paradigma 0.3.2__py3-none-any.whl → 0.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (122) hide show
  1. paradigma/assets/gait_detection_clf_package.pkl +0 -0
  2. paradigma/assets/gait_filtering_clf_package.pkl +0 -0
  3. paradigma/assets/ppg_quality_clf_package.pkl +0 -0
  4. paradigma/assets/tremor_detection_clf_package.pkl +0 -0
  5. paradigma/classification.py +115 -0
  6. paradigma/config.py +314 -0
  7. paradigma/constants.py +48 -7
  8. paradigma/feature_extraction.py +811 -547
  9. paradigma/pipelines/__init__.py +0 -0
  10. paradigma/pipelines/gait_pipeline.py +727 -0
  11. paradigma/pipelines/heart_rate_pipeline.py +426 -0
  12. paradigma/pipelines/heart_rate_utils.py +780 -0
  13. paradigma/pipelines/tremor_pipeline.py +299 -0
  14. paradigma/preprocessing.py +363 -0
  15. paradigma/segmenting.py +396 -0
  16. paradigma/testing.py +416 -0
  17. paradigma/util.py +393 -16
  18. {paradigma-0.3.2.dist-info → paradigma-0.4.0.dist-info}/METADATA +58 -14
  19. paradigma-0.4.0.dist-info/RECORD +22 -0
  20. {paradigma-0.3.2.dist-info → paradigma-0.4.0.dist-info}/WHEEL +1 -1
  21. paradigma/gait_analysis.py +0 -415
  22. paradigma/gait_analysis_config.py +0 -266
  23. paradigma/heart_rate_analysis.py +0 -127
  24. paradigma/heart_rate_analysis_config.py +0 -9
  25. paradigma/heart_rate_util.py +0 -173
  26. paradigma/imu_preprocessing.py +0 -232
  27. paradigma/ppg/classifier/LR_PPG_quality.pkl +0 -0
  28. paradigma/ppg/classifier/LR_model.mat +0 -0
  29. paradigma/ppg/feat_extraction/acc_feature.m +0 -20
  30. paradigma/ppg/feat_extraction/peakdet.m +0 -64
  31. paradigma/ppg/feat_extraction/ppg_features.m +0 -53
  32. paradigma/ppg/glob_functions/extract_hr_segments.m +0 -37
  33. paradigma/ppg/glob_functions/extract_overlapping_segments.m +0 -23
  34. paradigma/ppg/glob_functions/jsonlab/AUTHORS.txt +0 -41
  35. paradigma/ppg/glob_functions/jsonlab/ChangeLog.txt +0 -74
  36. paradigma/ppg/glob_functions/jsonlab/LICENSE_BSD.txt +0 -25
  37. paradigma/ppg/glob_functions/jsonlab/LICENSE_GPLv3.txt +0 -699
  38. paradigma/ppg/glob_functions/jsonlab/README.txt +0 -394
  39. paradigma/ppg/glob_functions/jsonlab/examples/.svn/entries +0 -368
  40. paradigma/ppg/glob_functions/jsonlab/examples/.svn/text-base/demo_jsonlab_basic.m.svn-base +0 -180
  41. paradigma/ppg/glob_functions/jsonlab/examples/.svn/text-base/demo_ubjson_basic.m.svn-base +0 -180
  42. paradigma/ppg/glob_functions/jsonlab/examples/.svn/text-base/example1.json.svn-base +0 -23
  43. paradigma/ppg/glob_functions/jsonlab/examples/.svn/text-base/example2.json.svn-base +0 -22
  44. paradigma/ppg/glob_functions/jsonlab/examples/.svn/text-base/example3.json.svn-base +0 -11
  45. paradigma/ppg/glob_functions/jsonlab/examples/.svn/text-base/example4.json.svn-base +0 -34
  46. paradigma/ppg/glob_functions/jsonlab/examples/.svn/text-base/jsonlab_basictest.matlab.svn-base +0 -662
  47. paradigma/ppg/glob_functions/jsonlab/examples/.svn/text-base/jsonlab_selftest.m.svn-base +0 -27
  48. paradigma/ppg/glob_functions/jsonlab/examples/.svn/text-base/jsonlab_selftest.matlab.svn-base +0 -144
  49. paradigma/ppg/glob_functions/jsonlab/examples/.svn/text-base/jsonlab_speedtest.m.svn-base +0 -21
  50. paradigma/ppg/glob_functions/jsonlab/examples/demo_jsonlab_basic.m +0 -180
  51. paradigma/ppg/glob_functions/jsonlab/examples/demo_ubjson_basic.m +0 -180
  52. paradigma/ppg/glob_functions/jsonlab/examples/example1.json +0 -23
  53. paradigma/ppg/glob_functions/jsonlab/examples/example2.json +0 -22
  54. paradigma/ppg/glob_functions/jsonlab/examples/example3.json +0 -11
  55. paradigma/ppg/glob_functions/jsonlab/examples/example4.json +0 -34
  56. paradigma/ppg/glob_functions/jsonlab/examples/jsonlab_basictest.matlab +0 -662
  57. paradigma/ppg/glob_functions/jsonlab/examples/jsonlab_selftest.m +0 -27
  58. paradigma/ppg/glob_functions/jsonlab/examples/jsonlab_selftest.matlab +0 -144
