 1, 1, -3 ],
20
+ > [ 1, 0, 0, 1, 0, 1, -1 ],
21
+ > [ 1, 0, 0, 0, 1, 1, -1 ],
22
+ > [ 1, 0, 1, 0, 1, 0, -1 ],
23
+ > [ 1, 0, 1, 1, 1, 1, -2 ],
24
+ > [ 1, 1, 0, 1, 0, 0, -1 ],
25
+ > [ 1, 1, 1, 0, 0, 0, -1 ],
26
+ > [ 1, 1, 1, 1, 0, 1, -2 ],
27
+ > [ 1, 1, 1, 0, 1, 1, -2 ],
28
+ > [ 1, 1, 1, 1, 1, 0, -2 ],
29
+ > [ 1, 1, 0, 1, 1, 1, -2 ],
30
+ > ];;
31
+ gap> cone := NmzCone(["inequalities", M]);;
32
+ gap> NmzCompute(cone, ["Descent"]);
33
+ true
34
+ gap> Perform(NmzKnownConeProperties(cone),Display);
35
+ EmbeddingDim
36
+ IsInhomogeneous
37
+ IsPointed
38
+ MaximalSubspace
39
+ gap> Display(NmzTriangulation(cone)[2]);
40
+ [ [ 0, 0, 0, 0, 0, 1, 0 ],
41
+ [ 0, 0, 0, 0, 1, 0, 0 ],
42
+ [ 0, 0, 0, 1, 0, 0, 0 ],
43
+ [ 0, 0, 1, 0, 0, 0, 0 ],
44
+ [ 0, 0, 1, 1, 0, 1, 1 ],
45
+ [ 0, 0, 1, 1, 1, 0, 1 ],
46
+ [ 0, 1, 0, 0, 0, 0, 0 ],
47
+ [ 0, 1, 0, 0, 1, 1, 1 ],
48
+ [ 0, 1, 0, 1, 1, 0, 1 ],
49
+ [ 0, 1, 1, 0, 0, 1, 1 ],
50
+ [ 1, 0, 0, 0, 0, 0, 0 ],
51
+ [ 1, 0, 0, 0, 1, 1, 1 ],
52
+ [ 1, 0, 0, 1, 0, 1, 1 ],
53
+ [ 1, 0, 1, 0, 1, 0, 1 ],
54
+ [ 1, 1, 0, 1, 0, 0, 1 ],
55
+ [ 1, 1, 1, 0, 0, 0, 1 ] ]
56
+ gap> Display(NmzExtremeRays(cone));
57
+ [ [ 0, 0, 0, 0, 0, 1, 0 ],
58
+ [ 0, 0, 0, 0, 1, 0, 0 ],
59
+ [ 0, 0, 0, 1, 0, 0, 0 ],
60
+ [ 0, 0, 1, 0, 0, 0, 0 ],
61
+ [ 0, 0, 1, 1, 0, 1, 1 ],
62
+ [ 0, 0, 1, 1, 1, 0, 1 ],
63
+ [ 0, 1, 0, 0, 0, 0, 0 ],
64
+ [ 0, 1, 0, 0, 1, 1, 1 ],
65
+ [ 0, 1, 0, 1, 1, 0, 1 ],
66
+ [ 0, 1, 1, 0, 0, 1, 1 ],
67
+ [ 1, 0, 0, 0, 0, 0, 0 ],
68
+ [ 1, 0, 0, 0, 1, 1, 1 ],
69
+ [ 1, 0, 0, 1, 0, 1, 1 ],
70
+ [ 1, 0, 1, 0, 1, 0, 1 ],
71
+ [ 1, 1, 0, 1, 0, 0, 1 ],
72
+ [ 1, 1, 1, 0, 0, 0, 1 ] ]
73
+ gap> Display(NmzSupportHyperplanes(cone));
74
+ [ [ 0, 0, 0, 0, 0, 0, 1 ],
75
+ [ 0, 0, 0, 0, 0, 1, 0 ],
76
+ [ 0, 0, 0, 0, 1, 0, 0 ],
77
+ [ 0, 0, 0, 1, 0, 0, 0 ],
78
+ [ 0, 0, 1, 0, 0, 0, 0 ],
79
+ [ 0, 0, 1, 1, 0, 1, -1 ],
80
+ [ 0, 0, 1, 1, 1, 0, -1 ],
81
+ [ 0, 1, 0, 0, 0, 0, 0 ],
82
+ [ 0, 1, 0, 0, 1, 1, -1 ],
83
+ [ 0, 1, 0, 1, 1, 0, -1 ],
84
+ [ 0, 1, 1, 0, 0, 1, -1 ],
85
+ [ 0, 1, 1, 1, 1, 1, -2 ],
86
+ [ 1, 0, 0, 0, 0, 0, 0 ],
87
+ [ 1, 0, 0, 0, 1, 1, -1 ],
88
+ [ 1, 0, 0, 1, 0, 1, -1 ],
89
+ [ 1, 0, 1, 0, 1, 0, -1 ],
90
+ [ 1, 0, 1, 1, 1, 1, -2 ],
91
+ [ 1, 1, 0, 1, 0, 0, -1 ],
92
+ [ 1, 1, 0, 1, 1, 1, -2 ],
93
+ [ 1, 1, 1, 0, 0, 0, -1 ],
94
+ [ 1, 1, 1, 0, 1, 1, -2 ],
95
+ [ 1, 1, 1, 1, 0, 1, -2 ],
96
+ [ 1, 1, 1, 1, 1, 0, -2 ],
97
+ [ 1, 1, 1, 1, 1, 1, -3 ] ]
98
