pandas-market-calendars 4.3.1__py3-none-any.whl → 4.3.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (49) hide show
  1. pandas_market_calendars/__init__.py +38 -37
  2. pandas_market_calendars/calendar_registry.py +53 -48
  3. pandas_market_calendars/calendar_utils.py +261 -225
  4. pandas_market_calendars/calendars/asx.py +66 -63
  5. pandas_market_calendars/calendars/bmf.py +206 -227
  6. pandas_market_calendars/calendars/bse.py +407 -409
  7. pandas_market_calendars/calendars/cboe.py +145 -115
  8. pandas_market_calendars/calendars/cme.py +402 -240
  9. pandas_market_calendars/calendars/cme_globex_agriculture.py +126 -103
  10. pandas_market_calendars/calendars/cme_globex_base.py +119 -103
  11. pandas_market_calendars/calendars/cme_globex_crypto.py +160 -147
  12. pandas_market_calendars/calendars/cme_globex_energy_and_metals.py +216 -138
  13. pandas_market_calendars/calendars/cme_globex_equities.py +123 -104
  14. pandas_market_calendars/calendars/cme_globex_fixed_income.py +136 -113
  15. pandas_market_calendars/calendars/cme_globex_fx.py +101 -78
  16. pandas_market_calendars/calendars/eurex.py +139 -119
  17. pandas_market_calendars/calendars/eurex_fixed_income.py +98 -0
  18. pandas_market_calendars/calendars/hkex.py +426 -408
  19. pandas_market_calendars/calendars/ice.py +81 -65
  20. pandas_market_calendars/calendars/iex.py +112 -98
  21. pandas_market_calendars/calendars/jpx.py +109 -103
  22. pandas_market_calendars/calendars/lse.py +114 -91
  23. pandas_market_calendars/calendars/mirror.py +130 -114
  24. pandas_market_calendars/calendars/nyse.py +1324 -1127
  25. pandas_market_calendars/calendars/ose.py +116 -150
  26. pandas_market_calendars/calendars/sifma.py +350 -297
  27. pandas_market_calendars/calendars/six.py +132 -114
  28. pandas_market_calendars/calendars/sse.py +311 -290
  29. pandas_market_calendars/calendars/tase.py +197 -195
  30. pandas_market_calendars/calendars/tsx.py +181 -159
  31. pandas_market_calendars/class_registry.py +22 -16
  32. pandas_market_calendars/holidays/cme.py +385 -340
  33. pandas_market_calendars/holidays/cme_globex.py +214 -198
  34. pandas_market_calendars/holidays/cn.py +1455 -1436
  35. pandas_market_calendars/holidays/jp.py +398 -396
  36. pandas_market_calendars/holidays/jpx_equinox.py +453 -95
  37. pandas_market_calendars/holidays/nyse.py +1531 -1472
  38. pandas_market_calendars/holidays/oz.py +63 -65
  39. pandas_market_calendars/holidays/sifma.py +338 -321
  40. pandas_market_calendars/holidays/uk.py +32 -26
  41. pandas_market_calendars/holidays/us.py +376 -360
  42. pandas_market_calendars/market_calendar.py +895 -789
  43. {pandas_market_calendars-4.3.1.dist-info → pandas_market_calendars-4.3.3.dist-info}/METADATA +7 -5
  44. pandas_market_calendars-4.3.3.dist-info/RECORD +50 -0
  45. {pandas_market_calendars-4.3.1.dist-info → pandas_market_calendars-4.3.3.dist-info}/WHEEL +1 -1
  46. pandas_market_calendars-4.3.1.dist-info/RECORD +0 -49
  47. {pandas_market_calendars-4.3.1.dist-info → pandas_market_calendars-4.3.3.dist-info}/LICENSE +0 -0
  48. {pandas_market_calendars-4.3.1.dist-info → pandas_market_calendars-4.3.3.dist-info}/NOTICE +0 -0
  49. {pandas_market_calendars-4.3.1.dist-info → pandas_market_calendars-4.3.3.dist-info}/top_level.txt +0 -0
@@ -32,7 +32,7 @@ MayBank_pre_1995 = Holiday(
32
32
  month=5,
33
33
  offset=DateOffset(weekday=MO(1)),
34
34
  day=1,
35
- end_date=Timestamp('1994-12-31'),
35
+ end_date=Timestamp("1994-12-31"),
36
36
  )
37
37
 