  59. paradigma/ppg/glob_functions/jsonlab/examples/jsonlab_speedtest.m +0 -21
  60. paradigma/ppg/glob_functions/jsonlab/jsonopt.m +0 -32
  61. paradigma/ppg/glob_functions/jsonlab/loadjson.m +0 -566
  62. paradigma/ppg/glob_functions/jsonlab/loadubjson.m +0 -528
  63. paradigma/ppg/glob_functions/jsonlab/mergestruct.m +0 -33
  64. paradigma/ppg/glob_functions/jsonlab/savejson.m +0 -475
  65. paradigma/ppg/glob_functions/jsonlab/saveubjson.m +0 -504
  66. paradigma/ppg/glob_functions/jsonlab/varargin2struct.m +0 -40
  67. paradigma/ppg/glob_functions/sample_prob_final.m +0 -49
  68. paradigma/ppg/glob_functions/synchronization.m +0 -76
  69. paradigma/ppg/glob_functions/tsdf_scan_meta.m +0 -22
  70. paradigma/ppg/hr_functions/Long_TFD_JOT.m +0 -37
  71. paradigma/ppg/hr_functions/PPG_TFD_HR.m +0 -59
  72. paradigma/ppg/hr_functions/TFD toolbox JOT/.gitignore +0 -4
  73. paradigma/ppg/hr_functions/TFD toolbox JOT/CHANGELOG.md +0 -23
  74. paradigma/ppg/hr_functions/TFD toolbox JOT/LICENCE.md +0 -27
  75. paradigma/ppg/hr_functions/TFD toolbox JOT/README.md +0 -251
  76. paradigma/ppg/hr_functions/TFD toolbox JOT/README.pdf +0 -0
  77. paradigma/ppg/hr_functions/TFD toolbox JOT/common/gen_Doppler_kern.m +0 -142
  78. paradigma/ppg/hr_functions/TFD toolbox JOT/common/gen_Doppler_lag_kern.m +0 -314
  79. paradigma/ppg/hr_functions/TFD toolbox JOT/common/gen_lag_kern.m +0 -123
  80. paradigma/ppg/hr_functions/TFD toolbox JOT/dec_tfd.m +0 -154
  81. paradigma/ppg/hr_functions/TFD toolbox JOT/decimated_TFDs/dec_di_gdtfd.m +0 -194
  82. paradigma/ppg/hr_functions/TFD toolbox JOT/decimated_TFDs/dec_li_gdtfd.m +0 -200
  83. paradigma/ppg/hr_functions/TFD toolbox JOT/decimated_TFDs/dec_nonsep_gdtfd.m +0 -229
  84. paradigma/ppg/hr_functions/TFD toolbox JOT/decimated_TFDs/dec_sep_gdtfd.m +0 -241
  85. paradigma/ppg/hr_functions/TFD toolbox JOT/full_TFDs/di_gdtfd.m +0 -157
  86. paradigma/ppg/hr_functions/TFD toolbox JOT/full_TFDs/li_gdtfd.m +0 -190
  87. paradigma/ppg/hr_functions/TFD toolbox JOT/full_TFDs/nonsep_gdtfd.m +0 -196
  88. paradigma/ppg/hr_functions/TFD toolbox JOT/full_TFDs/sep_gdtfd.m +0 -199
  89. paradigma/ppg/hr_functions/TFD toolbox JOT/full_tfd.m +0 -144
  90. paradigma/ppg/hr_functions/TFD toolbox JOT/load_curdir.m +0 -13
  91. paradigma/ppg/hr_functions/TFD toolbox JOT/pics/decimated_TFDs_examples.png +0 -0
  92. paradigma/ppg/hr_functions/TFD toolbox JOT/pics/full_TFDs_examples.png +0 -0
  93. paradigma/ppg/hr_functions/TFD toolbox JOT/utils/check_dec_params_seq.m +0 -79
  94. paradigma/ppg/hr_functions/TFD toolbox JOT/utils/dispEE.m +0 -9
  95. paradigma/ppg/hr_functions/TFD toolbox JOT/utils/dispVars.m +0 -26
  96. paradigma/ppg/hr_functions/TFD toolbox JOT/utils/disp_bytes.m +0 -25
  97. paradigma/ppg/hr_functions/TFD toolbox JOT/utils/fold_vector_full.m +0 -40
  98. paradigma/ppg/hr_functions/TFD toolbox JOT/utils/fold_vector_half.m +0 -34
  99. paradigma/ppg/hr_functions/TFD toolbox JOT/utils/gen_LFM.m +0 -29
  100. paradigma/ppg/hr_functions/TFD toolbox JOT/utils/get_analytic_signal.m +0 -76
  101. paradigma/ppg/hr_functions/TFD toolbox JOT/utils/get_window.m +0 -176
  102. paradigma/ppg/hr_functions/TFD toolbox JOT/utils/isreal_fn.m +0 -11
  103. paradigma/ppg/hr_functions/TFD toolbox JOT/utils/padWin.m +0 -97
  104. paradigma/ppg/hr_functions/TFD toolbox JOT/utils/vtfd.m +0 -149
  105. paradigma/ppg/preprocessing/preprocessing_imu.m +0 -15
  106. paradigma/ppg/preprocessing/preprocessing_ppg.m +0 -13
  107. paradigma/ppg_preprocessing.py +0 -313
  108. paradigma/preprocessing_config.py +0 -69
  109. paradigma/quantification.py +0 -58
  110. paradigma/tremor/TremorFeaturesAndClassification.m +0 -345
  111. paradigma/tremor/feat_extraction/DerivativesExtract.m +0 -22
  112. paradigma/tremor/feat_extraction/ExtractBandSignalsRMS.m +0 -72
  113. paradigma/tremor/feat_extraction/MFCCExtract.m +0 -100
  114. paradigma/tremor/feat_extraction/PSDBandPower.m +0 -52