+ gap> Display(NmzHilbertBasis(cone));
99
+ [ [ 0, 0, 0, 0, 0, 1, 0 ],
100
+ [ 0, 0, 0, 0, 1, 0, 0 ],
101
+ [ 0, 0, 0, 1, 0, 0, 0 ],
102
+ [ 0, 0, 1, 0, 0, 0, 0 ],
103
+ [ 0, 0, 1, 1, 0, 1, 1 ],
104
+ [ 0, 0, 1, 1, 1, 0, 1 ],
105
+ [ 0, 1, 0, 0, 0, 0, 0 ],
106
+ [ 0, 1, 0, 0, 1, 1, 1 ],
107
+ [ 0, 1, 0, 1, 1, 0, 1 ],
108
+ [ 0, 1, 1, 0, 0, 1, 1 ],
109
+ [ 1, 0, 0, 0, 0, 0, 0 ],
110
+ [ 1, 0, 0, 0, 1, 1, 1 ],
111
+ [ 1, 0, 0, 1, 0, 1, 1 ],
112
+ [ 1, 0, 1, 0, 1, 0, 1 ],
113
+ [ 1, 1, 0, 1, 0, 0, 1 ],
114
+ [ 1, 1, 1, 0, 0, 0, 1 ],
115
+ [ 1, 1, 1, 1, 1, 1, 2 ] ]
116
+ gap> Display(NmzDeg1Elements(cone));
117
+ [ [ 0, 0, 0, 0, 0, 1, 0 ],
118
+ [ 0, 0, 0, 0, 1, 0, 0 ],
119
+ [ 0, 0, 0, 1, 0, 0, 0 ],
120
+ [ 0, 0, 1, 0, 0, 0, 0 ],
121
+ [ 0, 0, 1, 1, 0, 1, 1 ],
122
+ [ 0, 0, 1, 1, 1, 0, 1 ],
123
+ [ 0, 1, 0, 0, 0, 0, 0 ],
124
+ [ 0, 1, 0, 0, 1, 1, 1 ],
125
+ [ 0, 1, 0, 1, 1, 0, 1 ],
126
+ [ 0, 1, 1, 0, 0, 1, 1 ],
127
+ [ 1, 0, 0, 0, 0, 0, 0 ],
128
+ [ 1, 0, 0, 0, 1, 1, 1 ],
129
+ [ 1, 0, 0, 1, 0, 1, 1 ],
130
+ [ 1, 0, 1, 0, 1, 0, 1 ],
131
+ [ 1, 1, 0, 1, 0, 0, 1 ],
132
+ [ 1, 1, 1, 0, 0, 0, 1 ] ]
133
+ gap> Display(NmzSublattice(cone));
134
+ [ [ [ 1, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0 ], [ 0, 0, 1, 0, 0, 0, 0 ],
135
+ [ 0, 0, 0, 1, 0, 0, 0 ], [ 0, 0, 0, 0, 1, 0, 0 ],
136
+ [ 0, 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 0, 0, 1 ] ],
137
+ [ [ 1, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0 ], [ 0, 0, 1, 0, 0, 0, 0 ],
138
+ [ 0, 0, 0, 1, 0, 0, 0 ], [ 0, 0, 0, 0, 1, 0, 0 ],
139
+ [ 0, 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 0, 0, 1 ] ], 1 ]
140
+ gap> _NmzPrintSomeConeProperties(cone, [
141
+ > "Generators",
142
+ > "ExtremeRays",
143
+ > "SupportHyperplanes",
144
+ > "HilbertBasis",
145
+ > "Deg1Elements",
146
+ > "Sublattice",
147
+ > "NumberLatticePoints",
148
+ > "OriginalMonoidGenerators",
149
+ > ]);
150
+ BasicTriangulation = fail
151
+ EmbeddingDim = 7
152
+ Grading = [ 1, 1, 1, 1, 1, 1, -2 ]
153
+ GradingDenom = 1
154
+ IsDeg1ExtremeRays = true
155
+ IsDeg1HilbertBasis = false
156
+ IsInhomogeneous = false
157
+ IsPointed = true
158
+ IsTriangulationNested = false
159
+ IsTriangulationPartial = true
160
+ MaximalSubspace = [ ]
161
+ Multiplicity = 72
162
+ Rank = 7
163
+ TriangulationDetSum = 2
164
+ TriangulationSize = 1
165
+
166
+ #
167
+ gap> NmzVolume(cone);
168
+ 72
169
+ gap> NmzEuclideanVolume(cone);
170
+ 0.316228
171
+
172
+ #
173