38
38
  # Early May bank holiday post-1995 and pre-2020
@@ -41,8 +41,8 @@ MayBank_post_1995_pre_2020 = Holiday(
41
41
  month=5,
42
42
  offset=DateOffset(weekday=MO(1)),
43
43
  day=1,
44
- start_date=Timestamp('1996-01-01'),
45
- end_date=Timestamp('2019-12-31'),
44
+ start_date=Timestamp("1996-01-01"),
45
+ end_date=Timestamp("2019-12-31"),
46
46
  )
47
47
 
48
48
  # Early May bank holiday post 2020
@@ -51,7 +51,7 @@ MayBank_post_2020 = Holiday(
51
51
  month=5,
52
52
  offset=DateOffset(weekday=MO(1)),
53
53
  day=1,
54
- start_date=Timestamp('2021-01-01')
54
+ start_date=Timestamp("2021-01-01"),
55
55
  )
56
56
 
57
57
  # Spring bank holiday has two exceptions based on the Golden & Diamond Jubilee
@@ -65,7 +65,7 @@ SpringBank_pre_2002 = Holiday(
65
65
  month=5,
66
66
  day=31,
67
67
  offset=DateOffset(weekday=MO(-1)),
68
- end_date=Timestamp('2001-12-31'),
68
+ end_date=Timestamp("2001-12-31"),
69
69
  )
70
70
 
71
71
  SpringBank_post_2002_pre_2012 = Holiday(
@@ -73,8 +73,8 @@ SpringBank_post_2002_pre_2012 = Holiday(
73
73
  month=5,
74
74
  day=31,
75
75
  offset=DateOffset(weekday=MO(-1)),
76
- start_date=Timestamp('2003-01-01'),
77
- end_date=Timestamp('2011-12-31'),
76
+ start_date=Timestamp("2003-01-01"),
77
+ end_date=Timestamp("2011-12-31"),
78
78
  )
79
79
 
80
80
  SpringBank_post_2012_pre_2022 = Holiday(
@@ -82,8 +82,8 @@ SpringBank_post_2012_pre_2022 = Holiday(
82
82
  month=5,
83
83
  day=31,
84
84
  offset=DateOffset(weekday=MO(-1)),
85
- start_date=Timestamp('2013-01-01'),
86
- end_date=Timestamp('2021-12-31'),
85
+ start_date=Timestamp("2013-01-01"),
86
+ end_date=Timestamp("2021-12-31"),
87
87
  )
88
88
 
89
89
  SpringBank_post_2022 = Holiday(
@@ -91,7 +91,7 @@ SpringBank_post_2022 = Holiday(
91
91
  month=5,
92
92
  day=31,
93
93
  offset=DateOffset(weekday=MO(-1)),
94
- start_date=Timestamp('2022-01-01'),
94
+ start_date=Timestamp("2022-01-01"),
95
95
  )
96
96
 
97
97
  # Summer bank holiday
@@ -104,7 +104,7 @@ SummerBank = Holiday(
104
104
 
105
105
  # Christmas Eve
106
106
  ChristmasEve = Holiday(
107
- 'Christmas Eve',
107
+ "Christmas Eve",
108
108
  month=12,
109
109
  day=24,
110
110
  observance=previous_friday,
@@ -146,35 +146,41 @@ WeekendBoxingDay = Holiday(
146
146
 