  115. paradigma/tremor/feat_extraction/PSDEst.m +0 -63
  116. paradigma/tremor/feat_extraction/PSDExtrAxis.m +0 -88
  117. paradigma/tremor/feat_extraction/PSDExtrOpt.m +0 -95
  118. paradigma/tremor/preprocessing/InterpData.m +0 -32
  119. paradigma/tremor/weekly_aggregates/WeeklyAggregates.m +0 -295
  120. paradigma/windowing.py +0 -219
  121. paradigma-0.3.2.dist-info/RECORD +0 -108
  122. {paradigma-0.3.2.dist-info → paradigma-0.4.0.dist-info}/LICENSE +0 -0
paradigma/windowing.py DELETED
@@ -1,219 +0,0 @@
1
- import pandas as pd
2
- import numpy as np
3
- import math
4
-
5
- from typing import Union, List
6
-
7
-
8
- def create_window(
9
- df: pd.DataFrame,
10
- time_column_name: str,
11
- window_nr: int,
12
- lower_index: int,
13
- upper_index: int,
14
- data_point_level_cols: list,
15
- segment_nr: int,
16
- sampling_frequency: int = 100
17
- ) -> list:
18
- """Transforms (a subset of) a dataframe into a single row
19
-
20
- Parameters
21
- ----------
22
- df: pd.DataFrame
23
- The original dataframe to be windowed
24
- time_column_name: str
25
- The name of the time column
26
- window_nr: int
27
- The identification of the window
28
- lower_index: int
29
- The dataframe index of the first sample to be windowed
30
- upper_index: int
31
- The dataframe index of the final sample to be windowed
32
- data_point_level_cols: list
33
- The columns in sensor_df that are to be kept as individual datapoints in a list instead of aggregates
34
- segment_nr: int
35
- The identification of the segment
36
- sampling_frequency: int, optional
37
- The sampling frequency (Hz) of the data (default: 100)
38
-
39
- Returns
40
- -------
41
- list
42
- Rows corresponding to single windows
43
- """
44
- t_start_window = df.loc[lower_index, time_column_name]
45
-
46
- df_subset = df.loc[lower_index:upper_index, data_point_level_cols].copy()
47
- t_start = t_start_window
48
- t_end = upper_index/sampling_frequency + t_start_window
49
-
50
- if segment_nr is None:
51
- l_subset_squeezed = [window_nr+1, t_start, t_end] + df_subset.values.T.tolist()
52
- else:
53
- l_subset_squeezed = [segment_nr, window_nr+1, t_start, t_end] + df_subset.values.T.tolist()
54
-
55
- return l_subset_squeezed
56
-
57
-
58
- def tabulate_windows(
59
- df: pd.DataFrame,
60
- time_column_name: str,
61
- data_point_level_cols: list,
62
- window_length_s: Union[int, float] = 6,
63
- window_step_size_s: Union[int, float] = 1,
64
- sampling_frequency: int = 100,
65
- segment_nr_colname: Union[str, None] = None,
66
- segment_nr: Union[int, None] = None,
67
- ) -> pd.DataFrame:
68
- """Compiles multiple windows into a single dataframe
69
-
70
- Parameters
71
- ----------
72
- df: pd.DataFrame
73
- The original dataframe to be windowed
74
- time_column_name: str
75
- The name of the time column
76
- data_point_level_cols: list
77
- The names of the columns that are to be kept as individual datapoints in a list instead of aggregates
78
- window_length_s: int | float, optional
79
- The number of seconds a window constitutes (default: 6)
80
- window_step_size_s: int | float, optional
81
- The number of seconds between the end of the previous and the start of the next window (default: 1)
82
- sampling_frequency: int, optional
83
- The sampling frequency of the data (default: 100)
84
- segment_nr_colname: str, optional
85
- The name of the column that identifies the segment; set to None if not applicable (default: None)
86
- segment_nr: int, optional
87
- The identification of the segment; set to None if not applicable (default: None)
88
-
89
-
90
- Returns
91
- -------
92
- pd.DataFrame
93
- Dataframe with each row corresponding to an individual window
94
- """
95
- window_length = sampling_frequency * window_length_s - 1
96
- window_step_size = sampling_frequency * window_step_size_s
97
-
98
- df = df.reset_index(drop=True)
99
-
100
- if window_step_size <= 0:
101
- raise Exception("Step size should be larger than 0.")