+ gap> STOP_TEST("descent.tst", 0);
@@ -0,0 +1,533 @@
1
+ gap> START_TEST("dual.tst");
2
+
3
+ #
4
+ gap> # Based on dual.in
5
+ gap> M := [
6
+ > [ 0, 0, 0, 1, 0, 0, 0 ],
7
+ > [ 0, 0, 0, 0, 1, 0, 0 ],
8
+ > [ 0, 0, 0, 0, 0, 1, 0 ],
9
+ > [ 0, 0, 0, 0, 0, 0, 1 ],
10
+ > [ 0, 0, 1, 0, 0, 0, 0 ],
11
+ > [ 0, 1, 0, 0, 0, 0, 0 ],
12
+ > [ 0, 1, 0, 1, 1, 0, -1 ],
13
+ > [ 0, 1, 0, 0, 1, 1, -1 ],
14
+ > [ 0, 1, 1, 0, 0, 1, -1 ],
15
+ > [ 0, 0, 1, 1, 1, 0, -1 ],
16
+ > [ 0, 0, 1, 1, 0, 1, -1 ],
17
+ > [ 0, 1, 1, 1, 1, 1, -2 ],
18
+ > [ 1, 0, 0, 0, 0, 0, 0 ],
19
+ > [ 1, 1, 1, 1, 1, 1, -3 ],
20
+ > [ 1, 0, 0, 1, 0, 1, -1 ],
21
+ > [ 1, 0, 0, 0, 1, 1, -1 ],
22
+ > [ 1, 0, 1, 0, 1, 0, -1 ],
23
+ > [ 1, 0, 1, 1, 1, 1, -2 ],
24
+ > [ 1, 1, 0, 1, 0, 0, -1 ],
25
+ > [ 1, 1, 1, 0, 0, 0, -1 ],
26
+ > [ 1, 1, 1, 1, 0, 1, -2 ],
27
+ > [ 1, 1, 1, 0, 1, 1, -2 ],
28
+ > [ 1, 1, 1, 1, 1, 0, -2 ],
29
+ > [ 1, 1, 0, 1, 1, 1, -2 ],
30
+ > ];;
31
+ gap> cone := NmzCone(["inequalities", M]);;
32
+ gap> NmzCompute(cone);
33
+ true
34
+ gap> tmp := NmzKnownConeProperties(cone);;
35
+ gap> RemoveSet(tmp, "NumberLatticePoints");
36
+ gap> Perform(tmp, Display);
37
+ ClassGroup
38
+ Deg1Elements
39
+ EmbeddingDim
40
+ ExtremeRays
41
+ Generators
42
+ Grading
43
+ GradingDenom
44
+ HilbertBasis
45
+ HilbertQuasiPolynomial
46
+ HilbertSeries
47
+ IsDeg1ExtremeRays
48
+ IsDeg1HilbertBasis
49
+ IsInhomogeneous
50
+ IsPointed
51
+ IsTriangulationNested
52
+ IsTriangulationPartial
53
+ MaximalSubspace
54
+ Multiplicity
55
+ Rank
56
+ Sublattice
57
+ SupportHyperplanes
58
+ TriangulationDetSum
59
+ TriangulationSize
60
+ gap> Display(NmzTriangulation(cone));
61
+ [ [ rec(
62
+ Excluded := [ ],
63
+ height := 0,
64
+ key := [ 0, 1, 2, 3, 4, 6, 10 ],
65
+ mult := 0,
66
+ vol := 1 ), rec(
67
+ Excluded := [ ],
68
+ height := 0,
69
+ key := [ 0, 1, 2, 4, 6, 7, 10 ],
70
+ mult := 0,
71
+ vol := 1 ), rec(
72
+ Excluded := [ ],
73
+ height := 0,
74
+ key := [ 0, 1, 2, 4, 7, 10, 11 ],
75
+ mult := 0,
76
+ vol := 1 ), rec(
77
+ Excluded := [ ],
78
+ height := 0,
79
+ key := [ 0, 1, 3, 4, 6, 7, 10 ],
80
+ mult := 0,
81
+ vol := 1 ), rec(
82
+ Excluded := [ ],
83
+ height := 0,
84
+ key := [ 0, 1, 3, 4, 7, 10, 11 ],
85
+ mult := 0,
86
+ vol := 1 ), rec(
87
+ Excluded := [ ],
88
+ height := 0,
89
+ key := [ 0, 2, 4, 6, 7, 10, 12 ],
90
+ mult := 0,
91
+ vol := 1 ), rec(
92
+ Excluded := [ ],
93
+ height := 0,
94
+ key := [ 0, 2, 4, 7, 10, 11, 12 ],
95