147
147
  UniqueCloses = []
148
148
  # VE-Day Anniversary
149
- UniqueCloses.append(pd.Timestamp("1995-05-08", tz='UTC')) # 50th Anniversary
150
- UniqueCloses.append(pd.Timestamp("2020-05-08", tz='UTC')) # 75th Anniversary
149
+ UniqueCloses.append(pd.Timestamp("1995-05-08", tz="UTC")) # 50th Anniversary
150
+ UniqueCloses.append(pd.Timestamp("2020-05-08", tz="UTC")) # 75th Anniversary
151
151
 
152
152
  # Queen Elizabeth II Jubilees
153
153
  # Silver Jubilee
154
- UniqueCloses.append(pd.Timestamp("1977-06-07", tz='UTC'))
154
+ UniqueCloses.append(pd.Timestamp("1977-06-07", tz="UTC"))
155
155
 
156
156
  # Golden Jubilee
157
- UniqueCloses.append(pd.Timestamp("2002-06-03", tz='UTC'))
158
- UniqueCloses.append(pd.Timestamp("2002-06-04", tz='UTC'))
157
+ UniqueCloses.append(pd.Timestamp("2002-06-03", tz="UTC"))
158
+ UniqueCloses.append(pd.Timestamp("2002-06-04", tz="UTC"))
159
159
 
160
160
  # Diamond Jubilee
161
- UniqueCloses.append(pd.Timestamp("2012-06-04", tz='UTC'))
162
- UniqueCloses.append(pd.Timestamp("2012-06-05", tz='UTC'))
161
+ UniqueCloses.append(pd.Timestamp("2012-06-04", tz="UTC"))
162
+ UniqueCloses.append(pd.Timestamp("2012-06-05", tz="UTC"))
163
163
 
164
164
  # Platinum Jubilee
165
- UniqueCloses.append(pd.Timestamp("2022-06-02", tz='UTC'))
166
- UniqueCloses.append(pd.Timestamp("2022-06-03", tz='UTC'))
165
+ UniqueCloses.append(pd.Timestamp("2022-06-02", tz="UTC"))
166
+ UniqueCloses.append(pd.Timestamp("2022-06-03", tz="UTC"))
167
167
 
168
168
  # State Funeral of Queen Elizabeth II
169
- UniqueCloses.append(pd.Timestamp("2022-09-19", tz='UTC'))
169
+ UniqueCloses.append(pd.Timestamp("2022-09-19", tz="UTC"))
170
170
 
171
171
  # Royal Weddings
172
- UniqueCloses.append(pd.Timestamp("1973-11-14", tz='UTC')) # Wedding Day of Princess Anne and Mark Phillips
173
- UniqueCloses.append(pd.Timestamp("1981-07-29", tz='UTC')) # Wedding Day of Prince Charles and Diana Spencer
174
- UniqueCloses.append(pd.Timestamp("2011-04-29", tz='UTC')) # Wedding Day of Prince William and Catherine Middleton
172
+ UniqueCloses.append(
173
+ pd.Timestamp("1973-11-14", tz="UTC")
174
+ ) # Wedding Day of Princess Anne and Mark Phillips
175
+ UniqueCloses.append(
176
+ pd.Timestamp("1981-07-29", tz="UTC")
177
+ ) # Wedding Day of Prince Charles and Diana Spencer
178
+ UniqueCloses.append(
179
+ pd.Timestamp("2011-04-29", tz="UTC")
180
+ ) # Wedding Day of Prince William and Catherine Middleton
175
181
 
176
182
  # Coronation of King Charles III
177
- UniqueCloses.append(pd.Timestamp("2023-05-08", tz='UTC'))
183
+ UniqueCloses.append(pd.Timestamp("2023-05-08", tz="UTC"))
178
184
 
179
185
  # Miscellaneous
180
- UniqueCloses.append(pd.Timestamp("1999-12-31", tz='UTC')) # Eve of 3rd Millenium A.D.
186
+ UniqueCloses.append(pd.Timestamp("1999-12-31", tz="UTC")) # Eve of 3rd Millenium A.D.