102
- if window_length > df.shape[0]:
103
- return
104
-
105
- l_windows = []
106
- n_windows = math.floor(
107
- (df.shape[0] - window_length) /
108
- window_step_size
109
- ) + 1
110
-
111
- for window_nr in range(n_windows):
112
- lower = window_nr * window_step_size
113
- upper = window_nr * window_step_size + window_length
114
- l_windows.append(
115
- create_window(
116
- df=df,
117
- time_column_name=time_column_name,
118
- window_nr=window_nr,
119
- lower_index=lower,
120
- upper_index=upper,
121
- data_point_level_cols=data_point_level_cols,
122
- segment_nr=segment_nr,
123
- sampling_frequency=sampling_frequency
124
- )
125
- )
126
-
127
- if segment_nr is None:
128
- df_windows = pd.DataFrame(l_windows, columns=['window_nr', 'window_start', 'window_end'] + data_point_level_cols)
129
- else:
130
- df_windows = pd.DataFrame(l_windows, columns=[segment_nr_colname, 'window_nr', 'window_start', 'window_end'] + data_point_level_cols)
131
-
132
- return df_windows.reset_index(drop=True)
133
-
134
-
135
- def create_segments(
136
- df: pd.DataFrame,
137
- time_colname: str,
138
- segment_nr_colname: str,
139
- minimum_gap_s: int,
140
- ) -> pd.DataFrame:
141
- """Create segments based on the time column of the dataframe. Segments are defined as continuous time periods.
142
-
143
- Parameters
144
- ----------
145
- df: pd.DataFrame
146
- The dataframe to be segmented
147
- time_colname: str
148
- The name of the time column
149
- minimum_gap_s: int
150
- The minimum gap in seconds to split up the time periods into segments
151
-
152
- Returns
153
- -------
154
- pd.DataFrame
155
- The dataframe with additional columns related to segments
156
- """
157
- array_new_segments = np.where((df[time_colname] - df[time_colname].shift() > minimum_gap_s), 1, 0)
158
- df['new_segment_cumsum'] = array_new_segments.cumsum()
159
- df_segments = pd.DataFrame(df.groupby('new_segment_cumsum')[time_colname].count()).reset_index()
160
- df_segments.columns = [segment_nr_colname, 'length_segment_s']
161
- df_segments[segment_nr_colname] += 1
162
-
163
- df = df.drop(columns=['new_segment_cumsum'])
164
-
165
- cols_to_append = [segment_nr_colname, 'length_segment_s']
166
-
167
- for col in cols_to_append:
168
- df[col] = 0
169
-
170
- index_start = 0
171
- for _, row in df_segments.iterrows():
172
- len_segment = row['length_segment_s']
173
-
174
- for col in cols_to_append:
175
- df.loc[index_start:index_start+len_segment-1, col] = row[col]
176
-
177
- index_start += len_segment
178
-
179
- return df
180
-
181
-
182
- def discard_segments(
183
- df: pd.DataFrame,
184
- time_colname: str,
185
- segment_nr_colname: str,
186
- minimum_segment_length_s: int,
187
- ) -> pd.DataFrame:
188
- """Discard segments that are shorter than a specified length.
189
-
190
- Parameters
191
- ----------
192
- df: pd.DataFrame
193
- The dataframe containing information about the segments
194
- time_colname: str
195
- The column name of the time column
196
- segment_nr_colname: str
197
- The column name of the column containing the segment numbers
198
- minimum_segment_length_s: int
199
- The minimum required length of a segment in seconds
200
-
201
- Returns
202
- -------
203
- pd.DataFrame
204
- The dataframe with segments that are longer than the specified length
205
- """
206