+ mult := 0,
96
+ vol := 1 ), rec(
97
+ Excluded := [ ],
98
+ height := 0,
99
+ key := [ 0, 3, 4, 6, 7, 9, 10 ],
100
+ mult := 0,
101
+ vol := 1 ), rec(
102
+ Excluded := [ ],
103
+ height := 0,
104
+ key := [ 0, 3, 4, 7, 9, 10, 11 ],
105
+ mult := 0,
106
+ vol := 1 ), rec(
107
+ Excluded := [ ],
108
+ height := 0,
109
+ key := [ 0, 4, 6, 7, 9, 10, 12 ],
110
+ mult := 0,
111
+ vol := 1 ), rec(
112
+ Excluded := [ ],
113
+ height := 0,
114
+ key := [ 0, 4, 7, 9, 10, 11, 12 ],
115
+ mult := 0,
116
+ vol := 1 ), rec(
117
+ Excluded := [ ],
118
+ height := 0,
119
+ key := [ 1, 2, 3, 4, 5, 6, 10 ],
120
+ mult := 0,
121
+ vol := 1 ), rec(
122
+ Excluded := [ ],
123
+ height := 0,
124
+ key := [ 1, 2, 4, 5, 6, 7, 10 ],
125
+ mult := 0,
126
+ vol := 1 ), rec(
127
+ Excluded := [ ],
128
+ height := 0,
129
+ key := [ 1, 2, 4, 5, 7, 10, 11 ],
130
+ mult := 0,
131
+ vol := 1 ), rec(
132
+ Excluded := [ ],
133
+ height := 0,
134
+ key := [ 1, 2, 5, 6, 7, 8, 10 ],
135
+ mult := 0,
136
+ vol := 1 ), rec(
137
+ Excluded := [ ],
138
+ height := 0,
139
+ key := [ 1, 2, 5, 7, 8, 10, 11 ],
140
+ mult := 0,
141
+ vol := 1 ), rec(
142
+ Excluded := [ ],
143
+ height := 0,
144
+ key := [ 1, 3, 4, 5, 6, 7, 10 ],
145
+ mult := 0,
146
+ vol := 1 ), rec(
147
+ Excluded := [ ],
148
+ height := 0,
149
+ key := [ 1, 3, 4, 5, 7, 10, 11 ],
150
+ mult := 0,
151
+ vol := 1 ), rec(
152
+ Excluded := [ ],
153
+ height := 0,
154
+ key := [ 1, 3, 5, 6, 7, 10, 13 ],
155
+ mult := 0,
156
+ vol := 1 ), rec(
157
+ Excluded := [ ],
158
+ height := 0,
159
+ key := [ 1, 3, 5, 7, 10, 11, 13 ],
160
+ mult := 0,
161
+ vol := 1 ), rec(
162
+ Excluded := [ ],
163
+ height := 0,
164
+ key := [ 1, 5, 6, 7, 8, 10, 13 ],
165
+ mult := 0,
166
+ vol := 1 ), rec(
167
+ Excluded := [ ],
168
+ height := 0,
169
+ key := [ 1, 5, 7, 8, 10, 11, 13 ],
170
+ mult := 0,
171
+ vol := 1 ), rec(
172
+ Excluded := [ ],
173
+ height := 0,
174
+ key := [ 2, 3, 4, 5, 6, 10, 14 ],
175
+ mult := 0,
176
+ vol := 1 ), rec(
177
+ Excluded := [ ],
178
+ height := 0,
179
+ key := [ 2, 4, 5, 6, 7, 8, 10 ],
180
+ mult := 0,
181
+ vol := 1 ), rec(
182
+ Excluded := [ ],
183
+ height := 0,
184
+ key := [ 2, 4, 5, 6, 8, 10, 14 ],
185
+ mult := 0,
186
+ vol := 1 ), rec(
187
+ Excluded := [ ],
188
+ height := 0,
189
+ key := [ 2, 4, 5, 7, 8, 10, 11 ],
190
+ mult := 0,
191
+ vol := 1 ), rec(
192
+ Excluded := [ ],
193
+ height := 0,
194
+ key := [ 2, 4, 5, 8, 10, 11, 12 ],
195
+ mult := 0,
196
+ vol := 1 ), rec(
197
+ Excluded := [ ],
198
+ height := 0,
199
+ key := [ 2, 4, 5, 8, 10, 12, 14 ],
200
+ mult := 0,
201
+ vol := 1 ), rec(
202
+ Excluded := [ ],
203
+ height := 0,
204
+ key := [ 2, 4, 6, 7, 8, 10, 12 ],
205
+ mult := 0,
206
+ vol := 1 ), rec(
207
+ Excluded := [ ],
208
+ height := 0,
209
+ key := [ 2, 4, 6, 8, 10, 12, 14 ],
210
+ mult := 0,
211
+ vol := 1 ), rec(
212
+ Excluded := [ ],
213
+ height := 0,
214
+ key := [ 2, 4, 7, 8, 10, 11, 12 ],
215
+ mult := 0,
216
+ vol := 1 ), rec(
217
+ Excluded := [ ],
218
+ height := 0,
219
+ key := [ 3, 4, 5, 6, 7, 9, 10 ],
220
+ mult := 0,
221
+ vol := 1 ), rec(
222
+ Excluded := [ ],
223
+ height := 0,
224
+ key := [ 3, 4, 5, 6, 9, 10, 14 ],
225
+ mult := 0,
226
+ vol := 1 ), rec(
227
+ Excluded := [ ],
228
+ height := 0,
229
+ key := [ 3, 4, 5, 7, 9, 10, 11 ],
230
+ mult := 0,
231
+ vol := 1 ), rec(
232
+ Excluded := [ ],
233
+ height := 0,
234
+ key := [ 3, 4, 5, 9, 10, 11, 13 ],
235
+ mult := 0,
236
+ vol := 1 ), rec(
237
+ Excluded := [ ],
238
+ height := 0,
239
+ key := [ 3, 4, 5, 9, 10, 13, 14 ],
240
+ mult := 0,
241
+ vol := 1 ), rec(
242
+ Excluded := [ ],
243
+ height := 0,
244
+ key := [ 3, 4, 5, 9, 13, 14, 15 ],
245
+ mult := 0,
246
+ vol := 1 ), rec(
247
+ Excluded := [ ],
248
+ height := 0,
249
+ key := [ 3, 4, 9, 10, 13, 14, 15 ],
250
+ mult := 0,
251
+ vol := 1 ), rec(
252
+ Excluded := [ ],
253
+ height := 0,
254
+ key := [ 3, 5, 6, 7, 9, 10, 13 ],
255
+ mult := 0,
256
+ vol := 1 ), rec(
257
+ Excluded := [ ],
258
+ height := 0,
259
+ key := [ 3, 5, 6, 9, 10, 13, 14 ],
260
+ mult := 0,
261
+ vol := 1 ), rec(
262
+ Excluded := [ ],
263
+ height := 0,
264
+ key := [ 3, 5, 6, 9, 13, 14, 15 ],
265
+ mult := 0,
266
+ vol := 1 ), rec(
267
+ Excluded := [ ],
268
+ height := 0,
269
+ key := [ 3, 5, 7, 9, 10, 11, 13 ],
270
+ mult := 0,
271
+ vol := 1 ), rec(
272
+ Excluded := [ ],
273
+ height := 0,
274
+ key := [ 3, 6, 9, 10, 13, 14, 15 ],
275
+ mult := 0,
276
+ vol := 1 ), rec(
277
+ Excluded := [ ],
278
+ height := 0,
279
+ key := [ 4, 5, 6, 7, 8, 9, 10 ],
280
+ mult := 0,
281
+ vol := 1 ), rec(
282
+ Excluded := [ ],
283
+ height := 0,
284
+ key := [ 4, 5, 6, 8, 9, 10, 14 ],
285
+ mult := 0,
286
+ vol := 1 ), rec(
287
+ Excluded := [ ],
288
+ height := 0,
289
+ key := [ 4, 5, 7, 8, 9, 10, 11 ],
290
+ mult := 0,
291
+ vol := 1 ), rec(
292
+ Excluded := [ ],
293
+ height := 0,
294
+ key := [ 4, 5, 8, 9, 10, 11, 12 ],
295