- segment_length_bool = df.groupby(segment_nr_colname)[time_colname].apply(lambda x: x.max() - x.min()) > minimum_segment_length_s
207
-
208
- df = df.loc[df[segment_nr_colname].isin(segment_length_bool.loc[segment_length_bool.values].index)]
209
-
210
- # reorder the segments - starting at 1
211
- for segment_nr in df[segment_nr_colname].unique():
212
- df.loc[df[segment_nr_colname]==segment_nr, f'{segment_nr_colname}_ordered'] = np.where(df[segment_nr_colname].unique()==segment_nr)[0][0] + 1
213
-
214
- df[f'{segment_nr_colname}_ordered'] = df[f'{segment_nr_colname}_ordered'].astype(int)
215
-
216
- df = df.drop(columns=[segment_nr_colname])
217
- df = df.rename(columns={f'{segment_nr_colname}_ordered': segment_nr_colname})
218
-
219
- return df
@@ -1,108 +0,0 @@
1
- paradigma/__init__.py,sha256=vCLqo7vOEgcnYs10gUVYvEFfi8y-jBi7w1YKRoqn95k,127
2
- paradigma/constants.py,sha256=fC64MZY7b8BdakakQPxOnr4fvqTvAthInezbEXWp2Y0,1944
3
- paradigma/feature_extraction.py,sha256=534lOy-a_cLbThrbN2CkLypp53OmyKfm2zVBrDcICCE,29092
4
- paradigma/gait_analysis.py,sha256=_dIfGJksF3SUi-ViZzy9kHel_I_9_5rJqY8Sd4C9aEA,19678
5
- paradigma/gait_analysis_config.py,sha256=89iWUGom6YocBxAqS7VwCn4Cput2mzxP2e7RI2iA4y4,9858
6
- paradigma/heart_rate_analysis.py,sha256=6upEOkMYD-Pu8OKWK7iY_j96iOxJgSMqmZJx8ILAc28,6208
7
- paradigma/heart_rate_analysis_config.py,sha256=fxvX_P2BpN7ImtbgFxMforp02GpIEXg3OXE5d2BIkTk,168
8
- paradigma/heart_rate_util.py,sha256=ECTnyOw-KgKUazzK9pg3dMYCdYsGZ1ixEusF-hzu4Vw,6233
9
- paradigma/imu_preprocessing.py,sha256=n0NY80TfjtBL2XNDFsTebaLYvzepZlL_XrEZAqjo4dU,8789
10
- paradigma/ppg/classifier/LR_PPG_quality.pkl,sha256=Zet2g1JIjwBPIK_eJs-aiKACyLbe0tLwSfA5Vm_5bsw,948
11
- paradigma/ppg/classifier/LR_model.mat,sha256=LaciVbQGHBGbMaui3mEdq-b898FshU6vY9QAp502Xwg,3712
12
- paradigma/ppg/feat_extraction/acc_feature.m,sha256=D32PToHF7GupfItJculfdLmf0sET9z5LE-RchGpbJJc,975
13
- paradigma/ppg/feat_extraction/peakdet.m,sha256=H2OHUJ7rtDtO_H_f8dFdL198ZdqMYsI8wl6v8KnZr_I,1567
14
- paradigma/ppg/feat_extraction/ppg_features.m,sha256=qkqkB9ewh3LIgDTdsG60Ex62fEkEMiJS2MsCUUEplaA,2550
15
- paradigma/ppg/glob_functions/extract_hr_segments.m,sha256=J4AJmtcqnCmADTEAp7SEdQZ98NJHWbFdyLwjysZ5LJk,1408
16
- paradigma/ppg/glob_functions/extract_overlapping_segments.m,sha256=ZpLy8_JzYz72pST9p7urjR0GVV0BbAMTb4v3VywQhus,1059
17
- paradigma/ppg/glob_functions/jsonlab/AUTHORS.txt,sha256=tMdyED6heca3_WufPOR9q_cK4zakzZVs0c9XsojPCyw,1624
18
- paradigma/ppg/glob_functions/jsonlab/ChangeLog.txt,sha256=mCHjFtI-5BEVHVC8rFZIoaeum_KWRCL0hr3ZnTtCZfc,3862
19
- paradigma/ppg/glob_functions/jsonlab/LICENSE_BSD.txt,sha256=eHQ_PBqddfxsU40J93yRGK9wHxXX-ALSXvpBu8IUEQM,1551
20
- paradigma/ppg/glob_functions/jsonlab/LICENSE_GPLv3.txt,sha256=L88L4XhmJ5aqCEHyFNokq8hqWtyQKlntm-X9gWtDpn0,36308
21
- paradigma/ppg/glob_functions/jsonlab/README.txt,sha256=-Lybzx97LJ-hh8JYFPBNKPt1CnaNCs4aItUcdTTzL9o,19395
22
- paradigma/ppg/glob_functions/jsonlab/examples/.svn/entries,sha256=UdqXKx32m4FnNoo2VTZrIWJPuWrS1VYgUXBVctZXlSE,1744
23
- paradigma/ppg/glob_functions/jsonlab/examples/.svn/text-base/demo_jsonlab_basic.m.svn-base,sha256=Dp5xIds93HrVk8Veo20jgWpFDfsm4vc0MEOE1kc9zi4,6414
24
- paradigma/ppg/glob_functions/jsonlab/examples/.svn/text-base/demo_ubjson_basic.m.svn-base,sha256=of_fDai8AeqEmojlt5eTKn0pzX1X2cGt5VLp1Lf_muM,6517
25
- paradigma/ppg/glob_functions/jsonlab/examples/.svn/text-base/example1.json.svn-base,sha256=NxExWoSyi6OzJZgka4wHQhS75RRo1wtEouJGMUD79P0,436
26
- paradigma/ppg/glob_functions/jsonlab/examples/.svn/text-base/example2.json.svn-base,sha256=sDxw-E_s1h-I3h1ICmsVEVfbONFFnXn8sIBGGJlG5q4,583
27
- paradigma/ppg/glob_functions/jsonlab/examples/.svn/text-base/example3.json.svn-base,sha256=mXd-Yr6ufzZ7Pqo6sK_gbHjWvZsUAIk-EK1v3leKSTU,256
28
- paradigma/ppg/glob_functions/jsonlab/examples/.svn/text-base/example4.json.svn-base,sha256=MLeg9Nu-qScgIpoqTln5CX48_FIJaHTFzwZcVJDikeI,500
29
- paradigma/ppg/glob_functions/jsonlab/examples/.svn/text-base/jsonlab_basictest.matlab.svn-base,sha256=KZZPOsFkPjQyek9vtWuZQI6TD1JChJAO6_pFtpW3nVs,9973
30
- paradigma/ppg/glob_functions/jsonlab/examples/.svn/text-base/jsonlab_selftest.m.svn-base,sha256=gCeWAIhOfOy5puQHCSh2X_2AMsTSVMwuSIBe1Bq_v18,995
31
- paradigma/ppg/glob_functions/jsonlab/examples/.svn/text-base/jsonlab_selftest.matlab.svn-base,sha256=d-7rydIWlqorEtbFNa1w7eS9cFshi9i2ImQEe4FZfTQ,4131
32
- paradigma/ppg/glob_functions/jsonlab/examples/.svn/text-base/jsonlab_speedtest.m.svn-base,sha256=7cBjf8PZ3gve18YlSnmAo_F_UMvm1bTfrRByFqcOHK4,675
33
- paradigma/ppg/glob_functions/jsonlab/examples/demo_jsonlab_basic.m,sha256=Dp5xIds93HrVk8Veo20jgWpFDfsm4vc0MEOE1kc9zi4,6414
34
- paradigma/ppg/glob_functions/jsonlab/examples/demo_ubjson_basic.m,sha256=of_fDai8AeqEmojlt5eTKn0pzX1X2cGt5VLp1Lf_muM,6517
35
- paradigma/ppg/glob_functions/jsonlab/examples/example1.json,sha256=NxExWoSyi6OzJZgka4wHQhS75RRo1wtEouJGMUD79P0,436
36
- paradigma/ppg/glob_functions/jsonlab/examples/example2.json,sha256=sDxw-E_s1h-I3h1ICmsVEVfbONFFnXn8sIBGGJlG5q4,583
37
- paradigma/ppg/glob_functions/jsonlab/examples/example3.json,sha256=mXd-Yr6ufzZ7Pqo6sK_gbHjWvZsUAIk-EK1v3leKSTU,256
38
- paradigma/ppg/glob_functions/jsonlab/examples/example4.json,sha256=MLeg9Nu-qScgIpoqTln5CX48_FIJaHTFzwZcVJDikeI,500
39
- paradigma/ppg/glob_functions/jsonlab/examples/jsonlab_basictest.matlab,sha256=KZZPOsFkPjQyek9vtWuZQI6TD1JChJAO6_pFtpW3nVs,9973
40
- paradigma/ppg/glob_functions/jsonlab/examples/jsonlab_selftest.m,sha256=gCeWAIhOfOy5puQHCSh2X_2AMsTSVMwuSIBe1Bq_v18,995
41
- paradigma/ppg/glob_functions/jsonlab/examples/jsonlab_selftest.matlab,sha256=d-7rydIWlqorEtbFNa1w7eS9cFshi9i2ImQEe4FZfTQ,4131
42
- paradigma/ppg/glob_functions/jsonlab/examples/jsonlab_speedtest.m,sha256=7cBjf8PZ3gve18YlSnmAo_F_UMvm1bTfrRByFqcOHK4,675
43
- paradigma/ppg/glob_functions/jsonlab/jsonopt.m,sha256=Aae_EUdJCvovPshtZhyADuN9ZetaP_FkzHZdXuP8hfo,906
44
- paradigma/ppg/glob_functions/jsonlab/loadjson.m,sha256=0MDR6-Ncl4PJV8nonVr4_fW6YA7uyw99FUzE_MOdwDc,18757
45
- paradigma/ppg/glob_functions/jsonlab/loadubjson.m,sha256=PKBfp-U0frVYLLcnaitgaz0nHAgKc4Vm-_E20x7yh-k,15599
46
- paradigma/ppg/glob_functions/jsonlab/mergestruct.m,sha256=miNZzwSRWmWNtFrQjSJ-avv6cvE4AgJG2mKlH4r8vtQ,796
47
- paradigma/ppg/glob_functions/jsonlab/savejson.m,sha256=cJ_2zJ2L6VNaZsSpcfW9RKyBbKfwT6V4_MNJ2_fBr5M,17487
48
- paradigma/ppg/glob_functions/jsonlab/saveubjson.m,sha256=Er9r39_iVofQZl29n1XbPwdqB_AktajOW7WrHqycytY,16148
49
- paradigma/ppg/glob_functions/jsonlab/varargin2struct.m,sha256=F9ozzN8nz7TEYpXo8zbp5fs_Iv-raSIUm2LXLQ5wZwc,1119
50
- paradigma/ppg/glob_functions/sample_prob_final.m,sha256=rerW139cBYyoOTf5xqOcI6kcaI-gZ-RDeDCHuKfwr24,1719