+ mult := 0,
296
+ vol := 1 ), rec(
297
+ Excluded := [ ],
298
+ height := 0,
299
+ key := [ 4, 5, 8, 9, 10, 12, 14 ],
300
+ mult := 0,
301
+ vol := 1 ), rec(
302
+ Excluded := [ ],
303
+ height := 0,
304
+ key := [ 4, 5, 9, 10, 11, 12, 13 ],
305
+ mult := 0,
306
+ vol := 1 ), rec(
307
+ Excluded := [ ],
308
+ height := 0,
309
+ key := [ 4, 5, 9, 10, 12, 13, 14 ],
310
+ mult := 0,
311
+ vol := 1 ), rec(
312
+ Excluded := [ ],
313
+ height := 0,
314
+ key := [ 4, 6, 7, 8, 9, 10, 12 ],
315
+ mult := 0,
316
+ vol := 1 ), rec(
317
+ Excluded := [ ],
318
+ height := 0,
319
+ key := [ 4, 6, 8, 9, 10, 12, 14 ],
320
+ mult := 0,
321
+ vol := 1 ), rec(
322
+ Excluded := [ ],
323
+ height := 0,
324
+ key := [ 4, 7, 8, 9, 10, 11, 12 ],
325
+ mult := 0,
326
+ vol := 1 ), rec(
327
+ Excluded := [ ],
328
+ height := 0,
329
+ key := [ 4, 9, 10, 12, 13, 14, 15 ],
330
+ mult := 0,
331
+ vol := 1 ), rec(
332
+ Excluded := [ ],
333
+ height := 0,
334
+ key := [ 5, 6, 7, 8, 9, 10, 13 ],
335
+ mult := 0,
336
+ vol := 1 ), rec(
337
+ Excluded := [ ],
338
+ height := 0,
339
+ key := [ 5, 6, 8, 9, 10, 13, 14 ],
340
+ mult := 0,
341
+ vol := 1 ), rec(
342
+ Excluded := [ ],
343
+ height := 0,
344
+ key := [ 5, 6, 8, 9, 13, 14, 15 ],
345
+ mult := 0,
346
+ vol := 1 ), rec(
347
+ Excluded := [ ],
348
+ height := 0,
349
+ key := [ 5, 7, 8, 9, 10, 11, 13 ],
350
+ mult := 0,
351
+ vol := 1 ), rec(
352
+ Excluded := [ ],
353
+ height := 0,
354
+ key := [ 5, 8, 9, 10, 11, 12, 13 ],
355
+ mult := 0,
356
+ vol := 2 ), rec(
357
+ Excluded := [ ],
358
+ height := 0,
359
+ key := [ 5, 8, 9, 10, 12, 13, 14 ],
360
+ mult := 0,
361
+ vol := 2 ), rec(
362
+ Excluded := [ ],
363
+ height := 0,
364
+ key := [ 6, 7, 8, 9, 10, 12, 14 ],
365
+ mult := 0,
366
+ vol := 1 ), rec(
367
+ Excluded := [ ],
368
+ height := 0,
369
+ key := [ 6, 7, 8, 9, 10, 13, 14 ],
370
+ mult := 0,
371
+ vol := 1 ), rec(
372
+ Excluded := [ ],
373
+ height := 0,
374
+ key := [ 6, 7, 8, 9, 13, 14, 15 ],
375
+ mult := 0,
376
+ vol := 1 ), rec(
377
+ Excluded := [ ],
378
+ height := 0,
379
+ key := [ 6, 7, 9, 10, 13, 14, 15 ],
380
+ mult := 0,
381
+ vol := 1 ), rec(
382
+ Excluded := [ ],
383
+ height := 0,
384
+ key := [ 7, 8, 9, 10, 11, 12, 14 ],
385
+ mult := 0,
386
+ vol := 1 ), rec(
387
+ Excluded := [ ],
388
+ height := 0,
389
+ key := [ 7, 8, 9, 10, 11, 13, 14 ],
390
+ mult := 0,
391
+ vol := 1 ), rec(
392
+ Excluded := [ ],
393
+ height := 0,
394