51
- paradigma/ppg/glob_functions/synchronization.m,sha256=r_Vy07Odie49WJ2wET86YLG7h4_r2vpZH9oQOqK-du4,3422
52
- paradigma/ppg/glob_functions/tsdf_scan_meta.m,sha256=n9Tk6UYXgbIOemvlW4q9xi9dKwyzvr6dORAgBAE4Iec,793
53
- paradigma/ppg/hr_functions/Long_TFD_JOT.m,sha256=cI0RZnvX3r_W5wSM2GkyX_hmW-BeGzmAUIYEo0SqYFQ,1266
54
- paradigma/ppg/hr_functions/PPG_TFD_HR.m,sha256=iKyb7caL86wpi5bVDt9jAfNOjgjNt2Uft3jahB3foI8,2647
55
- paradigma/ppg/hr_functions/TFD toolbox JOT/.gitignore,sha256=t8o14EPyr3Qaxg35cm1GCAjrOnzjtmNx9728BLnAEbo,107
56
- paradigma/ppg/hr_functions/TFD toolbox JOT/CHANGELOG.md,sha256=IJCkSNLpU9AUTkbZKYrb1cFinqpU7veh0TDtRdKt9gE,963
57
- paradigma/ppg/hr_functions/TFD toolbox JOT/LICENCE.md,sha256=4krhNoNW2gJ50b73YsTlFKQ1zQJc1i3CaPDb6DlvyEA,1526
58
- paradigma/ppg/hr_functions/TFD toolbox JOT/README.md,sha256=n1JTrbfA8IGKMLFz2tc-s1P_KpHl9TIO_ghuzATz86Y,11345
59
- paradigma/ppg/hr_functions/TFD toolbox JOT/README.pdf,sha256=ndSCluC8WzVR-22YVbfA2S8t-GBK_1J4OnYaCt5KLU4,457441
60
- paradigma/ppg/hr_functions/TFD toolbox JOT/common/gen_Doppler_kern.m,sha256=mlUPmZvbqO1_LjKoOPO72J5djFoyTAQlRgiAgsMkn1o,3961
61
- paradigma/ppg/hr_functions/TFD toolbox JOT/common/gen_Doppler_lag_kern.m,sha256=E7_CB5ioGJeaY4I5YOlujMQoAFY3FUgB_a_bktyRS2Q,8604
62
- paradigma/ppg/hr_functions/TFD toolbox JOT/common/gen_lag_kern.m,sha256=jAjte3ps5AdAwlFTdym4TvstvrIcQn4VU4En53xqcQ4,3363
63
- paradigma/ppg/hr_functions/TFD toolbox JOT/dec_tfd.m,sha256=378QcQ_Vxytrdi45mKxoxp9hIyRKx7n60KOMgAvloJY,7341
64
- paradigma/ppg/hr_functions/TFD toolbox JOT/decimated_TFDs/dec_di_gdtfd.m,sha256=ZwsXdbCgKjX9Rfn0NLZ7xUQ5Z_Id0Da73toiHILb_Bs,6286
65
- paradigma/ppg/hr_functions/TFD toolbox JOT/decimated_TFDs/dec_li_gdtfd.m,sha256=DhxwuB46KS3mO_xDGIuctSD8lie1JKZj_bZATwr1ECA,6560
66
- paradigma/ppg/hr_functions/TFD toolbox JOT/decimated_TFDs/dec_nonsep_gdtfd.m,sha256=n8D0jVFAuuTZy43evaK5zkAh3_XxZmRNmwB7o0L4OBQ,7758
67
- paradigma/ppg/hr_functions/TFD toolbox JOT/decimated_TFDs/dec_sep_gdtfd.m,sha256=_BSiXHF3z98Dx1Gpyma3vOKoev7tcUdS_hnZEJg4gAw,9388
68
- paradigma/ppg/hr_functions/TFD toolbox JOT/full_TFDs/di_gdtfd.m,sha256=zBjsyq3ragOutwVXEpUAbNT2wpDyMHfkfVSWPlh8rEs,4981
69
- paradigma/ppg/hr_functions/TFD toolbox JOT/full_TFDs/li_gdtfd.m,sha256=sIgHxKfCOB9ilJ0rOyMXwV4pWtLB5Ff_nTvko9c2Uwk,5884
70
- paradigma/ppg/hr_functions/TFD toolbox JOT/full_TFDs/nonsep_gdtfd.m,sha256=EkJ0vb_LQKGOyxWuww0uF5_9RQkdujrd1TqHI9eKlqg,5840
71
- paradigma/ppg/hr_functions/TFD toolbox JOT/full_TFDs/sep_gdtfd.m,sha256=L3hCro9FI8wLAk8aaQ2nFN-D1QSQsvloMaRsyqyxG6k,6697
72
- paradigma/ppg/hr_functions/TFD toolbox JOT/full_tfd.m,sha256=YJVjPAMSMxODfzF10EvKX4CwTA_P0PU2ts8JWHHHcQA,5608
73
- paradigma/ppg/hr_functions/TFD toolbox JOT/load_curdir.m,sha256=gh3ZgvJmhkUvlWFZ3m-P6LAoW9xTyPNk1rayCu_MX9E,252
74
- paradigma/ppg/hr_functions/TFD toolbox JOT/pics/decimated_TFDs_examples.png,sha256=w2nCOBrp8hGiUUT8kZGAsI40Tk0OwQqBS1kUTP9tBVw,146865
75
- paradigma/ppg/hr_functions/TFD toolbox JOT/pics/full_TFDs_examples.png,sha256=DepcYPl07VnP5aG3UmGlmy_tvi3Z3ehR2dyUdkt2uOY,203040
76
- paradigma/ppg/hr_functions/TFD toolbox JOT/utils/check_dec_params_seq.m,sha256=kYbVz0OdSkv0al5TgH6Y4apx_Acz87LE8ob72o-Py0Q,2469
77
- paradigma/ppg/hr_functions/TFD toolbox JOT/utils/dispEE.m,sha256=Hjl_drhRrn19OILS2E-gv_IhqRzn2-ZFSGUDCS8IVIE,276