+ key := [ 7, 9, 10, 11, 13, 14, 15 ],
395
+ mult := 0,
396
+ vol := 1 ), rec(
397
+ Excluded := [ ],
398
+ height := 0,
399
+ key := [ 8, 9, 10, 11, 12, 13, 14 ],
400
+ mult := 0,
401
+ vol := 2 ), rec(
402
+ Excluded := [ ],
403
+ height := 0,
404
+ key := [ 9, 10, 11, 12, 13, 14, 15 ],
405
+ mult := 0,
406
+ vol := 1 ) ],
407
+ [ [ 0, 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1, 0, 0 ], [ 0, 0, 0, 1, 0, 0, 0 ],
408
+ [ 0, 0, 1, 0, 0, 0, 0 ], [ 0, 0, 1, 1, 0, 1, 1 ],
409
+ [ 0, 0, 1, 1, 1, 0, 1 ], [ 0, 1, 0, 0, 0, 0, 0 ],
410
+ [ 0, 1, 0, 0, 1, 1, 1 ], [ 0, 1, 0, 1, 1, 0, 1 ],
411
+ [ 0, 1, 1, 0, 0, 1, 1 ], [ 1, 0, 0, 0, 0, 0, 0 ],
412
+ [ 1, 0, 0, 0, 1, 1, 1 ], [ 1, 0, 0, 1, 0, 1, 1 ],
413
+ [ 1, 0, 1, 0, 1, 0, 1 ], [ 1, 1, 0, 1, 0, 0, 1 ],
414
+ [ 1, 1, 1, 0, 0, 0, 1 ] ] ]
415
+ gap> Display(NmzExtremeRays(cone));
416
+ [ [ 0, 0, 0, 0, 0, 1, 0 ],
417
+ [ 0, 0, 0, 0, 1, 0, 0 ],
418
+ [ 0, 0, 0, 1, 0, 0, 0 ],
419
+ [ 0, 0, 1, 0, 0, 0, 0 ],
420
+ [ 0, 0, 1, 1, 0, 1, 1 ],
421
+ [ 0, 0, 1, 1, 1, 0, 1 ],
422
+ [ 0, 1, 0, 0, 0, 0, 0 ],
423
+ [ 0, 1, 0, 0, 1, 1, 1 ],
424
+ [ 0, 1, 0, 1, 1, 0, 1 ],
425
+ [ 0, 1, 1, 0, 0, 1, 1 ],
426
+ [ 1, 0, 0, 0, 0, 0, 0 ],
427
+ [ 1, 0, 0, 0, 1, 1, 1 ],
428
+ [ 1, 0, 0, 1, 0, 1, 1 ],
429
+ [ 1, 0, 1, 0, 1, 0, 1 ],
430
+ [ 1, 1, 0, 1, 0, 0, 1 ],
431
+ [ 1, 1, 1, 0, 0, 0, 1 ] ]
432
+ gap> Display(NmzSupportHyperplanes(cone));
433
+ [ [ 0, 0, 0, 0, 0, 0, 1 ],
434
+ [ 0, 0, 0, 0, 0, 1, 0 ],
435
+ [ 0, 0, 0, 0, 1, 0, 0 ],
436
+ [ 0, 0, 0, 1, 0, 0, 0 ],
437
+ [ 0, 0, 1, 0, 0, 0, 0 ],
438
+ [ 0, 0, 1, 1, 0, 1, -1 ],
439
+ [ 0, 0, 1, 1, 1, 0, -1 ],
440
+ [ 0, 1, 0, 0, 0, 0, 0 ],
441
+ [ 0, 1, 0, 0, 1, 1, -1 ],
442
+ [ 0, 1, 0, 1, 1, 0, -1 ],
443
+ [ 0, 1, 1, 0, 0, 1, -1 ],
444
+ [ 0, 1, 1, 1, 1, 1, -2 ],
445
+ [ 1, 0, 0, 0, 0, 0, 0 ],
446
+ [ 1, 0, 0, 0, 1, 1, -1 ],
447
+ [ 1, 0, 0, 1, 0, 1, -1 ],
448
+ [ 1, 0, 1, 0, 1, 0, -1 ],
449
+ [ 1, 0, 1, 1, 1, 1, -2 ],
450
+ [ 1, 1, 0, 1, 0, 0, -1 ],
451
+ [ 1, 1, 0, 1, 1, 1, -2 ],
452
+ [ 1, 1, 1, 0, 0, 0, -1 ],
453
+ [ 1, 1, 1, 0, 1, 1, -2 ],
454
+ [ 1, 1, 1, 1, 0, 1, -2 ],
455
+ [ 1, 1, 1, 1, 1, 0, -2 ],
456
+ [ 1, 1, 1, 1, 1, 1, -3 ] ]
457
+ gap> Display(NmzHilbertBasis(cone));
458
+ [ [ 0, 0, 0, 0, 0, 1, 0 ],
459
+ [ 0, 0, 0, 0, 1, 0, 0 ],
460
+ [ 0, 0, 0, 1, 0, 0, 0 ],
461
+ [ 0, 0, 1, 0, 0, 0, 0 ],
462
+ [ 0, 0, 1, 1, 0, 1, 1 ],
463
+ [ 0, 0, 1, 1, 1, 0, 1 ],
464
+ [ 0, 1, 0, 0, 0, 0, 0 ],
465
+ [ 0, 1, 0, 0, 1, 1, 1 ],
466
+ [ 0, 1, 0, 1, 1, 0, 1 ],
467
+ [ 0, 1, 1, 0, 0, 1, 1 ],
468
+ [ 1, 0, 0, 0, 0, 0, 0 ],
469
+ [ 1, 0, 0, 0, 1, 1, 1 ],
470
+ [ 1, 0, 0, 1, 0, 1, 1 ],
471
+ [ 1, 0, 1, 0, 1, 0, 1 ],
472
+ [ 1, 1, 0, 1, 0, 0, 1 ],
473
+ [ 1, 1, 1, 0, 0, 0, 1 ],
474
+ [ 1, 1, 1, 1, 1, 1, 2 ] ]
475
+ gap> Display(NmzDeg1Elements(cone));
476
+ [ [ 0, 0, 0, 0, 0, 1, 0 ],
477
+ [ 0, 0, 0, 0, 1, 0, 0 ],
478
+ [ 0, 0, 0, 1, 0, 0, 0 ],
479
+ [ 0, 0, 1, 0, 0, 0, 0 ],
480
+ [ 0, 0, 1, 1, 0, 1, 1 ],
481
+ [ 0, 0, 1, 1, 1, 0, 1 ],
482
+ [ 0, 1, 0, 0, 0, 0, 0 ],
483
+ [ 0, 1, 0, 0, 1, 1, 1 ],
484
+ [ 0, 1, 0, 1, 1, 0, 1 ],
485
+ [ 0, 1, 1, 0, 0, 1, 1 ],
486
+ [ 1, 0, 0, 0, 0, 0, 0 ],
487
+ [ 1, 0, 0, 0, 1, 1, 1 ],
488
+ [ 1, 0, 0, 1, 0, 1, 1 ],
489
+ [ 1, 0, 1, 0, 1, 0, 1 ],
490
+ [ 1, 1, 0, 1, 0, 0, 1 ],
491
+ [ 1, 1, 1, 0, 0, 0, 1 ] ]
492
+ gap> Display(NmzSublattice(cone));
493
+ [ [ [ 1, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0 ], [ 0, 0, 1, 0, 0, 0, 0 ],
494
+ [ 0, 0, 0, 1, 0, 0, 0 ], [ 0, 0, 0, 0, 1, 0, 0 ],
495
+ [ 0, 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 0, 0, 1 ] ],
496
+ [ [ 1, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0 ], [ 0, 0, 1, 0, 0, 0, 0 ],
497
+ [ 0, 0, 0, 1, 0, 0, 0 ], [ 0, 0, 0, 0, 1, 0, 0 ],
498
+ [ 0, 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 0, 0, 1 ] ], 1 ]
499
+ gap> _NmzPrintSomeConeProperties(cone, [
500
+ > "Generators",
501
+ > "ExtremeRays",
502
+ > "SupportHyperplanes",
503
+ > "HilbertBasis",
504
+ > "Deg1Elements",
505
+ > "Sublattice",
506
+ > "NumberLatticePoints",
507
+ > "OriginalMonoidGenerators",
508
+ > ]);
509
+ BasicTriangulation = fail
510
+ ClassGroup = [ 17 ]
511
+ EhrhartQuasiPolynomial = [ [ 60, 194, 284, 245, 130, 41, 6 ], 60 ]
512
+ EmbeddingDim = 7
513
+ Grading = [ 1, 1, 1, 1, 1, 1, -2 ]
514
+ GradingDenom = 1
515
+ HilbertQuasiPolynomial =
516
+ [ 1/10*t^6+41/60*t^5+13/6*t^4+49/12*t^3+71/15*t^2+97/30*t+1 ]
517
+ HilbertQuasiPolynomial =
518
+ [ 1/10*t^6+41/60*t^5+13/6*t^4+49/12*t^3+71/15*t^2+97/30*t+1 ]
519
+ HilbertSeries = [ 6*t^4+25*t^3+31*t^2+9*t+1, [ [ 1, 7 ] ] ]
520
+ IsDeg1ExtremeRays = true
521
+ IsDeg1HilbertBasis = false
522
+ IsInhomogeneous = false
523
+ IsPointed = true
524
+ IsTriangulationNested = false
525
+ IsTriangulationPartial = false
526
+ MaximalSubspace = [ ]
527
+ Multiplicity = 72
528
+ Rank = 7
529
+ TriangulationDetSum = 72
530
+ TriangulationSize = 69
531
+
532
+ #
533
+ gap> STOP_TEST("dual.tst", 0);