78
- paradigma/ppg/hr_functions/TFD toolbox JOT/utils/dispVars.m,sha256=lPOO-SRg3Wp_1t0oC3A1B_6GoMeIgrf2D2MeKAojRSU,640
79
- paradigma/ppg/hr_functions/TFD toolbox JOT/utils/disp_bytes.m,sha256=5i3V4b0es18dqZLfc_4PzybnzLLMU7S6nlAXx6PpAgk,749
80
- paradigma/ppg/hr_functions/TFD toolbox JOT/utils/fold_vector_full.m,sha256=2oRqAO5YfvI8yv92Wo2Stkmf4Q3bHHiK0LmpcmbWeR8,793
81
- paradigma/ppg/hr_functions/TFD toolbox JOT/utils/fold_vector_half.m,sha256=9-JV_a69WvBYqAl6JScKcWQbTVhtIBz_RRRqSepT_Qs,681
82
- paradigma/ppg/hr_functions/TFD toolbox JOT/utils/gen_LFM.m,sha256=0mTsD7qpIhS_X_t3ZTeCHOuD-J5atIjqKSOlhlP-U7I,875
83
- paradigma/ppg/hr_functions/TFD toolbox JOT/utils/get_analytic_signal.m,sha256=WoChaXEkA-dyy65y2Z4eRAkZ-5ox99PHWBYhAsW_hCc,2212
84
- paradigma/ppg/hr_functions/TFD toolbox JOT/utils/get_window.m,sha256=KAjVY32tsILzlrJ9iN97-rWph4rY3-AhNLscIDJVpcI,5054
85
- paradigma/ppg/hr_functions/TFD toolbox JOT/utils/isreal_fn.m,sha256=Cx-OdLm8TCMIVQCP9618oKmlRrEWFU6oa5_xTZ6y1mo,173
86
- paradigma/ppg/hr_functions/TFD toolbox JOT/utils/padWin.m,sha256=DTOK5JTm49A2a6pxOaNh2B29W3FIonrr1AcPEPKu63o,3000
87
- paradigma/ppg/hr_functions/TFD toolbox JOT/utils/vtfd.m,sha256=U5WdtSOjIRW8tiahpURdFjD95IpfdLEuyQL2firTnFA,4836
88
- paradigma/ppg/preprocessing/preprocessing_imu.m,sha256=tevkDPC23S4NQor62HlJwCc2MwtMv3-_buvB1P-KOuo,763
89
- paradigma/ppg/preprocessing/preprocessing_ppg.m,sha256=tHnGuqS7RKUptzFIu-vu6I8P50iIOR8Bulq0IIDB1so,700
90
- paradigma/ppg_preprocessing.py,sha256=ZJK4wXqdDpYW2ziKdlwfdxtowJSmmDB438ncGEBBH8g,14081
91
- paradigma/preprocessing_config.py,sha256=A48blQi7L-k3cXTHiVuAeahBCPa4ijMFw-ZIgGexibo,2204
92
- paradigma/quantification.py,sha256=ymYDWRoWl3QNCOaHlCR3eyHu1nlkAndJRAm3-gg5doE,2035
93
- paradigma/tremor/TremorFeaturesAndClassification.m,sha256=DhaLx8R9VcjetUAztWiUDv1PkzeN9s8hU0WRh1OB-CU,16636
94
- paradigma/tremor/feat_extraction/DerivativesExtract.m,sha256=-WuRBpuUO3gZ9dFDzQhoqBmEEMuU2gcU6XBuzXnvweU,883
95
- paradigma/tremor/feat_extraction/ExtractBandSignalsRMS.m,sha256=wFbmCREYxgLWVdLYJ8W3JMSab1ngIot8442xnLdvXMQ,3325
96
- paradigma/tremor/feat_extraction/MFCCExtract.m,sha256=5thjI0rPGkIWuTTMIJbD6_QBKXESbchgeuR7L5OXu1c,4600
97
- paradigma/tremor/feat_extraction/PSDBandPower.m,sha256=4XhLdKs9gVGjNsCFaPhHpLb285w9UkhIbM3JK-w0S3U,1953
98
- paradigma/tremor/feat_extraction/PSDEst.m,sha256=rEHYhyQaB1h9ZSoU1dDyNk61wTRqZBeCCWW72cHN8dg,2447
99
- paradigma/tremor/feat_extraction/PSDExtrAxis.m,sha256=HVp2KewVHbpN1D-gBpjWMYIJ6vHzJzqQDV_aMNWuCEc,4391
100
- paradigma/tremor/feat_extraction/PSDExtrOpt.m,sha256=FKpAL69_Qu9_Gw0rqye9wV5cU_t42R2humOFUtznHxo,4223
101
- paradigma/tremor/preprocessing/InterpData.m,sha256=jsrdiE6IPvDTPz5LdZtP1opAh_hQ-M9o7K4WXXsLOhw,1167
102
- paradigma/tremor/weekly_aggregates/WeeklyAggregates.m,sha256=OMT_W8B6i6WdXzC9IUiblxzUKHACg4yeRYnCDRcT06k,15816
103
- paradigma/util.py,sha256=eK1zv0of9_MpG-HN29ijkTwgMwV0bCUXjcF3FbzCYeg,2190
104
- paradigma/windowing.py,sha256=GFFCu_WEwsfWGCJKyLO-o0_7HJt4YAEgU9XoqBXOnEQ,7429
105
- paradigma-0.3.2.dist-info/LICENSE,sha256=Lda8kIVC2kbmlSeYaUWwUwV75Q-q31idYvo18HUTfiw,9807
106
- paradigma-0.3.2.dist-info/METADATA,sha256=CtAraoGORdAnMWBECOg8HMmJwVhc1JgjCIKl6fowq3E,3805
107
- paradigma-0.3.2.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
108
- paradigma-0.3.2.dist-info/RECORD,,